Testing Lorentz invariance of Dark Matter

with Diego Blas, Mikhail Ivanov, Benjamin Audren, Julien Lesgourgues

Dr. Diego Blas EPFL SB ITP BSP 730 (Bat. CH-1015 Laus

Kavli IPMU, 2013

Our Universe is dark

Dark matter: present status

Theory

Plenty of candidates: neutralinos, gravitinos, sterile neutrinos, axions, wimps, wimpzillas, ...

Experiment

Nothing: no direct / indirect detection

Only information from gravitational interactions: DM clusters as non-relativistic dust

Can we learn more ?

The key principle since 1905:

Lorentz invariance

Consider dispersion relation of a particle

$$E^{2} = m^{2} + c^{2}p^{2} + \sum_{n>1} a_{n}p^{2n}$$

LI \frown $c = 1, a_{n} = 0$

Experimental bounds on deviations from LI (δc)

Standard Modelgravitydark matter $10^{-15} \div 10^{-22}$ $10^{-4} \div 10^{-7}$???

Digression I

Theoretical motivations for deviation from LI

- May be a consequence of quantum gravity (emergent geometry, Horava-Lifshitz gravity, ...)
- Infrared modifications (e.g. massive gravity, ghost condensation, ...)

Digression II

If DM is directly detected very strong bounds on LV

NB. These bounds are model-dependent

Dark matter is non-relativistic. Impossible to probe whether it is Lorentz invariant or not?

Yes, it is possible !

Violation of LI \rightarrow new gravitational degrees of freedom

additional attraction between DM particles

violation of the equivalence principle

enhanced growth of structures

Consider the following pattern of Lorentz symmetry breaking $SO(3,1) \to SO(3)_{rotations}$

Einstein - aether model

Jacobson, Mattingly, 2000

At each point of the space-time there is a preferred frame set by a dynamical unit vector u^{μ} - aether

Variation: khrono-metric model

Blas, Pujolas, S.S., 2010 Aether restricted to be hypersurface-orthogonal: $u_{\mu} = \frac{\partial_{\mu}\sigma}{\sqrt{(\partial\sigma)^2}}$ Scalar $\sigma(x)$ - khronon - defines preferred foliation of the space-time σ preferred time

Number of couplings reduced:

 $\alpha = c_1 + c_4$, $\beta = c_1 + c_3$, $\lambda' = c_2$

NB. Can be embedded into Horava-Lifshitz gravity (candidate for quantum gravity)

Constraints from the visible sector

LI of the Standard Model

no direct coupling of aether to visible matter, interaction only through gravity

• Post-Newtonian corrections in the Solar System

$$\alpha_1^{PPN} = -4(\alpha - 2\beta)$$
$$\alpha_2^{PPN} = \frac{(\alpha - 2\beta)(\alpha - \lambda' - 3\beta)}{2(\lambda' + \beta)}$$

no cancellations

$$\rightarrow \alpha \ , \ \beta \ , \ \lambda' \lesssim 10^{-7} \div 10^{-6}$$

•
$$lpha_2^{PPN}$$
 vanishes when $eta=0$, $\lambda'=lpha$

• both vanish if $\alpha=2eta$

from gravitational wave emission and BBN lpha , eta , $\lambda' \lesssim 0.01$

LV DARK MATTER

Generalized point particle action

$$S_{pp} = -m \int ds \implies -m \int ds f(u_{\mu}v^{\mu}) \frac{dx^{\mu}}{ds}$$

Connection to the dispersion relation:

$$p_i = \frac{\partial L}{\partial V^i} \qquad E = p_i V^i - L$$

$$E^2 = m^2 + (1+\xi)p^2$$

$$f = \sqrt{\frac{1+\xi(u_\mu v^\mu)^2}{1+\xi}} \approx 1 + \xi \frac{(u_\mu v^\mu)^2 - 1}{2}$$

Generalized point particle action

$$S_{pp} = -m \int ds \quad \Longrightarrow \quad -m \int ds f(u_{\mu}v_{\mu}^{\mu}) dx^{\mu}$$

Newtonian limit: v^i , u^i -- small, $g_{00} = 1 + 2\phi$

- modified inertial mass = violation of the equivalence principle
- effective potential for aether in matter $m_{eff}^2 \sim \frac{r \rho}{M_D^2 c_1}$

ds

Accelerated Jeans instability

$$\delta\propto\tau^{\gamma},\qquad \gamma=\frac{1}{6}\bigg[-1+\sqrt{\frac{25-Y}{1-Y}}\bigg]$$
 density contrast

screening of the additional force $\approx\,$ chameleon-type mechanism

Standard Jeans instability $\delta \propto \tau^{2/3}$

NB. Standard homogeneous cosmology

Screening scale vs. Hubble

Relativistic cosmology

$$\begin{split} G_{\mu\nu} &= \frac{1}{M_P^2} T^m_{\mu\nu} + \frac{1}{M_P^2} T^{fluid}_{\mu\nu} + \frac{1}{M_P^2} T^{aether}_{\mu\nu} + \Lambda \, g_{\mu\nu} \\ & \text{baryonic matter minimally} \\ & \text{coupled to gravity} \end{split}$$

Background: Homogeneous and isotropic (preferred foliation aligned with CMB frame)

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = dt^{2} - a(t)^{2}dx^{i}dx^{i}$$
$$u_{\mu} = (u_{0}(t), 0, 0, 0) = v_{\mu} , \rho(t)$$

Friedmann equations almost not modified!

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G_c}{3}\rho_m$$
 $G_c = \frac{1}{8\pi M_P^2 [1+3\lambda/2+\beta/2]}$

From BBN $G_c = G_N + O(.01)$

Cosmological perturbations

 $\rho(x,t) \equiv \rho(t)(1+\delta(x,t))$ **Scalars:** All effects summarized in $Y \equiv \tilde{f}'(1)$ $k_Y^2 \equiv \frac{3H_0^2 \Omega_{dm} Y}{(\beta + \lambda)(1 - Y)}$ Screening scale — $k_y/a^{1/2}$ Hubble — aH k, momentum \mathbf{k}_2 $\delta \sim \frac{(k\,t)^2}{6(1-\mathbf{V})}t^{\kappa}$ no screening $1/t_{eq}$ screening ${}^{k}_{H_{0}}$ $\kappa = \sqrt{25 + \frac{24\Omega_{dm}Y}{\Omega_{cm}(1-Y)}} - 5$ super-horizon matter domination teq $({}^{t_0}_k t)^2$ t, conformal time

Matter power spectrum: qualitative $\langle \delta(k) \delta(k') \rangle \equiv \delta^{(3)}(k+k') P(k) k^3$

Matter power spectrum: numerical

вторник, 19 февраля 13 г.

Cosmic microwave background

вторник, 19 февраля 13 г.

Other effects

	α	β	λ	Y	$k_{Y,0} (h \text{ Mpc}^{-1})$	$k_{Y,eq}$ (h Mpc ⁻¹)
a	$2 \cdot 10^{-2}$	10^{-2}	10^{-2}	0.2	$9.2 \cdot 10^{-4}$	$6.5 \cdot 10^{-2}$
b	$2 \cdot 10^{-4}$	10^{-4}	10^{-4}	0.2	$9.1 \cdot 10^{-3}$	0.65
С	$2 \cdot 10^{-4}$	10^{-4}	10^{-4}	0.02	$2.6 \cdot 10^{-3}$	0.18
d	10^{-7}	0	10^{-7}	0.2	0.41	29

Rough constraint on LV in dark matter:

$$Y < 10^{-2}$$

Summary

- Developing theoretical frameworks for deviations from LI is important to better understand our Universe
- Effects of LV in **dark matter** on cosmology: same background evolution, but distinct signals for (linear) perturbations.
- Cosmological observations allow to constrain deviations from LI in **dark matter** at the level 10^{-2} or better

OUTLOOK

 \ast Study of the parameter space, comparison with data, effects at non-linear scales