An integral field spectroscopic study of nearby SN sites: constraining mass & metallicity of the progenitors

#### Hanin Kuncarayakti ハニン クンチョロヤクティ

Institute of Astronomy, Graduate School of Science, the University of Tokyo, Japan

In collaboration with:

Mamoru Doi (IoA), Greg Aldering (LBNL), Nobuo Arimoto (Subaru/NAOJ), Keiichi Maeda (Kavli IPMU), Tomoki Morokuma (IoA), Rui Pereira (IPNL), Tomonori Usuda (Subaru/NAOJ), Yasuhito Hashiba (IoA)

#### The hunt for SN progenitors in the recent years

- Searching archival pre-explosion images for the progenitor star
- Made available by the advent of HST & AO
- Photometry of the star places it on the HR diagram → possible to determine initial mass
- Powerful and convincing, but very limited (and sadly only very few of them have confirmation of progenitor disappearance after the explosion)



Discoveries of CCSN progenitors

- II-P: red supergiants
  ~8.5-16.5 M⊙ (Smartt+09)
  II-L: yellow supergiants
  18-24 M⊙ (?)
  IIn: massive LBV
  >30-50 M⊙ (?)
  - IIb: binaries (?)
  - Ib/c: Wolf-Rayet stars >25M⊙?? or binaries??









Discoveries of CCSN progenitors

II-P: red supergiants ~8.5-16.5 M⊙ (Smartt+09) II-L: yellow supergiants • 18-24 M⊙ (?) IIn: massive LBV >30-50 M⊙ (?) IIb: binaries (?) **ELECTION SO FAR** Ib/c: Wolf-Rayet stars >25M⊙? 

or binaries??



PROGENITOR

HST + WFPC2/F814V

Geck II + NIRC2/Kr

3-Rosa+2010

onard 2009

nartt 2009

SN 1993J

3.6

3.8

log T\_

#### Clues from the environment



#### Theoretical predictions



(Georgy+2009)

# Strategy of the project

- Some SNe appear to be associated with bright sources → parent stellar population/star cluster (SC)
- Massive stars die first: SN progenitor must have been the most massive star in the SC
- SC age & metallicity = SN progenitor age & metallicity (age~mass)
- Observe nearby SN sites with IFU spectroscopy → detect parent SC and extract spectrum
- Determine metallicity & age from the SC spectrum, adopt for SN progenitor
- Equally reliable mass estimate compared to direct imaging, but much easier to increase sample – plus metallicity could be derived



# Integral field spectroscopy

- Spectra of each point in the sampled FoV → "3D spectroscopy", spatial + spectral information simultaneously
- Done using UH88/SNIFS and Gemini/GMOS (optical, seeing-limited), ongoing VLT/SINFONI (NIR, near diffraction limit with AO)



#### Focal Plane Enlarger Lens Array Collimator Grism Camera CCD Filter January Collimator Grism Camera CCD January Collimator Grism Camera CCD

#### If done with slit spectroscopy:

- Spatial information lost: cannot detect individual objects
- Integrating light from everything within the slit → contamination from other populations
- Inaccurate determination of age/metallicity

#### Data acquisition

- UHawaii2.2m/SNIFS 2010-2011 (5 nights)
- Gemini-N/GMOS 2011 observations (1 nights)

|              | SNIFS                      | GMOS           |
|--------------|----------------------------|----------------|
| IFU FoV      | 6.4"x6.4"                  | 3.5"x5" + sky  |
| IFU sampling | 0.43" (square)             | 0.2" (hexagon) |
| λ coverage   | 330-520 nm +<br>515-970 nm | 400-680 nm     |
| R            | ~1000                      | ~1700          |

Examine each site in 2-D

### Analysis method

- Extract the 1-D spectra of all detected objects
- Analyze the spectra to determine:
  - Metallicity (strong-line method)
  - Age (Hα/CaT EW)





#### Sample spectra



#### Sample spectra



### The explosion sites





Ref → Smith+2006: 30-135 Myr; Lancon+2008: 10-35 Myr



Ref → Maiz-Apellaniz+04: 13.6 Myr; Wang+05: ~20 Myr; Vinko+09: 10-16 Myr







Ref  $\rightarrow$  Crockett+2008: 7 or 20-30 Myr (SC-A)



Ref  $\rightarrow$  Valenti+2011: 25-30 M $\odot$  (SN properties), but 8-25 M $\odot$  (SC-A)

# Binary Ib/c progenitors?



SC: 11.0 Myr,  $0.83Z_{\odot}$ :  $\rightarrow$  **17.9** M $_{\odot}$  progenitor

Nomoto+94: 15 Mo binary progenitor



Metallicity: 12+log(O/H)= 8.67 (~Z⊙) Cluster H $\alpha$  EW age: 18.0 Myr  $\rightarrow$  **13.5** M $\odot$  progenitor

#### Assessment of association (or contamination)



- Probably there are unseen clusters in the field (which may have been the real SN progenitor host) → but ~30% lower likelihood to host the SN, considering the luminosity & number
- How do the SNe follow host cluster light profile?  $\rightarrow$  looks like they are associated
- Perform a Monte Carlo simulation to check, compare observed distribution against models containing different levels of contamination
- Result: 50% contamination, 50% physical association ..... ongoing VLT/SINFONI program to check this

# Comparison with stellar evolution predictions



# Ic Ib II-L II-P Smartt+09 II-P Upper limits only

# Summary & future potentials

- IFU spectroscopy of nearby SN sites → progenitor mass & metallicity from parent stellar population
- Result indicates important implications to the current SN understanding:
  - Single+binary channel in SN Ib/c production
  - Higher mass & metallicity Ic > Ib
  - Probably some SN II progenitors are massive
- Still expecting more data from VLT/SINFONI (AO-assisted NIR IFU, near diffraction limit) to refine result & resolve caveats
- Increase sensitivity towards (fainter) older population, add farther (up to z ~ 0.1) SN sites & environments (from e.g. CALIFA, MaNGA)

## Thank you very much