IPMU Focus week 2013.2.21

A brief comment on
rotational symmetry violation

Kyoto University
Jiro Soda

Ref. A.Maleknejad, M.M.Sheikh-Jabbari and J.Soda,
““Gauge Fields and Inflation," arXiv:1212.2921 [hep-th].



Anisotropic Scaling in Cosmology

Watanabe, Kanno, Soda, PRL, 2009
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Spontaneous Rotational Symmetry breakdown

Kanno, Watanabe, Soda, JCAP, 2010

After a transient isotropic inflationary phase,

the universe enter into an anisotropic inflationary phase.
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Quantum fluctuations generate seeds of coherent vector fields.
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Introduction

In the picture of string theory landscape, there are many vacuum transitions.

Note that the vacuum energy T, =-An,, is Lorentz invariant

If this is a meta stable state, a vacuum transition occurs and a bubble would nucleate.

In this picture, the whole bubble has nucleated
at the same time.

If the vacuum transition process is Lorentz invariant,

a different observer should look at a different one
that would be weird.

Question: In which frame does observer look at this particular picture?

This is an academic issue!

In this talk, | would like to discuss this issue with a 2-d toy model.



Schwinger pair production: A toy model

Vacuum polarization
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The pair is separated at a finite distance.



Schwinger pair production rate

In the first quantization picture, we can calculate transition rate via instanton method.
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Of course, this calculation does not tell us anything about the nucleation frame.



Can we see the boosted nucleation?

Now, let me go back to our problem.

t Boosted observer should look at a different picture.
A
First, an anti-particle appears abruptly.

Then, it bounces back to the left.
After a while, a particle appears.

If the nucleation process is Lorentz invariant,
we must find this type of nucleation.

If not, the nucleation frame must be
/ S determined by the observer or others.




Initial conditions determine the nucleation frame?

What is other possibility?
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There may be a preferred frame
determined by the initial conditions.
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Strategy

There are at least the following options for the answer to our problem.

(A) The frame of nucleation is determined by initial conditions.

(B) The frame of nucleation is determined by the rest frame of the observer

(C) Others

To settle the issue, we move on to the second quantization picture.



Schwinger pair production (1)
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It is clear that a constant electric field in (1+1)-dimensions is Lorentz invariant.
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Schwinger pair production (2)
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First, we check the option (A).
Namely, we examine if the initial state breaks Lorentz invariance.



Lorentz invariance of the in-vacuum (1)

Recall the positive frequency mode functions
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Lorentz invariance of the in-vacuum (2)
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Now, it is easy to get

K= dx|:¢k az‘ﬁz - 512 at(pk :Ie—ikxﬂff =0

t=const.

It turns out that there is no mixing between the positive and negative mode functions.
Hence, both vacua are equivalent.



Now, the initial state is Lorentz invariant,
it seems we excluded the option (A).
However, there are subtle features ...



Two-point function is not Hadamard
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Again, we have Lorentz invariance, however, it is not Hadamard.
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There must be something strange ...



Lorentz breaking current

gauge invariant current
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This is consistent with an intuitive picture

There may be no Lorentz invariance.



Although the initial state is Lorentz invariant,
it seems there exists quantum Lorentz violation...
So, somehow there might be a preferred nucleation frame!



Observe nucleation frame via a detector

In order to get the information about nucleation frame, let us introduce a detector.
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There are two qualitatively different scatterings.
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Hence, the momentum distribution of chi particles carry the information about the frame.



Kinematical conditions

Before going into details, let me comment on kinematical conditions.
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Momentum distribution of chi particles

Let us derive momentum distribution of chi particles.
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We have already excluded the option (A).
Now, we we want to examine the possibility
(B) The frame of nucleation is determined
by the rest frame of the observer.



Introducing the observer

Let us turn on the detector only for a finite time interval 2T  g(¢) = ge"z/Tz

This can be interpreted as an observer.

We also assume m, < eET <m, so that psi detector particle remains unchanged.
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If both cases are observed, we have to seek other possibility (C).



The answer

Now, the amplitude reads
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The distribution has a peakat p=-

Namely, we do not see the lower branch.

This supports the option (B).
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Conclusion

* In each observers frame, particle and antiparticle nucleate at rest
and are accelerated in opposite direction by the electric field.

* The close analogy between pair production in 2-d and bubble
nucleation in 4-d lead us to expect that a similar picture should
apply to observations of bubble nucleation.



