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Introduction
Why do we have the Boulware-Deser instability: a naı̈ve counting

Classify perturbations with respect to 3d rotational symmetries:
DOF in metric δgµν :

+4 scalars +4 vectors +2 tensors

δg0µ components are non-dynamical:

-2 scalars -2 vectors -0 tensors

In GR, general coordinate invariance xµ → xµ + ξµ:

-2 scalars -2 vectors -0 tensors

=⇒ GR has only 2 tensors (gravity waves).
[ ]

In a generic massive theory, no gauge invariance:

+2 scalars +2 vectors +2 tensors

Massive spin–2 in 4d⇒ (1 s, 2 v, 2 t). Extra scalar (BD
ghost) removed with an additional constraint, stemming
from the tuning of the coefficients in the EFT.
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Introduction
dRGT action

Introduce four scalar fields (à la Stückelberg), one for each
broken gauge degree: φa (a = 0, 1, 2, 3)

Requiring Poincaré symmetry in the field space. Invariant
“line element”:

ds2
φ = ηab dφa dφb

Mass term depends only on gµν and the fiducial metric

fµν = ηab ∂µφ
a ∂νφ

b

Requiring that the sixth degree (BD ghost) is canceled at
any order, the most general action is:

Sm[gµν , fµν ] = M2
p m2

g

∫
d4x
√
−g (L2 + α3L3 + α4L4)

L2 =
εµνρσεαβρσ

2 Kα
µK β

ν

L3 =
εµνρσεαβγσ

3! Kα
µK β

νK γ
ρ and Kµ

ν ≡ δµν −
(√

g−1f
)µ

ν

L4 =
εµνρσεαβγδ

4! Kα
µK β

νK γ
ρK δ

σ
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Cosmological solutions
Strategy

dRGT theory: A massive gravity theory with 5 degrees of
freedom, built partly to address the late time acceleration.
⇒ Can we get cosmological solutions?

Look for simplest solutions in the simplest version of the theory.
=⇒Does it work?
(continuity with GR, stability, description of thermal history...)

yes⇒ constrain the theory/new effects?
no ⇒ relax the solution and/or theory
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Cosmological solutions
Which theory?

Massive gravity zoology in 3+1
1 Drop Poincaré symmetry in the field space

fµν = η̄ab ∂µφ
a ∂νφ

b ,

with generic η̄. Hassan, Rosen, Schmidt-May ’11

2 Ghost-free bigravity: introduce dynamics for the fiducial
metric Hassan, Rosen ’11

3 Quasi-dilaton, varying mass, ...
d’Amico, Gabadadze, Hui, Pirtskhalava ’12

Huang, Piao, Zhou ’12

In this talk, we only allow extensions of the type 1.

[See talk by C. Lin about cosmology in the extension of type 3 ]
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Cosmological solutions
Which cosmology?

We want
Homogeneous and isotropic universe solution, which can
accommodate the history of the universe.
Preserved homogeneity/isotropy for linear perturbations

FRW ansatz for the both physical and fiducial metrics

ds2 = −N(t)2 dt2 + a(t)2 Ωij dx i dx j

ds2
φ = −n(φ0)2 (dφ0)2 + α(φ0)2 Ωij dφi dφj

 Ωij = δij +
K δilδjmx l xm

1−K δlmx l xm

〈φa〉 = δa
µ xµ


Is this form for fµν the only choice?

Case with different fµν −→ FRW gµν d’Amico et al’11
Koyama et al’11; Volkov’11,’12; Gratia, Hu, Wyman’12

Kobayashi, Siino, Yamaguchi, Yoshida’12; Motohashi, Suyama’12

Although background dynamics homogeneous+isotropic, there is a
broken FRW symmetry in the Stückelberg sector, which can be probed
by perturbations.
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Cosmological solutions
Simplest case

Fiducial metric: Minkowski

ds2
φ = −n(t)2 (dt)2 + δijdx i dx j

Physical metric: Flat FRW

ds2 = −N(t)2 dt2 + a(t)2 Ωij dx i dx j

Constraint from Stückelberg fields:

m2
g ∂t (a3 − a2) = 0

=⇒ No flat FRW for Minkowski reference metric.
Way out: Inhomogeneous universe, which looks FRW-like
within 1/mg size patches.

d’Amico, de Rham, Dubovsky, Gabadadze, Pirtskhalava, Tolley ’11

Instead: we will relax the condition on spatial flatness.
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Cosmological solutions for Minkowski reference metric
AEG, Lin, Mukohyama ’11a

But open FRW solutions exist
ds2 = −N2 dt2 + a2 Ω

(K<0)

ij dx i dx j

ds2
φ = −n2 dt2 + α2 Ω

(K<0)

ij dx i dx j

��-
[
n = α̇/

√
|K |
]
⇐= Minkowski in open chart

Minkowski in open coordinates

Minkowski metric ds2
φ = −[d φ̃0]2 + δijd φ̃id φ̃j

After coordinate transformation

φ̃0 =
α(φ0)√
|K |

√
1 + |K |δijφiφj , φ̃i = α(φ0)φi .

becomes:

ds2
φ = − [α′(φ0)]2

|K | [dφ0]2 + [α(φ0)]2 Ωij ({φi}) dφidφj

No closed FRW chart of Minkowski =⇒ no closed solution
A. Emir Gümrükçüoğlu, IPMU Stability of cosmological solutions in massive gravity



Cosmological solutions for Minkowski reference metric
AEG, Lin, Mukohyama ’11a

Equation of motion for φ0 =⇒ 3 branches of solutions:(
ȧ
N
−
√
|K |
)

Jφ
(α

a

)
= 0

Branch I =⇒ ȧ =
√
|K |N =⇒ gµν is also Minkowski (open chart)

=⇒ No cosmological expansion!

Branch II± =⇒ Jφ(α/a) = 0[
Jφ(X ) ≡ 3 + 3α3 + α4 − 2 (1 + 2α3 + α4) X + (α3 + α4) X 2

]

α = a X±, with X± ≡
1 + 2α3 + α4 ±

√
1 + α3 + α2

3 − α4

α3 + α4
= constant

For K = 0, this branch not present. Only Branch I remains.
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Extension to generic reference metric
AEG, Lin, Mukohyama ’11b

Extending the field space metric, the line elements are

ds2 = −N2 dt2 + a2 Ωijdx i dx j

ds2
φ = −n2 dt2 + α2 Ωijdx i dx j

Generically, we can have spatial curvature with either sign

e.g. at the cost of introducing a new scale (Hf ), de Sitter
reference can be brought into flat, open and closed FRW form.

Equations of motion for φ0 ⇒ 3 branches of solutions

(a H − αHf ) Jφ
(α

a

)
= 0

Branch I : a H = αHf

[
Hf ≡ α̇

α n

]
Branch II± : 2 cosmological solutions

α(t) = X± a(t)
=⇒ same as in Minkowski reference

Expansion in Branch I can be determined by the matter content
⇒ in principle, can have cosmology. (Caveat: Transition from MD to Λ?)
However, for dS reference⇒ Higuchi vs. Vainshtein conflict

Fasiello, Tolley ’12
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Branch II± : Self-acceleration

Evolution of Branch II±, with generic (conserved) matter

3 H2 +
3 K
a2 = Λ± +

1
M2

Pl
ρ

L

mg
2

> 0

L

mg
2

< 0

-4 -2 0 2
0

2

4
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Α
4

Branch -
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L

mg
2
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Α3

Α
4

Branch +

Λ± ≡ −
m2

g

(α3 + α4)2

[
(1 + α3)

(
2 + α3 + 2α2

3 − 3α4

)
± 2

(
1 + α3 + α2

3 − α4

)3/2
]

XXz
[
H ≡ ȧ

a N

]
- independent

of Hf
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Linear perturbations
AEG, Lin, Mukohyama ’11b

Perturbations around FRW + Generic matter fields
Gravity sector: Since BD ghost removed, expect 5 dof.
Decomposition wrt 3d rotations: 1S + 2V + 2T
Quadratic action: remove auxiliary degrees, obtain:

S(2) = S(2)
EH + S(2)

matter + S(2)
Λ±︸ ︷︷ ︸

δgµν and matter perturbations

+ S̃(2)
mass︸ ︷︷ ︸

δφa and δgTT
µν S̃(2)

mass

The result
The tensor modes acquire a time dependent mass term.
Dispersion relation:

ω2
GW =

k2

a2 + M2
GW (t)

All degrees associated with δφa (BDG+ 1S + 2V) have
vanishing kinetic terms!

A. Emir Gümrükçüoğlu, IPMU Stability of cosmological solutions in massive gravity



Cancellation of kinetic terms

Other examples of cancellation

Self-accelerating solutions in the decoupling limit
de Rham, Gabadadze, Heisenberg, Pirtskhalava ’10

Inhomogeneous de Sitter solutions
Koyama, Niz, Tasinato ’11

dS and Schwarschild dS solutions in the decoupling limit
Berezhiani, Chkareuli, de Rham, Gabadadze, Tolley ’11

A branch of self-accelerating solutions in bimetric gravity
Crisostomi, Comelli, Pilo ’12
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What is the fate of these degrees?

Infinitely strong coupling?

Infinitely heavy degrees? Then, they can be integrated out
=⇒ same d.o.f. as in GR, Higuchi bound (or its analogue)
irrelevant, no need for Vainshtein mechanism.

Need to go beyond linear order to determine which case is realized
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Probing the non-linear action with linear tools
de Felice, AEG, Mukohyama ’12

Symmetry of the background⇒ cancellation

Instead of computing the high order action, we slightly break the
isotropy and compute the quadratic terms.

The small deviation from isotropy in the background is
interpreted as a homogeneous perturbation in the FRW solution.
This will allow us to obtain information on the high order terms in
the exact FRW case.

Introducing small anisotropy

The simplest anisotropic extension of flat FRW is the degenerate
Bianchi type–I metric

ds2 = −N2dt2 + a2 [e4 σ dx2 + e−2 σ
(
dy2 + dz2)]

Different fiducial metric⇔ different theory. In order to have
continuity with the FRW solutions, we keep fµν isotropic:

ds2
φ = −n2 dt2 + α2 (dx2 + dy2 + dz2)

Vacuum configuration (with bare Λ)

���
|σ| � 1

A. Emir Gümrükçüoğlu, IPMU Stability of cosmological solutions in massive gravity



Perturbations around the anisotropic background

Strategy
Make use of the residual symmetry on the y–z plane;
decomposition wrt 2d rotations:
(2d) 3S2d + 2V2d expected to propagate in gravity sector

Write the quadratic action, define G.I. variables, expand
fields in Fourier space, integrate out non-dynamical
degrees.
Expand background around FRW for small σ
Diagonalize the system =⇒ obtain dispersion relations for
energy eigenstates

A. Emir Gümrükçüoğlu, IPMU Stability of cosmological solutions in massive gravity



Kinetic terms and eigenfrequencies

κ: Kinetic term before canonical normalization
ω: Frequency after diagonalization

2d vectors

1 κ1 = O(σ0) > 0 and ω2
1 = k2

a2 + M2
GW

=⇒ 1 of the GW in the isotropic limit
2 κ2 = O(σ) and ω2

2 ∝
k2

σ
=⇒ κ > 0 if a time dependent condition satisfied

2d scalars

1 κ1 = O(σ0) > 0 and ω2
1 = k2

a2 + M2
GW

=⇒ 1 of the GW in the isotropic limit
2 κ2 = O(σ) and ω2

2 ∝
k2

σ

3 κ3 = −C(~k)κ2 and ω2
3 ∝

k2

σ , with C(~k) > 0
=⇒ Either 2 or 3 has always negative kinetic term!

There is always a ghost in 2d scalar sector. Since ω ∝ k , we cannot integrate
it out from the low energy effective theory. The solution is unstable!
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Fate of isotropic solutions?

Quadratic kinetic term for 1� |σ| 6= 0
−(...σ) φ̇2

k ⇐⇒ φk1 φ̇k2 φ̇k3 type terms, with k1 = 0.
Homogeneous and isotropic solutions in massive gravity
have ghost instability which arises from the cubic order
action.
This conclusion is valid for ± self-accelerating branch
solutions of massive gravity with arbitrary reference metric.

A. Emir Gümrükçüoğlu, IPMU Stability of cosmological solutions in massive gravity



Avoiding the instability

Rephrasing the issue

Rephrasing the issue: Kinetic terms of 3 degrees ∼ Jφ φ̇2.
Equation of motion for Stückelbergs: (a H − αHf )Jφ = 0.
On the self-accelerating branch, Jφ = 0.
Is there a way to detune the proportionality between
Stückelberg EOM and kinetic terms?

Avoiding Jφ = 0?

1 New solutions?
⇒ Breaking the FRW symmetry of the background?

2 FRW solution in extended theory?
⇒ New degree which breaks Jφ = 0 ?

3 Partially massless theory?
⇒ New symmetry to naturally remove some degrees?

A. Emir Gümrükçüoğlu, IPMU Stability of cosmological solutions in massive gravity



Relaxing the background symmetry

Breaking the FRW symmetry in the fiducial metric
It is still possible to have a H&I physical metric, while either
H or I is broken in Stückelberg sector.
Inhomogeneous examples already exist, but technically
challenging.
In our analysis, anisotropy introduced only as a technical
tool. However, kinetic terms of these polarizations are
second order.
=⇒ A universe with finite anisotropy, which looks isotropic
at the background level may have a chance to evade the
ghost.

A. Emir Gümrükçüoğlu, IPMU Stability of cosmological solutions in massive gravity



Anisotropic FRW
AEG, Lin, Mukohyama ’12

Consider Bianchi I metric, with finite anisotropy

ds2 = −N2dt2 + a2
[
e4σ dx2 + e−2σ(dy2 + dz2)

]
Fiducial metric is de Sitter

ds2
φ = −n2dt2+α2

(
dx2 + dy2 + dz2

)
←−

[
α̇

α n
= Hf = constant

]
Vacuum configuration: Fixed points

Seek solutions with Ḣ = Ẋ = σ̇ = 0←−
[
H ≡ ȧ

a N , X ≡ α
a

]
Dropping isotropic F.P., and points that require fine tuning
gives

eσ =

√
Hf X

H
The remaining equations of motion reduce to algebraic
equations on X and H.
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Anisotropic FRW
Stability of the anisotropic fixed point

Local stability

Perturb H, σ and X around the F.P. value
Can reduce the equations to

δσ′′ + 3 X0 e−2σ0 δσ′ + M2 δσ = 0←−
[
′ ≡ 1

Hf N
d
dt

]
Local stability requirement: M2(

mg
Hf
, α3, α4) > 0

Global Stability

Parameters:
mg = 20 Hf , α3 = − 1

20 , α4 = 1

Fixed point:
X ' 4 , eσ ' 1

2 , H ' 16 Hf

On F.P., isotropic expansion σ̇ = 0.
In GR, this is equivalent to a FRW
universe. In MG, a coordinate
redefinition renders physical metric
isotropic, but now the fiducial
metric becomes anisotropic.
⇒ Anisotropic FRW

A. Emir Gümrükçüoğlu, IPMU Stability of cosmological solutions in massive gravity



Anisotropic FRW - Stability of perturbations
De Felice, AEG, Lin, Mukohyama ’13

Equation of motion for Stückelberg sector:(
H + 2 σ̇ − Hf e−2σ X

)
J(x)
φ + 2 (H − σ̇ − Hf eσ X ) J(y)

φ = 0

The factorized form is broken with anisotropy. In the
isotropic limit σ → 0, we recover: (H − Hf X )Jφ = 0.

On the fixed point, eσ =
√

Hf X/H, σ̇ = 0

2 modes (1 in 2dv, 1 in 2ds) have non-vanishing kinetic
terms, which are positive for a range of parameters.

However, E.O.M. still sets J(y)
φ = 0.

Kinetic terms for 3 modes arising from mass term:

2 modes ∝ J(y)
φ , 1 mode ∝ J(x)

φ ,

Hence, on the fixed point, we still have 2 modes with
vanishing kinetic terms.
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Anisotropic FRW - Stability of perturbations
Non-linear stability

As we did for FRW background, we can introduce
homogeneous deformations of the background to obtain
information on non-linear terms.

σ = σ0 + σ1

The kinetic terms of two modes are order O(σ1), and are
equal up to numerical factors.

κ = (...)σ1 + (...)σ̇1 +O(σ2)

Kinetic terms depend on 2 dynamical functions!
On the other hand, depending on the initial conditions,
kinetic terms may be positive throughout the evolution.
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Anisotropic FRW - Stability of perturbations
Non-linear stability

Equation of motion for σ1:

σ̈1 + 3 H0 σ̇1 + M2
σ σ1 = 0

Over-damping =⇒ 9H2
0 > 4 M2

σ

Late time attractor

σ̇1 −→

−3
2

H0 +

√
9 H2

0
4
−M2

σ

σ1

So, if the system is close to the attractor,
κ = (...)σ1

and if σ1 has the correct sign, the kinetic terms of the two
modes can be positive throughout the evolution.
However, the two modes with vanishing kinetic terms on
the fixed point do not have a mass gap. This signals that
these modes are strongly coupled.
Nevertheless, this is the first example of a homogeneous
cosmology in dRGT which is stable.
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Summary

dRGT theory admits self-accelerating, H & I universe
solutions, but these suffer from a non-linear instability. This
conclusion is valid for any reference metric.
New solution with finite anisotropy – but purely isotropic
expansion. Background equivalent to FRW, anisotropy in
the Stückelberg sector can be probed by metric
perturbations. Expect the breaking of statistical isotropy to
be subdominant by the smallness of mg .
The ghost instability may be avoided for a range of
parameters and initial conditions. However, two degrees in
anisotropic background suffer from strong coupling. Other
backgrounds with different form of anisotropy?
Extending the theory with new degrees of freedom may
render the perturbations stable.

A. Emir Gümrükçüoğlu, IPMU Stability of cosmological solutions in massive gravity
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Bonus Slide: Gauge invariant variables - FRW
AEG, Lin, Mukohyama ’11b

Perturbations in the metric, Stückelberg fields and matter fields:

g00 = −N2(t) [1 + 2φ] , g0i = N(t)a(t)βi , gij = a2(t)
[
Ωij (xk ) + hij

]
ϕa = xa + πa +

1
2
πb∂bπ

a + O(ε3) , σI = σ
(0)
I + δσI

Scalar-vector-tensor decomposition:

βi = Diβ + Si , πi = Diπ + πT
i ,

hij = 2ψΩij +
(
DiDj − 1

3 Ωij4
)

E + 1
2 (DiFj + DjFi ) + γij

}Di ← Ωij , 4 ≡ ΩijDiDj

DiSi = DiπT
i = DiFi = 0

Diγij = γ i
i = 0

Gauge invariant variables without Stückelberg fields:

QI ≡ δσI − LZσ
(0)
I ,

Φ ≡ φ− 1
N ∂t (NZ 0) ,

Ψ ≡ ψ − ȧ
a Z 0 − 1

64E ,

Bi ≡ Si − a
2N Ḟi ,


Z 0 ≡ − a

N β + a2

2N2 Ė

Z i ≡ 1
2 Ωij (DjE + Fj )

Under xµ → xµ + ξµ :
Zµ → Zµ + ξµ


However, we have 4 more degrees of freedom:

ψπ ≡ ψ − 1
3
4π − ȧ

a
π0 , Eπ ≡ E − 2π , Fπi ≡ Fi − 2πT

i

���

Associated with
Stückelberg fields

HHj

Originate from gµν
and matter fields δσI

� matter
sector
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Bonus slide: Quadratic action - FRW

After using background constraint for Stückelberg fields:

S(2) = S(2)
EH + S(2)

matter + S(2)
Λ±︸ ︷︷ ︸

depend only on QI ,Φ,Ψ,Bi , γij

+ S̃(2)
mass︸ ︷︷ ︸

S̃(2)
mass=S(2)

mass−S(2)
Λ±

The first part is equivalent to GR + Λ±+ Matter fields σI .
The additional term:

S̃(2)
mass = M2

p

∫
d4x N a3

√
Ω M2

GW

×
[
3(ψπ)2− 1

12
Eπ4(4+ 3K )Eπ+

1
16

F i
π(4+ 2K )Fπ

i −
1
8
γ ijγij

]
The only common variable is γij . Dispersion relation of
tensor modes:

ω2
GW =

k2

a2 + M2
GW (t)

Eπ, ψπ,Fπ
i have no kinetic term!

M2
GW ≡ m2

g

(
1−

H
X± Hf

)
X 2
±

× [(1 + 2α3 + α4)− X± (α3 + α4)]
��*
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Bonus slide: Decomposition of perturbations -Bianchi I

Perturbations are decomposed with respect to the 2d
rotational symmetry around the x axis

δgµν =

 −2 N2 Φ a N ∂xχ b N
(
∂jB + vj

)
a2 ψ a b ∂x

(
∂jβ + λj

)
b2 [τ δij + 2 E ,ij + h(i,j)

]
0

1

i

0 1 j 
i,j=2,3

∂ i vi =0
∂ iλi =0
∂ i hi =0
∂ iπi =0


δφµ =

(
π0 ∂xπ

1 ∂ iπ+πi
)

Advantage of the axisymmetry: 2d scalars and 2d vectors
decouple at linear level.
Physical degrees in 2d scalar sector ( even modes )
(10 total) - (3 non-dynamical) - (3 gauge) - (1 BD ghost) = 3
Physical degrees in 2d vector sector ( odd modes )
(4 total) - (1 non-dynamical) - (1 gauge) = 2
We are interested in the stability of the gravity sector, so
we do not include any matter fields. Only bare Λ.
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Bonus slide: Gauge invariant variables -Bianchi I
GI constructed only out of δgµν

Φ̂ = Φ− 1
2 N ∂t

(
τ

Hb

)
χ̂ = χ+ 1

2 a Hb
τ − a

N ∂t
[ b

a

(
β − b

2 a E
)]

B̂ = B + 1
2 b Hb

τ − b
2 N ∂tE

ψ̂ = ψ − Ha
Hb
τ − b

a ∂
2
x
(
2β − b

a E
)

v̂i = vi − b
2 N ∂thi

λ̂i = λi − b
2 a hi

GI referring to δφa

τ̂π = π0 − τ
2 N Hb

β̂π = π1 − b
a

(
β − b

2 a E
)

Êπ = π − 1
2 E

ĥπ i = πi − 1
2 hi

Strategy

Use gauge invariant variables to keep track of the new massive graviton
degrees. This removes the pure gauge combinations.
Integrate out non-dynamical degrees
(4 in the 2d scalar sector, 1 in the 2d vector sector)
Expand around FRW solution for small anisotropy
Diagonalize the Lagrangian: Bring the action to the canonical form by
rescaling and rotating the fields. =⇒ Obtain dispersion relations
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Bonus slide: Odd sector – 2d vectors

The action, after small anisotropy expansion, takes the
form:

S(2)
odd '

M2
Pl

2

∫
N dt dkLd2kT ā3

[
K11
|Q̇1|2

N2
− Ω2

11 |Q1|2 + K22
|Q̇2|2

N2
− Ω2

22 |Q2|2
]

x
k

k
L

k
T

θ

at leading order:

K11 =
k2

L k4
T

2 k2 K22 =
ā2 k2

T M2
GW

4
(

1− ā2 n2

α2 N2

) σ
Ω2

11
K11

=
k2

ā2 + M2
GW

Ω2
22

K22
=

1
2σ

(
1− ā2 n2

α2 N2

) k2

ā2

AA�1 GW in FRW ��- New degree

condition for avoiding the ghost and gradient instability:(
1− ā n

αN

)
σ > 0
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Bonus slide: Even sector – 2d scalars

The full quadratic action is formally (in terms of G.I. quantities)

S(2)
even =

M2
p

2

∫
N dt dkL d2kT a b2Leven

Leven =
Ẏ†

N
K
Ẏ
N
−Y† Ω2 Y+Z†AY+Y†AT Z+Z† B Ẏ

N
+
Ẏ†

N
BT Z+Z† C Z

Y ⇒ 3 dynamical degrees (in GR, 2 are gauge)
Z ⇒ 4 non-dynamical degrees (including the BD ghost π0 − τ

2 N Hb
)

E.O.M. for n.d. modes
Z = −C−1

(
AY + B Ẏ

N

)
Now all 3 d.o.f in the action are dynamical

Leven =
Ẏ†

N
K̄
Ẏ
N

+
Ẏ†

N
M̄ Y + Y† M̄T Ẏ

N
− Y† Ω̄2 Y[

K̄ = K − BT C−1 B , M̄ = −BT C−1A , Ω̄2 = Ω2 +AT C−1A
]

Use small anisotropy expansion and diagonalize K̄ at leading order

�1 GW
in FRW κ1 =

k4
T

8 k4 κ2 = −2 ā2 M2
GW k2

L(
1− ā2 n2

α2 N2

) σ κ3 =
k2

T

2 k2
L
κ2−
�	

wrong
sign!
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