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Introduction

Historical

Some quotes

“A few decades ago it seemed quite certain that one had to
express the whole of physics in four-dimensional form. But now
it seems that four-dimensional symmetry is not of such
overriding importance, since the description of nature
sometimes gets simplified when one departs from it.” - Dirac
(1963)

“It should be noted that ‘relativity of simultaneity’ is contingent
on assuming that a measuring rod or clock being set in motion
or brought to rest does not change the length of the rod or the
rate of the clock. ”- Poincaré (1909)

“An increasing amount of evidence shows that the true
dynamical degrees of freedom of the gravitational field can be
identified directly with the conformally invariant geometry of
three-dimensional spacelike hypersurfaces embedded in
space-time.”- York (1972)
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Introduction

Historical

A brief history of classical scale-invariance in GR.

Weyl (1919): Introduced a scale-connection Aµ through minimal
coupling, asking why should the direction of a vector have no
absolute meaning, but its length have one? This, he says, ”has no
factual basis, and only seems to be due to the derivation of the
theory from the flat one”

Brans-Dicke (1960): “It is evident that two rods side by side,
stationary with respect to each other, can be intercompared....this
cannot be done for....rods with either a space- or time-like
separation”. [...] a hydrogen atom on Sirius has the same diameter
as one on the Earth...is either a definition or else meaningless”.

And a lot more, Dirac, Bekenstein, etc.
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Introduction

Historical

A brief history of scale-invariance in ADM (3+1).

York (1971): Solves the initial value problem for GR by exploring
Weyl transformations of the 3-metric and using constant mean
curvature gauge.

Barbour et al (2005): Rederived York’s initial value problem for
closed spatial manifolds, with the correct scaling, from a variational
principle using “volume-preserving Weyl transformations”. I.e. Weyl
transformations that preserve the total volume of the Universe.

Here not so much history.
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Introduction

Spatial Weyl transformations in ADM

Initial value problem of GR

Spacetime: Σ× R. ADM-decomposition of the space-time metric:

ds2 = −N2dt2 + gab(dxa + ξa dt)(dxb + ξb dt)

SEH[4gµν ]→ SEH[(gab, ġab,N, ξ
a)].

Legendre transform (gab, ġab)→ (gab, π
ab) yields constraints:

S(x) =
(
πabπab− 1

2π
2

|g | − (R − 2Λ)
)

(x) = 0

Generates time refoliations.

H(x) = πab
;a(x) = 0

Generates spatial diffeomorphisms.
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Introduction

Spatial Weyl transformations in ADM

York’s approach

York: under a Weyl tranformation the metric transforms as gab → Ω4gab

Scalar constraint S(x) gives 2nd order PDE for Ω.

Assuming that gabπ
ab = c

√
g :

Can always solve PDE for spatial scale Ω = Ω[c , πab, gab]

Given an initial (gab, π
ab), with π const. find Weyl related data that

solves the scalar constraint. Only generic way to find valid initial
data.
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Introduction

Spatial Weyl transformations in ADM

Conformal ADM and CMC gauge-fixing

What is the CMC gauge-fixed version of ADM? Conformal ADM in CMC.

Decompose (gab, π
ab)→ (|g |−1/3gab, |g |1/3(πab − 1

3πg ab), |g |, 2π

3
√
|g |

).

Imposing π = c
√

g and using the York results ⇒ phase space reduction
to Weyl invariant part. Problems:

Requires background metric to separate out the scale part. Ok.

Hard to work with reduced phase space. How to connect to
geometry? Reconstructed (gab, π

ab) require the scale (non-local).
Not so ok.
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What is Shape Dynamics?

Q: What is Shape Dynamics?

What is Shape Dynamics

It’s a Hamiltonian theory of gravity (3+1), about evolving spatial metric
fields and its canonical momenta. Not a spacetime perspective.

What is special about it is that it has inbuilt spatial scale invariance.

Namely, it is invariant under dilatations: (gab, π
ab)→ (αgab,

1
απ

ab).

Dual role of π:

As the gauge fixing required for the York mechanism.

As a generator of Weyl transformations

{gab, π(ε)} = εgab , {πab, π(ε)} = −επab

No space-time coordinate invariance. Refoliations “traded” for
dilatations. Same number of degrees of freedom. No scalar mode
problem.

And it matches GR in a very broad set of circumstances! But not
always...
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What is Shape Dynamics?

How is Shape Dynamics constructed? Figure.
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What is Shape Dynamics?

How is it constructed? Words.

1 Introduce artificial scalar fields (Stuckelberg) and extend ADM
phase space: (g , π)→ (g , π, φ̂, πφ)

where φ̂ is a Weyl factor that preserves the total volume of the
Universe.

2 Extra constraint arises: πφ − 4(π −√g 〈π〉) ≈ 0. Generates trivial
symmetry.

3 Two different natural gauge fixings of extended ADM:

φ = 0 gauge fixing. Gauge fixes extra constraint ⇒ original ADM.

πφ = 0 gauge fixing. Partially gauge fixes extended scalar
constraint.

Reduced theory with local constraints generating diffeomorphisms
and 3d Weyl transformations, and one global scalar constraint.
Unfreeze global constraint and obtain HSD.

Important: Both gauge fixings get back to original phase space (g , π)
with canonical Poisson bracket.
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What is Shape Dynamics?

A different perspective

A different perspective

Conformal ADM in CMC shows that gravity can also be naturally posed
as a 3d Weyl invariant theory. It shows that there is the possibility of a
different paradigm for gravity, not based on the geometry of space-time,
but on the conformal geometry of space.

Yet conformal ADM in CMC requires non-local kinematics.

Two different natural “unfixings” to obtain a local theory, ADM or Shape
Dynamics:

Shape Dynamics acquires Weyl gauge symmetry.

ADM acquires refoliation symmetry.

⇒ Local Lorentz invariance is only one possibility. There is another
aesthetic, practical and fruitful perspective available.
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What is Shape Dynamics?

Shape Dynamics vs Conformal ADM in CMC

How is Shape Dynamics different from a gauge-fixing of ADM? Not so
much.

Whenever HSD = 0 and there exists a complete CMC gauge-fixing of
spacetime, Shape Dynamics will have same physical observables as
ADM.

Advantages of Shape Dynamics:

vs ADM: No “problem of time” issues; global evolution operator,
preferred “surfaces of simultaneity”; all constraints linear in the
momenta (important for quantization).

vs Conformal ADM in CMC: Local kinematics; in canonical
variables (g , π); Shape Dynamics Hamiltonian is defined throughout
phase space (off-shell), not just on intersection of constraint
surfaces.



Shape Dynamics. 13/ 23

What is Shape Dynamics?

Where can we see these differences? Classical

Since Hgl 6≈ 0 easy to find initial data of Shape Dynamics not
gauge-equivalent to initial data of ADM.

To construct space-time from Shape Dynamics we need to rebuild
lapse N =

√
−g00. When CMC foliation exists, it is (generically)

unique, No [gab, π
ab; x).

Obstruction: CMC lapse breakdown, causing loss of equivalence from
both sides.

Breakdown is irrelevant from the Shape Dynamics side. E.g.
isotropic black hole is the closest to a “spacetime view” of a Shape
Dynamics solution.

Additionally, new techniques available to address old problems. We will
discuss a few.
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What is Shape Dynamics?

Where can we see these differences? Quantization.

Constraints linear in momenta: π ≈ 0, πab
;a ≈ 0.

Well defined geometric constraints on the wave function. True
algebra of constraint functions.

Quantization doesn’t involve δ2

δgab(x)δgab(x)
(ill defined).

Different effective field theory (and modified gravity) approach:
terms should respect spatial Weyl and diffeos as opposed to
spacetime diffeos. E.g.

S =
∫
d3x

(
a
√
σabσab + CS(ΓL.C.)

)
No traditional “problem of time”. Hamiltonian no longer a
constraint: ĤSDΨ[g ] = d

dt Ψ[g ]

Woodard & Tsamis (86) indicate no Weyl anomaly for closed case.
If true:

π − 〈π〉√g ≈ 0⇒ gab(x) δψ
δgab(x)

= 1
V

∫
d3x ′gab(x ′)( δψ[g ]

δgab(x′)
).
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What is Shape Dynamics?

Take away message from SD.

ADM (gab, π
ab)

Local symmetries:

3-diffeomorphisms

refoliations

Shape Dynamics (gab, π
ab)

One Hamiltonian + local symmetries:

3-diffeomorphisms

3d-Weyl transformations

Shape Dynamics is to Conformal
ADM in CMC

as Electromagnetism is to
transverse gauge of vector potential.



Outline

1 Introduction
Historical
Spatial Weyl transformations in ADM

2 What is Shape Dynamics?

3 Applications
dS/CFT
Asymptotically flat Shape Dynamics
Exact solutions

4 Conclusions



Shape Dynamics. 16/ 23

Applications

dS/CFT

General remarks

Relevance for AdS/CFT

Natural setting for studying such dualities: Weyl-invariant theory of the
d − 1 dimensional metric variables (bulk-bulk duality)

Hamiltonian holography: Line element of the form
ds2 = dt2 − gab dxadxb. Asymptotic homogeneity of π/

√
|g | and

scalar curvature R.

These two conditions imply asymptotic CMC lapse solution given by
N = 1:
⇒ specific gauge that manifestly coincides with Shape Dynamics.

Asymptotic Weyl symmetry in gab identified with Weyl symmetry of
Shape Dynamics. However, homogeneous lapse does not propagate
CMC condition into bulk. Manifest asymptotic equivalence lost in
the bulk.
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Applications

dS/CFT

Large Volume expansion

Ansatz: HSD =
∑∞

n=0( V
Vo

)−
2n
3 hn and Ω̂ =

∑∞
n=0( V

Vo
)−

2n
3 ωn

large CMC-volume Hamiltonian

HSD = (2Λ− 1
6 〈π〉

2)− 〈Ro〉( V
Vo

)−
2
3 + 〈σ

a
bσ

b
a

|g | 〉(
V
Vo

)−2 + ...
Ro [g ] is in Yamabe gauge, i.e. Ro is homogeneous

Observations

1 asymptotic freezing of shape deg. of freedom

2 Using Hamilton-Jacobi formalism, do a volume expansion on the
Jacobi functional.

We derive the correct form for Weyl anomalies (terms of the Jacobi
functional that don’t have volume dependence) up to term
R2 − 8

3
RabRab

3 Applicability: generic large CMC volume regime
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Applications

Asymptotically flat Shape Dynamics

What is encoded at the asymptotic boundary

In vacuum, the GR action vanishes on-shell. All that remains are the
boundary terms.

The asymptotic boundary terms define linear and angular momenta,
and the energy of the Universe:

Energy: equivalent to change in action by infinitesimal
time-displacement of boundary

Momenta: infinitesimal linear spatial displacement of boundary.

These displacements, Nµ(i), are ones that maintain the fall-off

conditions: δNµ
(i)
gij ∼ 1/r and give finite energy, momentum, etc.

By restricting the general displacements in the full 3+1
diffeomorphism algebra to the asymptotically valid ones Nµ(i)

[Nµ, Ñν ]→ [Nµ(i),N
ν
(j)], we get the Poincaré algebra.

⇒ Poincaré is a remnant of the larger group of 4D diffeomorphisms.
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Applications

Asymptotically flat Shape Dynamics

What we get for Shape Dynamics

Also the Poincaré algebra. But in a non-trivial way:

Remember that we “traded” ability to redefine time coordinates for
ability to redefine local spatial scale?

For asymptotically flat, unable to trade everything: a set of 4
generators of time displacements still asymptotically preserve
maximal slicing, No ∼ {1, xa}.
Exactly the ones we need to represent asymptotic boosts and time
translations in Shape Dynamics asymptotic algebra. This allows us
to obtain Poincaré invariance for a flat solution for Shape Dynamics.

More: the “ADM mass”, or energy, obtained is Weyl invariant

ESD[g , π] = −
∫
∂Σ

d2y(2(k − ko) + 8reΩ,e) Weyl invariant
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Applications

Exact solutions

Work in progress: Equations of motion of Shape
Dynamics

We don’t want to only get solutions from CMC foliable space-times.
Work directly with the Shape Dynamics equations of motion, tractable in
the maximal slicing π ≈ 0 case. (for open manifolds).

Shape Dynamics exact solutions for asymptotic flat boundary conditions

For conformally flat, static universe, (gab(t), πab(t)) = (Ωδab, 0):

For empty Universe we get:

Solutions can be translated back into the usual Minkowski and
Rindler space-times.

One for each type of unfixed (or “untraded”) asymptotic time
displacements: No = {1, xa}

For non-zero mass (as included in the asymptotic boundary
conditions):

Solution translated back is isotropic black hole.
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Applications

Exact solutions

Work in progress: Isotropic black hole

Solution is: No = 1−m/(2r)
1+m/(2r) and Ωo = 1 + m

2r .

At r = m/2, No = 0 = det gµν .

Equivalence between Shape Dynamics and GR breaks down.

Reconstructed ‘spacetime’ metric becomes:

ds2 = −
(

1−m/(2r)
1+m/(2r)

)2

dt2 −
(
1 + m

2r

)4
(dr 2 + r 2dΩ2)

No proper (vaccum) spacetime description valid for solution as a
whole; only possible to consider r > m/2 and r < m/2.

Infalling radial observer takes infinite proper time to reach r = 0.
Raychaudhuri equation suffers discontinuity at r = m/2. Change of
radial coord. r → m2/(4r) leaves line element invariant.

No infalling observer intersects a maximal slice more than once.

Collapse of the lapse, N → 0, is a generic feature of maximal slicing of
spacetimes describing black hole formation via gravitational collapse.
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Conclusions

Conclusions

ADM entangles evolution with constraints. Constraints quadratic in
momenta.

Shape Dynamics disentangles dynamics from constraints; all
constraints linear momenta, generate geometric transformations.
Price: complicated form of the Hamiltonian Hgl.

CMC gauge is in general only locally attainable and may be inhibited
by global obstructions in spacetime.

From the perspective of Shape Dynamics, there may be solutions for
which the translation into a spacetime is obstructed, because the
spacetime metric reconstructed from a perfectly regular Shape
Dynamics solution may be degenerate.
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Conclusions

Conclusions

We have performed the asymptotic analysis for the usual flat
asymptotic boundary conditions in Shape Dynamics.

We obtain the usual asymptotic Poincaré algebra.

Obtain the usual charges EXCEPT for an additional term for the
energy, which makes it Weyl invariant.

Explicit coincidence of ADM and Shape Dynamics for conditions
assumed in locally asymptotically AdS. Needs further investigation.

Fact that black hole formation via gravitational collapse involves a
collapse of the lapse for maximal slicing doesn’t say that Shape
Dynamics doesn’t have singularities of course. But if it does, the
solutions won’t be translatable to GR.

Finally, maybe we don’t need to abandon GR, just Lorentz invariance.
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