

私の名前は、東京大学国際高等研究所 カブリ数 物連携宇宙研究機構(Kavli IPMU)。2007年10月1 日に千葉県柏市に設立されました。ここには世界 中からたくさんの研究者が集まっていて、宇宙に 関する5つの疑問に取り組んでいます。

> 宇宙はどのように始まったのか? 宇宙は何でできているのか? 宇宙はどんな運命を迎えるのか? 宇宙を支配する法則は何なのか? 私たちはなぜこの宇宙に存在するのか?

だれもが小さいときに一度は思うような素朴な疑 問ですが、答えはまだわかっていません。

たとえば、宇宙のエネルギーのなかで、私たちが 知っている物質(水素とか炭素とかです)はじつは5% にも満たないことがはっきりしています。残りの 27%は得体の知れない「ダークマター」、さらに摩 訶不思議な宇宙の68%を占めるのが「ダークエ ネルギー」。どちらも名前はついているものの、そ の正体はまったくわかっていません。いったい、宇 宙は何でできているのでしょう。

これらの疑問にせまるために、Kavli IPMUには 数学、物理、天文などの第一線の研究者が集まり、 分野を超えて共同研究を行っています。毎日、午 後3時になると全員参加のティータイムが始まり ます。異なる分野の研究者たちが顔を合わせて、 おいしいお茶とパンを口にしながらおしゃべりに 興じます。仲間と情報交換し、他分野の研究に触 れ、思いがけない方向の議論が新しい研究のアイ デアにつながります。

そして5つの疑問を解くためには、新しい物の見 方を生み出していくことが大事です。頭が柔らかく、 ひとつの分野にとらわれない若い力が必要です。 このKavli IPMUものしり新聞を読んでくれたあ なたが宇宙の超難問に挑戦し、私たちとにぎやか なティータイムを過ごす未来が私の夢です。

東京大学国際高等研究所 カブリ数物連携宇宙研究機構 (Kavli IPMU)

〒277-8583 千葉県柏市柏の葉5-1-5 HP http://www.ipmu.jp/ja Facebook https://www.facebook.com/KavliIpmu/ Twitter @KavliIPMU

新倉広子

【問い合わせ先】

TEL 04-7136-4940 FAX 04-7136-4941 MAIL inquiry@ipmu.jp

東京大学国際高等研究所カブリ数物連携宇宙研究機構 主任研究員/

教授。研究分野は観測的宇宙論。ダークマター、ダークエネルギーの正

体や、宇宙論データからニュートリノ質量を決定し、インフレーション宇

宙の物理を探ることが研究の最終ゴール。

東京大学大学院理学系研究科物理学専攻博士課程2年生。研究分野は

観測的宇宙論(専門は素粒子物理学実験)。主にダークマターとよばれる宇宙

の未知の物質を研究。研究対象は銀河団から天の川銀河までと、だん

だん近傍になってきている。

Kayli IPMU

銀河系

私たちがすむ地球は、恒星である太陽 のまわりを回っている。銀河系は、そん な太陽のような星が 2000 億個も ひとまとまりになっている星 の集団だ。

ブラックホール

質量のすべてが一点に集まってしまっ た天体。そのまわりではとても強い重 力がはたらいている。原始ブラックホー ルは、宇宙がはじまったころにできた かもしれないブラックホールのこと。月 質量の原始ブラックホールであれば、 半径が約0.1mmほどの小さなものだ。

と新倉さんらの研究グルー なかった。 き止めようと の謎の物質「ダー がなければ星も銀河も私たちも誕生で 宇宙の誕生と進化に a している。 P クマター」の正体を突 リの研究者、高田さん 関係 プはそのうち クマター は

直後に生まれたとされ

る

「原始ブラック

があるが、

有力な候補の

つが宇宙の誕生

クマタ

の正体に

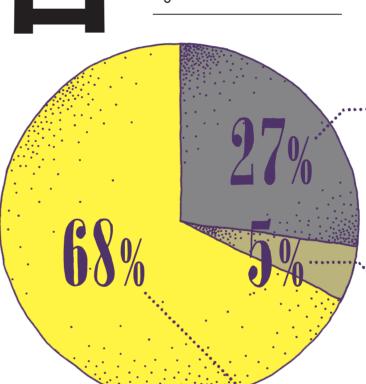
を行った。

遠鏡を使って、

メダ銀河の観測

ルは光を発しな

·ル」だ。


2人は

ハワ

にあるすばる望

かを知ることができる。 がたくさんあることがわかっ ンドロメダ銀河の間には、 観測によってどこに存在し クマター は強い重力を持っ たとえば 銀河系 て て い る できな

の物質と謎のエネルギる物質は5%もなく、 らないこと。宇宙には私たちが知って 宙が何でできてい 宙にはまだわ つもある。 残り から か

電話 04-7136-4940 FAX 04-7136-4941

ダークマター

宇宙には星や銀河などのように望 遠鏡で見えるものよりも、見えない もののほうが多く存在している。重 力ははたらかせるので存在してい ることはたしかだが正体は謎。

September 2017

東京人子国際高寺研究所 カブリ数物連携宇宙研究機構(Kavli IPMU) 〒277-8583 千葉県柏市柏の葉 5-1-5

2017年9月15日発行

発行所 東京大学国際高等研究所

ふつうの物質

私たちの体や、地球や火星など の惑星、宇宙にたくさんある太陽 のような恒星などをつくるもとに なっている物質のこと。

…ダークエネルギー

宇宙には正体不明のエネルギー が満ちている。宇宙がどんな運命 を迎えるかを予測するには、ダー クエネルギーの正体を突き止める 必要がある。

アンドロメダ銀河

さが変わる、

重力

その重力に

のを望遠鏡で見ることは

銀河系から250万光年の位置にある 銀河。今回の研究では、アンドロメダ 銀河の1億個の星が、原始ブラックホー ルが引き起こす重力レンズ現象で明る さが変化するかどうかを調べた。

すばる望遠鏡

光を受ける鏡の直径が8mもある巨大 な望遠鏡。ハワイ島の標高4,200mの マウナケア山頂にある。マウナケア山 頂は晴れる日が多く天文観測に適した 場所で、いろいろな国が建設した大き な望遠鏡がいくつもある。

分の1も低い確率でしか見られなかった。 ンズらしい現象は、計算よりも10 クマ 有力な候補を一つ消すことで である可能性がほぼな 正体に人類は一歩一歩近

の星を2年間かけて調べたところ、

この仮説に基づいて、新倉さんが1

れが正体と決定できるかもしれない

ブラックホー

ルが存在するとわかれば、

そ

るべき場所に、原始

があ

のだ。

O

ハイパー・シュプリーム・カム

(0)

すばる望遠鏡にはハイパー・シュプリーム・カム(HSC)という装置が取 り付けられている。アンドロメダ銀河にある1億個の星を同時に撮影 できるのは世界中を探してもHSCだけだ。

Subaru Telescope

WANTED!! 見ることも 謎なさ の物質 ダークマター 量 形 質量 重力 大きさ ある ある たくさん どこにでも 光を曲げる 光らない (重力レンズ) ある 【見えない天体】 【未知の素粒子】

原始ブラックホール、

褐色矮星、浮遊惑星

質量を持つニュートリノ、

アクシオン

協力:新学術領域研究「なぜ宇宙は加速するのか? 一徹底的究明と将来への挑戦一」 企画: Kavli IPMU広報 デザイン: 河原デザイン事務所 文: 岡本典明 イラスト: coca 写真: 大野 真/Kavli IPMU広報 制作: 株式会社学研プラス

Kavli IPMU は数学、物理学、天文学で宇宙の謎を研究している東京大学にある研究所です。