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Aspects of aethereal gravity

. Action terms of expansion, shear twist and acceleration

. Horava as a limit of Einstein-aether

. Aetheron

. Positive energy theorem

. Neutron stars

. Aether waves & supernova core collapse

. Cosmic alignment of the aether

. Hamiltonian Horava Constraint equation in closed universe
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The Aetheron: static, spherical vacuum

minimal

\\2-sphere



FIG. 4: Plot of r(l) and the norm of the Killing vector \/W for GR and for ¢; = 0.5, for the
solution with the same value of the total mass M, in units with 2M = 1. In GR N vanishes at the
bifurcation sphere at the center of the Einstein-Rosen bridge. In the ae-theory solution the Killing
vector remains timelike at the throat, but at the internal » = oo curvature singularity both the

norm and its slope vanish, indicating the presence of a singular extremal Killing horizon.
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FIG. 3: Plot of area radius r vs. proper length [ for fixed mass M, in units with 2M =1, for ¢; =

0, 0.1, 0.7, and 1.9. In the GR case ¢; = 0 this is the Einstein-Rosen bridge. For ¢; = 0.1 the
radius flares out to infinity so quickly that the code used to make the plot halted at small radius.
With increasing ¢; the throat widens, the flare-out inside is slower, and the proper length to the

curvature singularity increases, becoming infinite for ¢; > 3/2.



Static aether ISCO properties

risco = 6(1 + [In(3/2) — 1/6]) ~ 6(1 + 0.030 c14)

1 1
wisco = (1 + (—21In(3/2) + 1/2]v) ~ m(l —0.039c14)



= This aetheron has negative energy density everywhere, but positive mass.

= |t is stable to spherical perturbations (M. Siefert), and nonlinearly in
numerical simulations (D. Garfinkle, C. Eling, TJ) .

= Not known if it is stable beyond spherical symmetry.

= |ts positive mass strongly hints at a positive energy theorem.

Such has been proved (D. Garfinkle & TJ) for hypersurface orthogonal
aether with vanishing expansion (K = 0).

The proof uses a Schoen-Yau result:

ADM mass of an orientable 3-manifold is nonnegative
if the Ricci scalar is nonnegative.



Positive energy theorem for aether

c a G
Mapm — ﬁ ra, (= Gn
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Maximum mass of neutron stars

1.2

c_14
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Surface redshift of 1.8 M_sun neutron star
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Figure 4: Surface redshift factor z versus cy4 for 1.8 M, neutron stars using
the hardest equations of state. Hm (solid) is on top, Qh (dashed) is in the
middle and Hh (solid) is on the bottom. Note that the GR value of z = 0.35
for the hardest EOS, Hh, is consistent with the proposed surface redshift
of 0.35 for EXO 0748676 [48]. The Hm and Qh lines begin to curve up
near ¢4 =1.1-1.2 because the maximum mass for these equations of state is
approaching 1.8 M.



Aether wave polarizations
hoi =0 vi,,- = ()  Gauge conditions
spin-2 hia, hyy=—hy

. 1/2
spin-1 vy, hy= [2014c%3/(2c1 —c%-l-c%)] / Vi

spin-0 vo, hoo=—2vo, hi1=hxp=—ciavo, hsz=[2c14(1+4c2)/ci23|vo,

Compute Riemann tensor to find gauge-invariant polarizations.



Cosmic alignment of the aether

Following KS, we specialize to Bianchi type I space-
times, i.e. to metrics that are homogeneous and spatially
flat, with three commuting translation symmetries,

ds® = N2(t)dt® — e2*®) [e~4o+ () gg?
+e2a+(t)(e2\/§0_(t)dy2 +e—2\/§a-(t)dz2)]. (3)
We also assume that the aether vector is tilted only in
the z-direction,

1

—a(t)4+20+(t) o
N @) coshf(t)0; + e sinh@(t)d.. (4)

U =



|sotropization of the aether during exponential expansion

(Nonlinear extension of Kanno & Soda; with Isaac Carruthers)

Homogeneous, initially anisotropic Bianchi | (Kasner) metric, with cosmological constant
(cf. “tilted cosmology”)

Sample phase plots of aether rapidity & its time derivative:
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Generically runaway or singular outside an order unity neighborhood of aligned configuration.



If spatial sections are compact, locally hypersurface-orthogonal
configurations may not be globally hypersurface-orthogonal ---

--- s0 Horava gravity is then more restricted than
hypersurface-orthogonal Ae-theory.
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Hamiltonian structure of Horava gravity

William Donnelly* and Ted Jacobson'
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V(gij,a;) = —ER — aa;a* + . ..

H = N’Ht-l-Ni'Hi-i-vipi—l-va
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Preservation of the primary constraints in time leads
to secondary constraints

C=06H/SN =0, C;=0H/5N*=0, (15)

where

1 i

C = H; — NViV : (16)
C; = H;, (17)

and we have defined the vector density

Vi(z) = Jaj(x) / JaNV. (18)




In the IR limit,

V= —2a\/§V’:N, (19)
and the constraint C' = 0 becomes
1 /[ .. A (VN)? V2N
— | p¥pi; 2) —¢R - 2 = 0.
g(png+1_3/\p> §R —a—m— +2a—
(20)

The constraint equation in the IR limit can be lin-
earized by the change of variables® N = n?, resulting in
the equation

Ln=20 (21)
where L is the linear differential operator
1

= —4aV? — 7 (pijp,;j +

2
P > L¢R. (22



Such an equation admits a solution if and only if the spec-
trum of the Schrodinger-like operator L contains zero.
Moreover, if the foliation by constant ¢ surfaces is to be
smooth the lapse must be positive everywhere, which re-
quires that n(z) is positive for all . A solution with
positive n exists if and only if zero is the least eigenvalue
of L: this is the familiar statement that the Schrodinger
equation admits a unique eigenstate with no nodes, and
this state is a ground state [10]. Thus Eq. (21) contains a
condition on the metric g;; and its conjugate momentum
p*7. If this condition i1s met the constraint has a unique
(up to rescaling) positive solution for n, and hence the
lapse i1s determined up to a constant scaling.

This is a weird, totally nonlocal constraint, isn’t it?



