Emergent Lorentz Invariance

Oriol Pujolàs

IFAE & Universitat Autònoma de Barcelona

Based on

JHEP 1201 (2012) 062 arXiv:1109.4495,

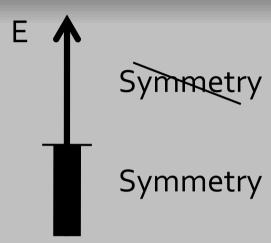
+work in progress

w/ S Sibiryakov, G Bednik

Focus Week on Gravity and Lorentz Violations, Kavli-IPMU

February 20th 2013

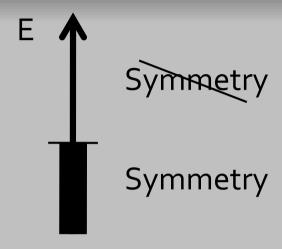
Lorentz Invariance is one of the best tested symmetries of nature


From the low-energy perspective, this is perhaps the most pressing issue of any model with LV

The existence of efficient enough mechanisms of Emergent Lorentz Invariance gives credibility to LV

Emergent Symmetry

Implementation:

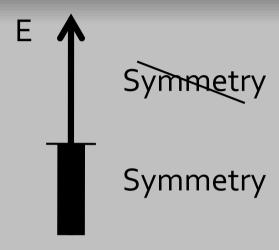

$$\operatorname{Sym}(L|_{\operatorname{Dim}0\leq 4})>\operatorname{Sym}(L)$$

Emergent Symmetry

Implementation:

$$Sym(L|_{Dim0\leq 4}) > Sym(L)$$

- Examples: lepton & baryon numbers in SM
 - LI in single-species Lifshitz model


$$\int dt \, d^3x \, \left\{ (\dot{\phi})^2 + \frac{\phi \Delta^z \phi}{M^{2z-2}} + \text{int} \right\}$$

`Anisotropic
$$z > 1$$
 scaling' in the UV

Emergent Symmetry

Implementation:

$$Sym(L|_{Dim0\leq 4}) > Sym(L)$$

- Examples: lepton & baryon numbers in SM
 - LI in single-species Lifshitz model

Plan

- EFT of Lorentz Violation
- Mechanism 1
- Mechanism 2
- Conclusions

Plan

- EFT of Lorentz Violation
- Mechanism 1 SZISY
- Mechanism 2 Strong Dynamics
- Conclusions

1) EFT of Lorentz Violation

EFT for LV

3 ingredients: LV, gravity, matter

$$L = L^{LV+grav} \left[u_{\mu}, g_{\mu\nu} \right] + L^{Matter} \left[\psi, g_{\mu\nu}, u_{\mu} \right]$$

LV: Poincaré $\rightarrow SO(3) \otimes translations$

 u_{μ} dynamical preferred frame "AETHER"

timelike vev
$$\langle u_{\mu} \rangle = (1,0,0,0)$$

LV+Gravity sector

Is LV+gravity "consistent"? YES

Einstein-Aether (2001)

Ghost Condensation (2003)

LV Massive gravity (2004)

Horava Gravity (2009)

Can be viewed as *Gravity in a 'Higgs phase'*

Yet, breaking of LI is not spontaneous

-> ok with emergence of LI

=> new degrees of freedom

LV+Gravity sector

E.g., Einstein-Aether (2001)

$$L^{LV+grav} \left[u_{\mu}, g_{\mu\nu} \right] = \sqrt{-g} \left[M_P^2 R + M_{LV}^2 (\nabla u)^2 + \lambda (u_{\mu} u^{\mu} - 1) \right]$$

bounds on parameters $M \le 10^{15} \, GeV$ (PPN α_1, α_2)

Matter Sector

$$L^{Matter}\left[\boldsymbol{\psi},\boldsymbol{g}_{\mu\nu},\boldsymbol{u}_{\mu}\right] = L^{SM}\left[\boldsymbol{\psi},\boldsymbol{g}_{\mu\nu}\right] + L^{LV}\left[\boldsymbol{\psi},\boldsymbol{g}_{\mu\nu},\boldsymbol{u}_{\mu}\right]$$

Matter 'mostly' coupled to a universal metric $g_{\mu\nu}$

+ small non-universal direct couplings to u_v

Example: LV QED

Example: LV QED

Colladay Kostelecky '98

$$L^{LVQED} = \overline{\psi} \left[a \, u_{\mu} \gamma^{\mu} + b \, u_{\mu} \, \gamma^{\mu} \gamma^{5} + \dots \right] \psi + A_{\mu} F_{\nu \rho} \kappa^{\mu \nu \rho} \qquad \text{Dim3}$$

(polarized torsion balance '08)

Observational bounds: $b(e^{-}) < 10^{-26} GeV!$

EFT expectation: $b(e^-) \sim M \sim 10^{15} GeV !!!!$

FINE TUNING

However, CPT forbids all Dim3 LV operators!

CPT+SO(3) => LI is emergent @ Dim3 in SM ...

Example: LV QED

Colladay Kostelecky '98

$$\overline{\psi} \left[c_{\mu\nu} \gamma^{\mu} + d_{\mu\nu} \gamma^5 \gamma^{\mu} + e_{\nu} + f_{\nu} \gamma^5 + \dots \right] D^{\nu} \psi + F_{\mu\nu} F_{\rho\sigma} \kappa^{\mu\nu\rho\sigma} \quad \text{Dim4}$$

$$c_{\mu\nu} = \delta c u_{\mu} u_{\nu}$$

If CPT, only 'Sound speeds' remain:

$$\delta c_{\psi} \, \bar{\psi} \gamma^{i} D_{i} \psi$$

$$\delta c_{\gamma} \vec{B}^2$$

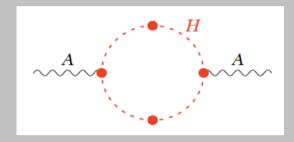
$$\delta c_H |D_i H|^2$$

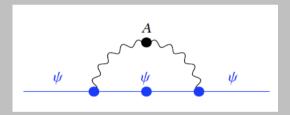
$$\delta c_{\psi} \, \overline{\psi} \gamma^{i} D_{i} \psi$$

$$\delta c_{\gamma}^2 \vec{B}^2$$

$$\delta c_H^2 |D_i H|^2$$

Observational bounds:
$$\begin{cases} |c_e - c_{\gamma}| < 10^{-15}! \\ |c_p - c_{\gamma}| < 10^{-20}!! \end{cases}$$




EFT expectation:

$$\delta c \sim 10^{-2} - 10^{-3}!!!$$

Collins Perez Sudarsky Urrutia Vucetich '04 lengo Russo Serone '09 Giudice Strumia Raidal '10 Anber Donoghue '11

$\delta c's$ running

(From Giudice Strumia Raidal' 10)

$$(4\pi)^2 \frac{d \, c_A}{d \ln \mu} = 2g_A^2 \sum_p b_p (c_A - c_p)$$

$$(4\pi)^2 \frac{d c_{\psi}}{d \ln \mu} = \frac{16}{3} \sum_{A} g_A^2 C_A (c_{\psi} - c_A) +$$

$$(4\pi)^2 \frac{d c_H}{d \ln \mu} = 4 \sum_A g_A^2 C_A (c_H - c_A) + \frac{1}{2} \frac{d c_H}{d \ln \mu}$$

$$(4\pi)^2 \frac{dg_A}{d\ln\mu} = b_A g_A^3$$

NOTE:

LI-fixed point is IR-attractive!!

Chadha Nielsen' 83

$$\delta c = \left(1 - \beta \log(\mu/M)\right)^{-\frac{Bg_0^2}{\beta}} \delta c_0$$

$$g^2 = \frac{g_0^2}{1 - \beta \log(\mu/M)}$$

Matter Sector: Dim 5,6...

$$F_{\mu\nu}\partial_{\lambda}F_{\rho\sigma}$$

$$w^2 = k^2 + \frac{k^3}{M_1}$$

$$M_1 \ge 10^{18} - 10^{19} \ GeV$$

can be forbidden by disctrete symmetries

$$F_{\mu\nu}\partial_{\lambda}\partial_{\kappa}F_{\rho\sigma}$$

$$w^2 = k^2 + \frac{k^4}{M_2^2}$$

$$M_2 \ge 10^{10} - 10^{11} \ GeV$$

bounds from MAGIC (AGNs)
Fermi/LAT (GRBs)

via loops, generate: Dim 3 ops

$$(loop) \frac{\Lambda^2}{M_1} O_3$$

Dim 4 ops

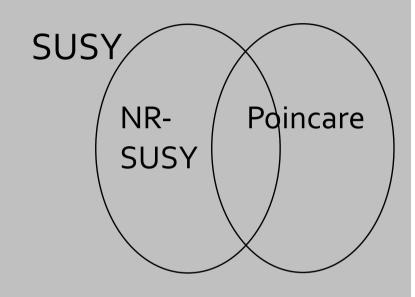
$$(loop) \frac{\Lambda^2}{M_2} O_4$$

without LI-emergence mechanism,

LV models may be not ruled out... neither "ruled in"!

2) SZISY Mechanism

NR SUSY


NR-SUSY algebra:

$$\left\{Q, \overline{Q}\right\} = \sigma^0 P_0 + C \sigma^i P_i$$

$${Q,Q} = {\bar{Q},\bar{Q}} = [Q,P] = 0$$

$$\{Q,K_j\}=i\sigma_jQ$$

$$\left\{Q,J_{jk}\right\} = i\sigma_{jk} Q$$

Most general SUSY algebra with SO(3) & translations

The SZISY mechanism

Groot-Nibbelink & Pospelov 04

Moreover, LV-Dim5,6... suppressed

Proof:

- NR-SUSY => superspace $\left\{ \exp\left(ix^{\mu}P_{\mu} + i\theta Q + i\overline{\theta}\overline{Q}\right) \right\}$
- no LV Kahler term with DimO≤4
- only LV Dim4 superpotential term: $\kappa_{IJ} \int d^2\theta \Phi_I \partial_0 \Phi_J + h.c.$

-> Not gauge-invariant if Φ_{I} charged

The <u>\$2151</u>/ mechanism

SUSY-breaking => deviations from LI suppressed

$$\delta c \sim \left(\frac{m_{soft}}{M}\right)^2$$

$$w^{2} = (1 + \frac{m^{2}}{M^{2}})k^{2} + \frac{m^{2}}{M^{3}}k^{3} + \frac{m^{2}}{M^{4}}k^{4} + \dots$$

Obs bounds satisfied with
$$m_{soft} \leq 10^2 TeV$$

=> SUSY at *low* energies!

NR-SUSY & Aether

NR-SUSY with dynamical preferred frame possible?

NR-SUSY & Aether

NR-SUSY with dynamical preferred frame necessary!

NR-SUSY & Aether

OP & Sibiryakov 11

NR-SUSY with dynamical preferred frame necessary!

Breaking LI but not SUSY?

(in Super-Poincare Language)

Impossible with Chiral multiplet

$$\phi(t)$$
 $\not \exists \psi \Rightarrow \psi$

=> LI broken by (constant) lowest-component of multiplet

Simplest realization:

Chiral vector superfield

$$\bar{D}_{\dot{\alpha}} U^{\mu} = 0$$

Super-aether

$$U^{\mu} = u^{\mu}(y) + \sqrt{2}\theta^{\alpha}\eta_{\alpha}^{\mu}(y) + G^{\mu}(y)$$

$$\uparrow \qquad \qquad \uparrow$$
complex! aetherino!

Super-Aether

Super-aether Lagrangian @ lowest derivative level OP & Sibiryakov '11

$$L = \int d^2\theta d^2\overline{\theta} f(U^{\mu}\overline{U}_{\mu}) + \int d^2\theta (U^{\mu}U_{\mu} - 1)\Lambda$$

Accidental symmetry: $SO(3,1) \times SO(3,1)^{internal}$

LI is emergent even in LV-sector!!

broken by higher order Ops and by gravity

$$c_1 \neq 0$$
, $c_2 = c_3 = c_4 = 0$

Super-Aether

Vacua
$$u^{\mu}u_{\mu}=1$$

Type I
$$\langle u^{\mu} \rangle = (\cos \alpha, 0, 0, i \sin \alpha)$$

Type II
$$\langle u^{\mu} \rangle = (0,0,\cosh\beta, i\sinh\beta)$$

Fluctuations

$$v_0 = v_1 = c$$

ghosty

SUSY breaking:

$$\int d^2\theta d^2\overline{\theta} g(U^{\mu}\overline{U}_{\mu}) S$$

$$S_1 = m_1^2 \theta^2 \overline{\theta}^2$$
$$S_2 = m_2^2 (\theta^2 + \overline{\theta}^2)$$

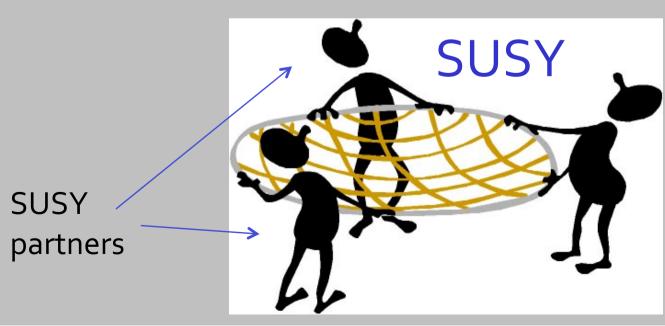
$$\operatorname{Im}(u_{\mu}), \quad \eta_{\mu}$$
 partners get stabilized.

Model reduces to Real-Aether with $c_1 >> c_i$

Conclusions - SUSY Mech

- SUSY at ~ 100TeV (or less)
- new states: aetherons & aetherinos
- spontaneous breaking of isotropy-> signatures in inflation?

open issues (for the extension to Horava gravity):


- NR-Sugra?
- Lifshitz-SUSY?

Redigolo '11

OP & Sibiryakov '11

3) Strong Dynamics Mechanism

The Strong Dynamics mechanism

 $\delta c's$ running

$$(4\pi)^2 \frac{d \delta c}{d \log \mu} = \beta_{\delta c} g^2 \delta c$$

$$\delta c = \exp \left[\int d(\log \mu) \, \frac{\beta_{\delta c} g^2}{(4\pi)^2} \right] \delta c_0$$

For example, if strongly-coupled fixed point:

$$\delta c = \mu^{\frac{\beta_* g_*^2}{(4\pi)^2}} \delta c_0$$

accelerated running

The Strong Dynamics mechanism

 $\delta c's$ running

$$(4\pi)^2 \frac{d \delta c}{d \log \mu} = \beta_{\delta c} g^2 \delta c$$

$$\delta c = \exp \left[\int d(\log \mu) \, \frac{\beta_{\delta c} g^2}{(4\pi)^2} \right] \delta c_0$$

For example, if strongly-coupled fixed point:

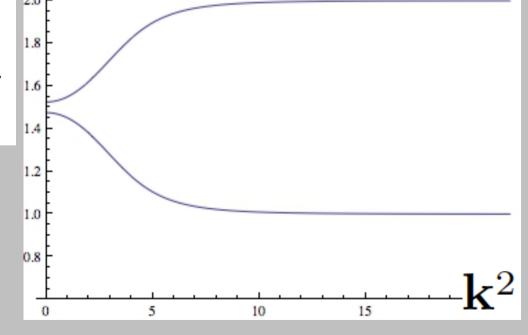
$$\delta c = \mu^{\frac{\beta_* g_*^2}{(4\pi)^2}} \delta c_0$$

accelerated running

power > 0 granted: unitarity bound on the dimension Δ_2 of massive spin-2 Op: $\Delta_2 \ge 4$

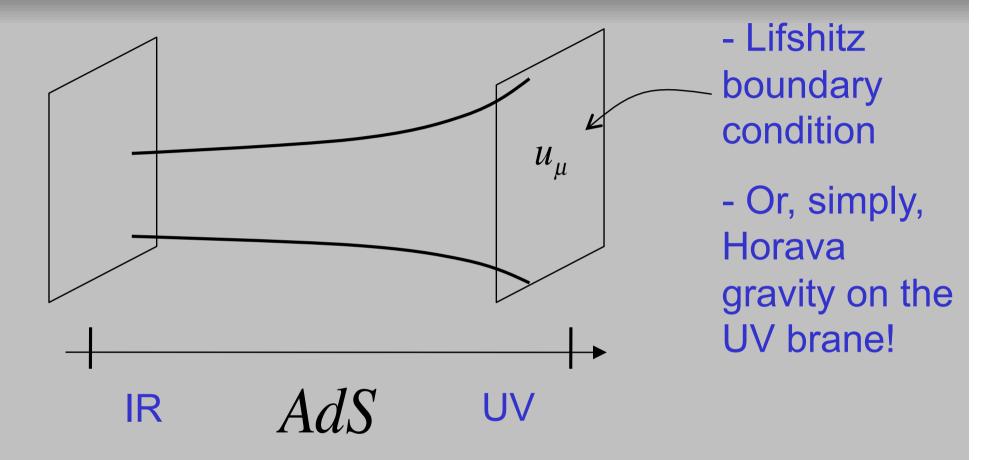
Let us test this idea, playing with 3 toys

Toy #0: free field theory

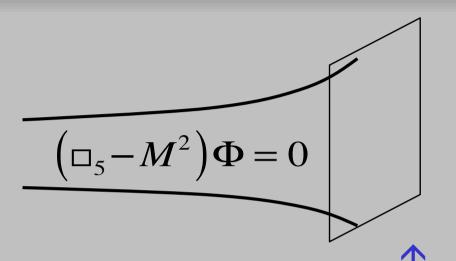

$$L = \phi (\Box + m^2) \phi + \psi (\Box_c + M^2) \psi + 2\lambda \phi \psi$$

Dispersion relations:

$$\frac{dw_{\pm}^2}{d\mathbf{k}^2}$$


For large λ ,

$$c_{\pm}^{2}(0) \simeq \frac{c^{2}+1}{2} + O(\frac{1}{\lambda})$$

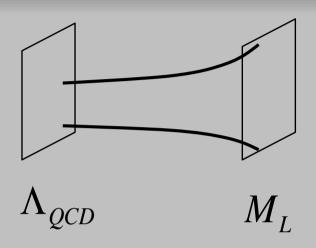


Toy #1: Randall-Sundrum holography

Dual to a CFT with UV cutoff (coupling to gravity, $M_{Lifshitz}$, M_P) and IR cutoff (Λ_{QCD}) $\leftarrow \rightarrow$ RG scale

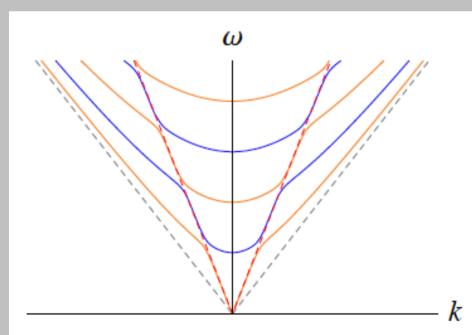
probe scalar

$$\partial_5 \Phi = (w^2 - c^2(k^2) k^2) \Phi$$


Dim: **Δ+1**

relevant if $\Delta < 3$

$$L = L_{CFT}(O) + \lambda \phi O - \phi (w^2 - c^2 k^2) \phi$$



$$G_{\phi}(w,k)^{-1} \simeq w^2 - c^2 k^2 + \lambda^2 (p^2)^{\Delta - 2}$$

dispersion relations:

$$w^2 - c^2 k^2 = \lambda^2 \tilde{f}(p)$$

$$\frac{\left(\Lambda L\right)^{2(\Delta-3)}}{\lambda^2}(c^2-1)\frac{k^2}{\Lambda^2} = f\left(\frac{p}{\Lambda}\right)$$

running coupling!

(for an operator of Dim $1+\Delta$)

Schematic form of the dispersion relations:

$$w_i^2(k^2) \simeq m_i^2 + \delta c_i^2 k^2 + \sum \frac{k^{2+2n}}{M_{(i,n)}^{2n}}$$

$$\delta c_i^2 \sim \frac{\delta c_{UV}^2}{\lambda^2(\Lambda)}$$

it works!

$$\lambda(\Lambda) = \lambda_{UV} \cdot (\Lambda L)^{\Delta - 3} \gg \lambda_{UV}$$

for relevant couplings ($\Delta < 3$)

$$M_{(i,n)} = \left[\lambda(\Lambda)\right]^{\frac{n+1}{n}} \Lambda \qquad \Lambda \ll M_{(i,n)} \leq L^{-1}$$

Problem with gauge fields? $A_{\scriptscriptstyle M}$

SM gauge fields in the bulk

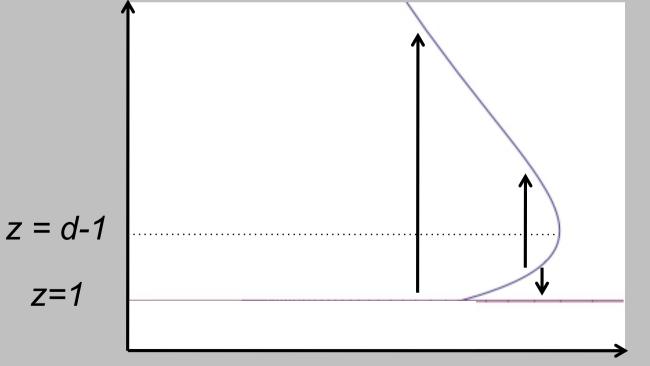
$$\delta c_{IR}^2 \simeq \frac{1}{1 - \lambda^2 \log(\Lambda L)} \delta c_{UV}^2$$

~> weak gauging of a global symmetry

SM gauge fields on the IR brane

100% composite states

Toy #3: Lifshitz flows

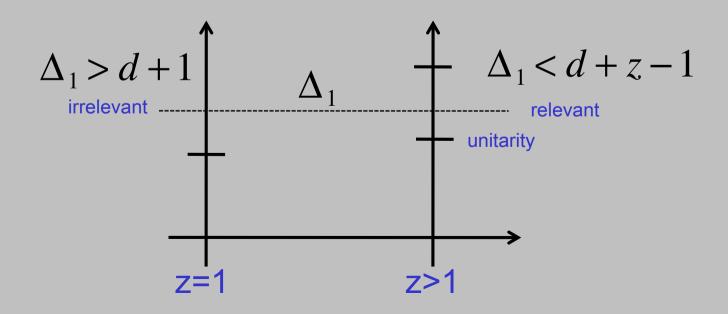


Lifshitz flows

Kachru Liu Mulligan '08

$$ds^{2} = \frac{\ell^{2}}{r^{2}}dr^{2} + \frac{r^{2}}{\ell^{2}}d\vec{x}^{2} - \frac{r^{2z}}{\ell^{2z}}dt^{2} \qquad z > 1$$

Lifshitz solutions in Einstein - Proca - AdS:


 m^2L^2

Lifshitz flows

CFT picture:

Lifshitz geom ←→ Lifshitz 'CFT' with spin 1 operator (P frame)

Lifshitz flow \longleftrightarrow 'CFT' deformed by a *relevant* spin-1 $J_t^{(\Delta_1)} \equiv g(\Lambda)$ flows in the IR to a CFT with an irrelevant op

Lifshitz flows

Propagator of probe scalar operator (no confinement/IR brane)

$$\delta G_{\phi}(w,k)^{-1} \simeq (p^2)^{\Delta-2} \left[1 + w^2 \left(\frac{(p^2)^{(\Delta_1 - 5)}}{\Lambda_*^{2(\Delta_1 - 4)}} + \frac{(p^2)^{(\Delta - 2)}}{\Lambda_*^{2(\Delta - 1)}} + \dots \right) + \dots \right]$$

Dispersion relations of bound states (with IR brane)

$$\delta c^{2} \simeq \begin{cases} g(\Lambda) \sim (\Lambda L)^{2(\Delta_{1} - 4)} \\ \lambda^{-2}(\Lambda) \sim (\Lambda L)^{\Delta - 3} \end{cases}$$

Conclusions – Strong Dyn Mech

compositeness – at low Energies

more strongly tested species -> more composite

Limits on compositeness in SM? $\Lambda \ge (few) \ TeV$

Composite gauge bosons??

How about gravity??

Conclusions

QFT-based mechanismS for Emergence of LI exist

This provides motivation to consider LV models

Very predictive: new physics at *low* energies Improving LV-tests by 10⁴ –> sensitive to emergence

Curious parallel:

EW SSB -> Hierarchy Prob -> Susy/Strong Dyn/...

Lorentz SB -> LV Fine-tuning -> Susy/Strong Dyn/Pospelov&Shang/...?

Thank you!