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Quasi-dilaton theory is the candidate for massive gravity theory, which couples to an addititonal
scalar degrees of freedom. Similarly to dRGT massvie gravity theory, there is no BD ghost in this
thoery. In this paper, we show that there is no usual solution, which posses Vainshtein mechanism.
Insted, we only have cosmological solution. We clarly show that assymptotically Minkowski solution
has always ghost in the scalar modes in the decoupling limit of the theory.

I. INTRODUCTION

It is now belived that general relativity is the theory of gravity, which describe solar system scale and it has been
tested for a long decade. It seems that there is no contradiction within tests in our solar system scales. However, if
we extend this theory to ”cosmology”, we still have a number of question that we can not understand yet. One is
the existance of dark matter, and this is now believed as some particle that we have not discovered yet. Nonetheless
this unknow matter could be of the form of some energy or be part of the theory of gravity. Another example is dark
energy, which is responsible for current cosmic accleration of the universe, and this existance has not confirmed yet.
This unknow energy constitues 72 percent of the energy in the universe. One possible solution is the cosmological
constant, but this model suffers from the cosmological constant porblem.
There might be a chance to explain this cosmic acceleration, for example, modification of gravity or other fluid

that we have not discovered yet. As a candiate of alternative theory of gravity, massive gravity has been recently
attracted considerable attention. In 1939, Pauli and Fierz found that the ”linearized” massive gravity which does
not possess ghost. This theory is based on general relativity, and the mass is measured by the difference between
the fluctuation of the metric and Minkowski metric. However, Boulwer and Deser found that there is always ghost
at nonlienar level. Now we have ghost free massive gravity constructed by de Rham, Gabadadze, and Tolley. This
includes all the nonliear terms and describe massive spin-2 particle. Now we have some question whether we can add
the additional scalar model in massive gravity, and this has been done by [] by introducing new symmetry, called
quasi-dilaton theory. This model contains massive spin-2 mode, whose number of degree of freedom is five, and one
dilaton mode. It is still opened question whether we have Vainshtein mechanism in this thoery.
In this paper, we examine the Vainshtein mechanism in quasi-dilaton theory.

II. THEORY

The action for massive gravity can be described by

SMG =
M2

Pl

2

∫
d4x

√
−g

[
R− m2

4
(U2 + α3U3 + α4U4)

]
+ Sm[gµν ,ψ] (1)

where the potential of the massive graviton is given by

U2 = 2εµαρσε
νβρσKµ

νKα
β = 4

(
[K2]− [K]2

)

U3 = εµαγρε
νβδρKµ

νKα
βK

γ
δ = −[K]3 + 3[K][K2]− 2[K3]

U4 = εµαγρε
νβδσKµ

νKα
βK

γ
δK

ρ
σ = −[K]4 + 6[K]2[K2]− 3[K2]2 − 8[K][K3] + 6[K4] (2)
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and the new nonlinear tensor is defiend by

Kµ
ν = δµν −

√
ηabgµα∂αφa∂νφb (3)

Here φa is called Stuckelberg field, which is responsible for restoring general covariance of the theory. Fixing gauge,
corresponding to φa = xa, reduces to original theory of massive gravity. Here we have five degrees of freedom, which
can be decomposed into two massless graviton, two massless vector, and one massless scalar. It has been shown that
the this theory is free of BD ghost in the full theory done by Hassan and Rosen.
Now we impose the the new global symmetry

σ → σ − αMPl, φa → eαφa (4)

and define the new tensor

Kµ
ν = δµν − eσ/MPl

√
ηabgµα∂αφa∂νφb (5)

It is very clear that this tensor is invariant under the new global symmetry. Then the action for the new action is
given by

S =
M2

Pl

2

∫
d4x

√
−g

[
R− ω

M2
Pl

gµν∂µσ∂νσ − m2

4
(U2 + α3U3 + α4U4)

]
+ S′ + Sm[gµν ,ψ] (6)

Here we added the kineti term of the new scalar called dilaton. We also can add the action, which satisfies the grobal
symmetry,

S′ = M2
Plm

2α5

∫
d4x

√
−g e4σ/MPl

√
det (gµα∂αφa∂νφa) (7)

In usual massive gravity, this term disappears on the boudary, however, in this theory, we can have this kind like term
thanks to the new additional degrees of freedom.

III. DECOUPLING LIMIT

Now we want to focus on the nonlinear effect of the new additional degrees of freedom. It is very convenient to use
the framework called decoupling limit, which allow us to extract the scalar mode of the graviton. In usual, the vector
mode decoupled from the tensor mode in the linear level, therefore, we can safely ignore vector mode. In quasi-dilaton
thoery, we can also extract another scalar mode, dilaton, by taking the decoupling limit. In order to to so, we expand
Stuckelberg field as

φa = δaµx
µ − ηaµ∂µπ/MPlm

2 (8)

Then we take the follwoing limit

MPl → ∞, m → 0, Λ = (MPlm
2)1/3 = fixed,

Tµν

MPl
= fixed (9)

The action in the decoupling limit is

LDL = −1

4
hµνEαβ

µν hαβ − ω

2
∂µσ∂µσ − hµν

[
1

4
εµενΠ− α

4Λ3
εµενΠΠ− β

2Λ6
εµενΠΠΠ

]

+ σ
[
4α5Λ

3 + γ0εεΠ+
γ1
Λ3
εεΠΠ+

γ2
Λ6
εεΠΠΠ+

γ3
Λ9
εεΠΠΠΠ

]
+

1

MPl
hµνTµν (10)

where

α = −3

4
α3 − 1, β = −1

8
α3 −

1

2
α4, γ0 =

1

2
− 2

3
α5,

γ1 =
3

8
α3 −

1

2
− α5, γ2 =

1

2
α4 −

3

8
α3 −

2

3
α5, γ3 = −1

2
α4 −

1

6
α5. (11)
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Hassan and Rosen (2011)



Quasi-dilaton theory 

2

and the new nonlinear tensor is defiend by

Kµ
ν = δµν −

√
ηabgµα∂αφa∂νφb (3)

Here φa is called Stuckelberg field, which is responsible for restoring general covariance of the theory. Fixing gauge,
corresponding to φa = xa, reduces to original theory of massive gravity. Here we have five degrees of freedom, which
can be decomposed into two massless graviton, two massless vector, and one massless scalar. It has been shown that
the this theory is free of BD ghost in the full theory done by Hassan and Rosen.
Now we impose the the new global symmetry

σ → σ − αMPl, φa → eαφa (4)

and define the new tensor

Kµ
ν = δµν − eσ/MPl

√
ηabgµα∂αφa∂νφb (5)

It is very clear that this tensor is invariant under the new global symmetry. Then the action for the new action is
given by

S =
M2

Pl

2

∫
d4x

√
−g

[
R− ω

M2
Pl

gµν∂µσ∂νσ − m2

4
(U2 + α3U3 + α4U4)

]
+ S′ + Sm[gµν ,ψ] (6)

Here we added the kineti term of the new scalar called dilaton. We also can add the action, which satisfies the grobal
symmetry,

S′ = M2
Plm

2α5

∫
d4x

√
−g e4σ/MPl

√
det (gµα∂αφa∂νφa) (7)

In usual massive gravity, this term disappears on the boudary, however, in this theory, we can have this kind like term
thanks to the new additional degrees of freedom.

III. DECOUPLING LIMIT

Now we want to focus on the nonlinear effect of the new additional degrees of freedom. It is very convenient to use
the framework called decoupling limit, which allow us to extract the scalar mode of the graviton. In usual, the vector
mode decoupled from the tensor mode in the linear level, therefore, we can safely ignore vector mode. In quasi-dilaton
thoery, we can also extract another scalar mode, dilaton, by taking the decoupling limit. In order to to so, we expand
Stuckelberg field as

φa = δaµx
µ − ηaµ∂µπ/MPlm

2 (8)

Then we take the follwoing limit

MPl → ∞, m → 0, Λ = (MPlm
2)1/3 = fixed,

Tµν

MPl
= fixed (9)

The action in the decoupling limit is

LDL = −1

4
hµνEαβ

µν hαβ − ω

2
∂µσ∂µσ − hµν

[
1

4
εµενΠ− α

4Λ3
εµενΠΠ− β

2Λ6
εµενΠΠΠ

]

+ σ
[
4α5Λ

3 + γ0εεΠ+
γ1
Λ3
εεΠΠ+

γ2
Λ6
εεΠΠΠ+

γ3
Λ9
εεΠΠΠΠ

]
+

1

MPl
hµνTµν (10)

where

α = −3

4
α3 − 1, β = −1

8
α3 −

1

2
α4, γ0 =

1

2
− 2

3
α5,

γ1 =
3

8
α3 −

1

2
− α5, γ2 =

1

2
α4 −

3

8
α3 −

2

3
α5, γ3 = −1

2
α4 −

1

6
α5. (11)

✓ Symmetry

2

and the new nonlinear tensor is defiend by

Kµ
ν = δµν −

√
ηabgµα∂αφa∂νφb (3)

Here φa is called Stuckelberg field, which is responsible for restoring general covariance of the theory. Fixing gauge,
corresponding to φa = xa, reduces to original theory of massive gravity. Here we have five degrees of freedom, which
can be decomposed into two massless graviton, two massless vector, and one massless scalar. It has been shown that
the this theory is free of BD ghost in the full theory done by Hassan and Rosen.
Now we impose the the new global symmetry

σ → σ − αMPl, φa → eαφa (4)

and define the new tensor

Kµ
ν = δµν − eσ/MPl

√
ηabgµα∂αφa∂νφb (5)

It is very clear that this tensor is invariant under the new global symmetry. Then the action for the new action is
given by

S =
M2

Pl

2

∫
d4x

√
−g

[
R− ω

M2
Pl

gµν∂µσ∂νσ − m2

4
(U2 + α3U3 + α4U4)

]
+ S′ + Sm[gµν ,ψ] (6)

Here we added the kineti term of the new scalar called dilaton. We also can add the action, which satisfies the grobal
symmetry,

S′ = M2
Plm

2α5

∫
d4x

√
−g e4σ/MPl

√
det (gµα∂αφa∂νφa) (7)

In usual massive gravity, this term disappears on the boudary, however, in this theory, we can have this kind like term
thanks to the new additional degrees of freedom.

III. DECOUPLING LIMIT

Now we want to focus on the nonlinear effect of the new additional degrees of freedom. It is very convenient to use
the framework called decoupling limit, which allow us to extract the scalar mode of the graviton. In usual, the vector
mode decoupled from the tensor mode in the linear level, therefore, we can safely ignore vector mode. In quasi-dilaton
thoery, we can also extract another scalar mode, dilaton, by taking the decoupling limit. In order to to so, we expand
Stuckelberg field as

φa = δaµx
µ − ηaµ∂µπ/MPlm

2 (8)

Then we take the follwoing limit

MPl → ∞, m → 0, Λ = (MPlm
2)1/3 = fixed,

Tµν

MPl
= fixed (9)

The action in the decoupling limit is

LDL = −1

4
hµνEαβ

µν hαβ − ω

2
∂µσ∂µσ − hµν

[
1

4
εµενΠ− α

4Λ3
εµενΠΠ− β

2Λ6
εµενΠΠΠ

]

+ σ
[
4α5Λ

3 + γ0εεΠ+
γ1
Λ3
εεΠΠ+

γ2
Λ6
εεΠΠΠ+

γ3
Λ9
εεΠΠΠΠ

]
+

1

MPl
hµνTµν (10)

where

α = −3

4
α3 − 1, β = −1

8
α3 −

1

2
α4, γ0 =

1

2
− 2

3
α5,

γ1 =
3

8
α3 −

1

2
− α5, γ2 =

1

2
α4 −

3

8
α3 −

2

3
α5, γ3 = −1

2
α4 −

1

6
α5. (11)

✓ Define the new tensor 

K satisfies the symmetry

massive graviton + scalar (DOF=6)

✓ The action

D’Amico, Gabadadze, Hui, Pirtskhalava (2012)

S =
M

2
Pl

2

Z
d

4
x

p
�g


R� !

M

2
Pl

g

µ⌫
@µ�@⌫� � m

2

4
(U2 + ↵3U3 + ↵4U4)

�
+ Sm[gµ⌫ , ]



Decoupling limit in QMG

✓ Decoupling limit

2

and the new nonlinear tensor is defiend by

Kµ
ν = δµν −

√
ηabgµα∂αφa∂νφb (3)

Here φa is called Stuckelberg field, which is responsible for restoring general covariance of the theory. Fixing gauge,
corresponding to φa = xa, reduces to original theory of massive gravity. Here we have five degrees of freedom, which
can be decomposed into two massless graviton, two massless vector, and one massless scalar. It has been shown that
the this theory is free of BD ghost in the full theory done by Hassan and Rosen.
Now we impose the the new global symmetry

σ → σ − αMPl, φa → eαφa (4)

and define the new tensor

Kµ
ν = δµν − eσ/MPl

√
ηabgµα∂αφa∂νφb (5)

It is very clear that this tensor is invariant under the new global symmetry. Then the action for the new action is
given by

S =
M2

Pl

2

∫
d4x

√
−g

[
R− ω

M2
Pl

gµν∂µσ∂νσ − m2

4
(U2 + α3U3 + α4U4)

]
+ S′ + Sm[gµν ,ψ] (6)

Here we added the kineti term of the new scalar called dilaton. We also can add the action, which satisfies the grobal
symmetry,

S′ = M2
Plm

2α5

∫
d4x

√
−g e4σ/MPl

√
det (gµα∂αφa∂νφa) (7)

In usual massive gravity, this term disappears on the boudary, however, in this theory, we can have this kind like term
thanks to the new additional degrees of freedom.

III. DECOUPLING LIMIT

Now we want to focus on the nonlinear effect of the new additional degrees of freedom. It is very convenient to use
the framework called decoupling limit, which allow us to extract the scalar mode of the graviton. In usual, the vector
mode decoupled from the tensor mode in the linear level, therefore, we can safely ignore vector mode. In quasi-dilaton
thoery, we can also extract another scalar mode, dilaton, by taking the decoupling limit. In order to to so, we expand
Stuckelberg field as

φa = δaµx
µ − ηaµ∂µπ/MPlm

2 (8)

Then we take the follwoing limit

MPl → ∞, m → 0, Λ = (MPlm
2)1/3 = fixed,

Tµν

MPl
= fixed (9)

The action in the decoupling limit is

LDL = −1

4
hµνEαβ

µν hαβ − ω

2
∂µσ∂µσ − hµν

[
1

4
εµενΠ− α

4Λ3
εµενΠΠ− β

2Λ6
εµενΠΠΠ

]

+ σ
[
4α5Λ

3 + γ0εεΠ+
γ1
Λ3
εεΠΠ+

γ2
Λ6
εεΠΠΠ+

γ3
Λ9
εεΠΠΠΠ

]
+

1

MPl
hµνTµν (10)

where

α = −3

4
α3 − 1, β = −1

8
α3 −

1

2
α4, γ0 =

1

2
− 2

3
α5,

γ1 =
3

8
α3 −

1

2
− α5, γ2 =

1

2
α4 −

3

8
α3 −

2

3
α5, γ3 = −1

2
α4 −

1

6
α5. (11)

2

and the new nonlinear tensor is defiend by

Kµ
ν = δµν −

√
ηabgµα∂αφa∂νφb (3)

Here φa is called Stuckelberg field, which is responsible for restoring general covariance of the theory. Fixing gauge,
corresponding to φa = xa, reduces to original theory of massive gravity. Here we have five degrees of freedom, which
can be decomposed into two massless graviton, two massless vector, and one massless scalar. It has been shown that
the this theory is free of BD ghost in the full theory done by Hassan and Rosen.
Now we impose the the new global symmetry

σ → σ − αMPl, φa → eαφa (4)

and define the new tensor

Kµ
ν = δµν − eσ/MPl

√
ηabgµα∂αφa∂νφb (5)

It is very clear that this tensor is invariant under the new global symmetry. Then the action for the new action is
given by

S =
M2

Pl

2

∫
d4x

√
−g

[
R− ω

M2
Pl

gµν∂µσ∂νσ − m2

4
(U2 + α3U3 + α4U4)

]
+ S′ + Sm[gµν ,ψ] (6)

Here we added the kineti term of the new scalar called dilaton. We also can add the action, which satisfies the grobal
symmetry,

S′ = M2
Plm

2α5

∫
d4x

√
−g e4σ/MPl

√
det (gµα∂αφa∂νφa) (7)

In usual massive gravity, this term disappears on the boudary, however, in this theory, we can have this kind like term
thanks to the new additional degrees of freedom.

III. DECOUPLING LIMIT

Now we want to focus on the nonlinear effect of the new additional degrees of freedom. It is very convenient to use
the framework called decoupling limit, which allow us to extract the scalar mode of the graviton. In usual, the vector
mode decoupled from the tensor mode in the linear level, therefore, we can safely ignore vector mode. In quasi-dilaton
thoery, we can also extract another scalar mode, dilaton, by taking the decoupling limit. In order to to so, we expand
Stuckelberg field as

φa = δaµx
µ − ηaµ∂µπ/MPlm

2 (8)

Then we take the follwoing limit

MPl → ∞, m → 0, Λ = (MPlm
2)1/3 = fixed,

Tµν

MPl
= fixed (9)

The action in the decoupling limit is

LDL = −1

4
hµνEαβ

µν hαβ − ω

2
∂µσ∂µσ − hµν

[
1

4
εµενΠ− α

4Λ3
εµενΠΠ− β

2Λ6
εµενΠΠΠ

]

+ σ
[
4α5Λ

3 + γ0εεΠ+
γ1
Λ3
εεΠΠ+

γ2
Λ6
εεΠΠΠ+

γ3
Λ9
εεΠΠΠΠ

]
+

1

MPl
hµνTµν (10)

where

α = −3

4
α3 − 1, β = −1

8
α3 −

1

2
α4, γ0 =

1

2
− 2

3
α5,

γ1 =
3

8
α3 −

1

2
− α5, γ2 =

1

2
α4 −

3

8
α3 −

2

3
α5, γ3 = −1

2
α4 −

1

6
α5. (11)

✓ The action
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Consider the following transformation,

hµν → hµν + πηµν +
α

Λ3
∂µπ∂νπ (12)

Then the action in the decoupling limit is given by

LDL = −1

4
hµνEαβ

µν hαβ − ω

2
∂µσ∂µσ − 1

8
π

[
εεΠ− 2α

Λ3
εεΠΠ+

1

Λ6

(
α2 +

β

2

)
εεΠΠΠ− β

2Λ9
εεΠΠΠΠ

]

+
β

2Λ6
hµνεµενΠΠΠ+ σ

[
4α5Λ

3 + γ0εεΠ+
γ1
Λ3
εεΠΠ+

γ2
Λ6
εεΠΠΠ+

γ3
Λ9
εεΠΠΠΠ

]

+
1

MPl
hµνTµν +

1

MPl
πT +

α

MPlΛ3
∂µπ∂νπT

µν (13)

As you can see from this action, this is exactly bi-galileon thoery, which has mixing term of π field and σ field.
Throughout this paper, we consider the case β = 0, for simplicity. Equation of motion for π,

1

4
εεΠ− 3α

4Λ3
εεΠΠ+

α2

2Λ6
εεΠΠΠ− γ0εεΣ− 2γ1

Λ3
εεΣΠ− 3γ2

Λ6
εεΣΠΠ− 4γ3

Λ9
εεΣΠΠΠ (14)

=
1

MPl
T − 2α

MPlΛ3
ΠµνT

µν (15)

and equation of σ is given by

−ω
6
εεΣ+ 4α5Λ

3 + γ0εεΠ+
γ1
Λ3
εεΠΠ+

γ2
Λ6
εεΠΠΠ+

γ3
Λ9
εεΠΠΠΠ = 0 (16)

IV. SPHERICALLY SYMMETRIC CASE

In this paper, we use the following time-dependent ansatz,

π(t, x) → a

2
t2 + π(r) (17)

σ(t, x) → b

2
t2 + σ(r) (18)

where a and b are constants and a = b = 0 gives time-independent spherical symmetric case.
After substituting these ansatz we have equation of motion for π

3a

2
− 6γ0b+

1

r2

[
−3

2
r2π′ − 3α

Λ3

(
ar2π′ − rπ′2

)
+
α2

Λ6

(
3arπ′2 − π′3

)
(19)

+ 6γ0r
2σ′ − 4γ1

Λ3

(
br2π′ + ar2σ′ − 2rσ′π′

)
− 6γ2

Λ6

(
brπ′2 + 2arσ′π′ − σ′π′2

)
− 8γ3

Λ9

(
bπ′3 + 3aσ′π′2

)]
(20)

= − 1

MPl
(1 + 2αa)ρ (21)

and equation of motion of σ field

−ωb+ 4α5Λ
3 + 6γ0a+

1

r2

[
ωr2σ′ − 6γ0r

2π′ +
4γ1
Λ3

(
ar2π′ − rπ′2

)
+

2γ2
Λ6

(
3arπ′2 − π′3

)
+

8γ3
Λ9

aπ′3
]
= 0 (22)

(23)

A. α5 = 0 and a = b = 0

Defining the new variables

λ ≡ π′

Λ3r
, λσ ≡ σ′

Λ3r
, r∗ ≡

(
M

M2
Plm

2

)1/3

, (24)
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Bi-galileon interaction term

2

and the new nonlinear tensor is defiend by

Kµ
ν = δµν −

√
ηabgµα∂αφa∂νφb (3)

Here φa is called Stuckelberg field, which is responsible for restoring general covariance of the theory. Fixing gauge,
corresponding to φa = xa, reduces to original theory of massive gravity. Here we have five degrees of freedom, which
can be decomposed into two massless graviton, two massless vector, and one massless scalar. It has been shown that
the this theory is free of BD ghost in the full theory done by Hassan and Rosen.
Now we impose the the new global symmetry

σ → σ − αMPl, φa → eαφa (4)

and define the new tensor

Kµ
ν = δµν − eσ/MPl

√
ηabgµα∂αφa∂νφb (5)

It is very clear that this tensor is invariant under the new global symmetry. Then the action for the new action is
given by

S =
M2

Pl

2

∫
d4x

√
−g

[
R− ω

M2
Pl

gµν∂µσ∂νσ − m2

4
(U2 + α3U3 + α4U4)

]
+ S′ + Sm[gµν ,ψ] (6)

Here we added the kineti term of the new scalar called dilaton. We also can add the action, which satisfies the grobal
symmetry,

S′ = M2
Plm

2α5

∫
d4x

√
−g e4σ/MPl

√
det (gµα∂αφa∂νφa) (7)

In usual massive gravity, this term disappears on the boudary, however, in this theory, we can have this kind like term
thanks to the new additional degrees of freedom.

III. DECOUPLING LIMIT

Now we want to focus on the nonlinear effect of the new additional degrees of freedom. It is very convenient to use
the framework called decoupling limit, which allow us to extract the scalar mode of the graviton. In usual, the vector
mode decoupled from the tensor mode in the linear level, therefore, we can safely ignore vector mode. In quasi-dilaton
thoery, we can also extract another scalar mode, dilaton, by taking the decoupling limit. In order to to so, we expand
Stuckelberg field as

φa = δaµx
µ − ηaµ∂µπ/MPlm

2 (8)

Then we take the follwoing limit

MPl → ∞, m → 0, Λ = (MPlm
2)1/3 = fixed,

Tµν

MPl
= fixed (9)

The action in the decoupling limit is

LDL = −1

4
hµνEαβ

µν hαβ − ω

2
∂µσ∂µσ − hµν

[
1

4
εµενΠ− α

4Λ3
εµενΠΠ− β

2Λ6
εµενΠΠΠ

]

+ σ
[
4α5Λ

3 + γ0εεΠ+
γ1
Λ3
εεΠΠ+

γ2
Λ6
εεΠΠΠ+

γ3
Λ9
εεΠΠΠΠ

]
+

1

MPl
hµνTµν (10)

where

α = −3

4
α3 − 1, β = −1

8
α3 −

1

2
α4, γ0 =

1

2
− 2

3
α5,

γ1 =
3

8
α3 −

1

2
− α5, γ2 =

1

2
α4 −

3

8
α3 −

2

3
α5, γ3 = −1

2
α4 −

1

6
α5. (11)



Spherically symmetric case
✓ Master equation for λ

4

then after integrating equation of motion for π field gives

3λ− 6αλ2 + 2α2λ3 − 6λσ − 16γ1λσλ− 12γ2λσλ
2 = 2

(r∗
r

)3
(25)

and equation of motion for σ field

λσ =
1

ω
(3λ+ 4γ1λ

2 + 2γ2λ
3) (26)

Eliminating λσ gives the master equation of λ

3

2

(
1− 6

ω

)
λ−

(
3α+

36γ1
ω

)
λ2 +

(
α2 − 32γ21 + 24γ2

ω

)
λ3 − 40

γ1γ2
ω

λ4 − 12γ22
ω

λ5 =
(r∗
r

)3
(27)

When r " r∗, then possible solutions are obtained by solving P (λ) = 0, where P (λ) is defined by left hand side of
Eq. (?). We call this solution as λ = 0,λ1,2,3,4. λ = 0 corresponds to asymptotic Minkoski solution, which is given by

λ # 2ω

3(ω − 6)

(r∗
r

)3
(28)

for r " r∗.
When r $ r∗, the highest nonlinear term dominates, so there are two solutions depending on the sign of ω, which

are

λ # ±
(

3|ω|
16(1 + α)2

)1/5 (r∗
r

)3/5
(29)

negative λ corresponds to positive ω, and positive λ corresponds to negative ω. These solutions are only solutions no
matter what the solution ouside the Vainshtein radius. However, negative ω leads to ghost of σ field (see Appendix).
Therefore, we disregard this solution and only consider positive ω, which corresponds to negative λ solution.
It is interesting to see the effective energy density contributed from the scalar fieldis. For the constant λ solutions

correspoding to constant λ which are λ1,2,3,4, the effective energy density is

ρ = MPlG00 # −3λ(1− αλ)Λ3MPl (30)

and the effective pressure is

p =
MPl

3
Gi

i # −λ(−2 + αλ)Λ3MPl (31)

Since we are focusing on negative λ solution, we have positive energy and negative pressure if α > 0.
For assymptotic Minkowski solution, the effective energy density is

ρ # −4αω2Λ3MPl

3(w − 6)2

(r∗
r

)6
(32)

and the effective pressure is

p # 4αω2Λ3MPl

9(w − 6)2

(r∗
r

)6
(33)

In this case, the effective equation of state is w = −1/3. In order to have positive energy density we require α < 0 for
this solution. However, we need positive α to avoid ghost inside distributed matter because of disformal coupling of
π field to matter. Therefore, there is no stable assymptotic Minkowski solution.
Now we want to see what is going to happen in perturbations. We summerized the quadratic action for the scalar

fields. The leading term of time component of the kinetic term in the Vainshtein region is

L(2)
DL # − 34/5

10× 21/5
(1 + α)(10 + 7α)

ω

(
ω

(1 + α)2

)4/5 (r∗
r

)12/5
(∂tφ)

2 (34)

Thus as long as α is positive, we always have ghost and there is no stable solution for any solutions.
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then after integrating equation of motion for π field gives

3λ− 6αλ2 + 2α2λ3 − 6λσ − 16γ1λσλ− 12γ2λσλ
2 = 2

(r∗
r

)3
(25)

and equation of motion for σ field

λσ =
1

ω
(3λ+ 4γ1λ

2 + 2γ2λ
3) (26)

Eliminating λσ gives the master equation of λ

3

2

(
1− 6

ω

)
λ−

(
3α+

36γ1
ω

)
λ2 +

(
α2 − 32γ21 + 24γ2

ω

)
λ3 − 40

γ1γ2
ω

λ4 − 12γ22
ω

λ5 =
(r∗
r

)3
(27)

When r " r∗, then possible solutions are obtained by solving P (λ) = 0, where P (λ) is defined by left hand side of
Eq. (?). We call this solution as λ = 0,λ1,2,3,4. λ = 0 corresponds to asymptotic Minkoski solution, which is given by

λ # 2ω

3(ω − 6)

(r∗
r

)3
(28)

for r " r∗.
When r $ r∗, the highest nonlinear term dominates, so there are two solutions depending on the sign of ω, which

are

λ # ±
(

3|ω|
16(1 + α)2

)1/5 (r∗
r

)3/5
(29)

negative λ corresponds to positive ω, and positive λ corresponds to negative ω. These solutions are only solutions no
matter what the solution ouside the Vainshtein radius. However, negative ω leads to ghost of σ field (see Appendix).
Therefore, we disregard this solution and only consider positive ω, which corresponds to negative λ solution.
It is interesting to see the effective energy density contributed from the scalar fieldis. For the constant λ solutions

correspoding to constant λ which are λ1,2,3,4, the effective energy density is

ρ = MPlG00 # −3λ(1− αλ)Λ3MPl (30)

and the effective pressure is

p =
MPl

3
Gi

i # −λ(−2 + αλ)Λ3MPl (31)

Since we are focusing on negative λ solution, we have positive energy and negative pressure if α > 0.
For assymptotic Minkowski solution, the effective energy density is

ρ # −4αω2Λ3MPl

3(w − 6)2

(r∗
r

)6
(32)

and the effective pressure is

p # 4αω2Λ3MPl

9(w − 6)2

(r∗
r

)6
(33)

In this case, the effective equation of state is w = −1/3. In order to have positive energy density we require α < 0 for
this solution. However, we need positive α to avoid ghost inside distributed matter because of disformal coupling of
π field to matter. Therefore, there is no stable assymptotic Minkowski solution.
Now we want to see what is going to happen in perturbations. We summerized the quadratic action for the scalar

fields. The leading term of time component of the kinetic term in the Vainshtein region is

L(2)
DL # − 34/5

10× 21/5
(1 + α)(10 + 7α)

ω

(
ω

(1 + α)2

)4/5 (r∗
r

)12/5
(∂tφ)

2 (34)

Thus as long as α is positive, we always have ghost and there is no stable solution for any solutions.

3

Consider the following transformation,

hµν → hµν + πηµν +
α

Λ3
∂µπ∂νπ (12)

Then the action in the decoupling limit is given by

LDL = −1

4
hµνEαβ

µν hαβ − ω

2
∂µσ∂µσ − 1

8
π

[
εεΠ− 2α

Λ3
εεΠΠ+

1

Λ6

(
α2 +

β

2

)
εεΠΠΠ− β

2Λ9
εεΠΠΠΠ

]

+
β

2Λ6
hµνεµενΠΠΠ+ σ

[
4α5Λ

3 + γ0εεΠ+
γ1
Λ3
εεΠΠ+

γ2
Λ6
εεΠΠΠ+

γ3
Λ9
εεΠΠΠΠ

]

+
1

MPl
hµνTµν +

1

MPl
πT +

α

MPlΛ3
∂µπ∂νπT

µν (13)

As you can see from this action, this is exactly bi-galileon thoery, which has mixing term of π field and σ field.
Throughout this paper, we consider the case β = 0, for simplicity. Equation of motion for π,

1

4
εεΠ− 3α

4Λ3
εεΠΠ+

α2

2Λ6
εεΠΠΠ− γ0εεΣ− 2γ1

Λ3
εεΣΠ− 3γ2

Λ6
εεΣΠΠ− 4γ3

Λ9
εεΣΠΠΠ (14)

=
1

MPl
T − 2α

MPlΛ3
ΠµνT

µν (15)

and equation of σ is given by

−ω
6
εεΣ+ 4α5Λ

3 + γ0εεΠ+
γ1
Λ3
εεΠΠ+

γ2
Λ6
εεΠΠΠ+

γ3
Λ9
εεΠΠΠΠ = 0 (16)

IV. SPHERICALLY SYMMETRIC CASE

In this paper, we use the following time-dependent ansatz,

π(t, x) → a

2
t2 + π(r) (17)

σ(t, x) → b

2
t2 + σ(r) (18)

where a and b are constants and a = b = 0 gives time-independent spherical symmetric case.
After substituting these ansatz we have equation of motion for π

3a

2
− 6γ0b+

1

r2

[
−3

2
r2π′ − 3α

Λ3

(
ar2π′ − rπ′2

)
+
α2

Λ6

(
3arπ′2 − π′3

)
(19)

+ 6γ0r
2σ′ − 4γ1

Λ3

(
br2π′ + ar2σ′ − 2rσ′π′

)
− 6γ2

Λ6

(
brπ′2 + 2arσ′π′ − σ′π′2

)
− 8γ3

Λ9

(
bπ′3 + 3aσ′π′2

)]
(20)

= − 1

MPl
(1 + 2αa)ρ (21)

and equation of motion of σ field

−ωb+ 4α5Λ
3 + 6γ0a+

1

r2

[
ωr2σ′ − 6γ0r

2π′ +
4γ1
Λ3

(
ar2π′ − rπ′2

)
+

2γ2
Λ6

(
3arπ′2 − π′3

)
+

8γ3
Λ9

aπ′3
]
= 0 (22)

(23)

A. α5 = 0 and a = b = 0

Defining the new variables

λ ≡ π′

Λ3r
, λσ ≡ σ′

Λ3r
, r∗ ≡

(
M

M2
Plm

2

)1/3

, (24)

where

✓ Solution inside Vainshtein radius

π is suppressed by usual gravity → Newton gravity
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Spherically symmetric case
✓ Solution outside Vainshtein radius

4

then after integrating equation of motion for π field gives

3λ− 6αλ2 + 2α2λ3 − 6λσ − 16γ1λσλ− 12γ2λσλ
2 = 2

(r∗
r

)3
(25)

and equation of motion for σ field

λσ =
1

ω
(3λ+ 4γ1λ

2 + 2γ2λ
3) (26)

Eliminating λσ gives the master equation of λ

3

2

(
1− 6

ω

)
λ−

(
3α+

36γ1
ω

)
λ2 +

(
α2 − 32γ21 + 24γ2

ω

)
λ3 − 40

γ1γ2
ω

λ4 − 12γ22
ω

λ5 =
(r∗
r

)3
(27)

When r " r∗, then possible solutions are obtained by solving P (λ) = 0, where P (λ) is defined by left hand side of
Eq. (?). We call this solution as λ = 0,λ1,2,3,4. λ = 0 corresponds to asymptotic Minkoski solution, which is given by

λ # 2ω

3(ω − 6)

(r∗
r

)3
(28)

for r " r∗.
When r $ r∗, the highest nonlinear term dominates, so there are two solutions depending on the sign of ω, which

are

λ # ±
(

3|ω|
16(1 + α)2

)1/5 (r∗
r

)3/5
(29)

negative λ corresponds to positive ω, and positive λ corresponds to negative ω. These solutions are only solutions no
matter what the solution ouside the Vainshtein radius. However, negative ω leads to ghost of σ field (see Appendix).
Therefore, we disregard this solution and only consider positive ω, which corresponds to negative λ solution.
It is interesting to see the effective energy density contributed from the scalar fieldis. For the constant λ solutions

correspoding to constant λ which are λ1,2,3,4, the effective energy density is

ρ = MPlG00 # −3λ(1− αλ)Λ3MPl (30)

and the effective pressure is

p =
MPl

3
Gi

i # −λ(−2 + αλ)Λ3MPl (31)

Since we are focusing on negative λ solution, we have positive energy and negative pressure if α > 0.
For assymptotic Minkowski solution, the effective energy density is

ρ # −4αω2Λ3MPl

3(w − 6)2

(r∗
r

)6
(32)

and the effective pressure is

p # 4αω2Λ3MPl

9(w − 6)2

(r∗
r

)6
(33)

In this case, the effective equation of state is w = −1/3. In order to have positive energy density we require α < 0 for
this solution. However, we need positive α to avoid ghost inside distributed matter because of disformal coupling of
π field to matter. Therefore, there is no stable assymptotic Minkowski solution.
Now we want to see what is going to happen in perturbations. We summerized the quadratic action for the scalar

fields. The leading term of time component of the kinetic term in the Vainshtein region is

L(2)
DL # − 34/5

10× 21/5
(1 + α)(10 + 7α)

ω

(
ω

(1 + α)2

)4/5 (r∗
r

)12/5
(∂tφ)

2 (34)

Thus as long as α is positive, we always have ghost and there is no stable solution for any solutions.

0

� = 0 and 4 constants

4

then after integrating equation of motion for π field gives

3λ− 6αλ2 + 2α2λ3 − 6λσ − 16γ1λσλ− 12γ2λσλ
2 = 2

(r∗
r

)3
(25)

and equation of motion for σ field

λσ =
1

ω
(3λ+ 4γ1λ

2 + 2γ2λ
3) (26)

Eliminating λσ gives the master equation of λ

3

2

(
1− 6

ω

)
λ−

(
3α+

36γ1
ω

)
λ2 +

(
α2 − 32γ21 + 24γ2

ω

)
λ3 − 40

γ1γ2
ω

λ4 − 12γ22
ω

λ5 =
(r∗
r

)3
(27)

When r " r∗, then possible solutions are obtained by solving P (λ) = 0, where P (λ) is defined by left hand side of
Eq. (?). We call this solution as λ = 0,λ1,2,3,4. λ = 0 corresponds to asymptotic Minkoski solution, which is given by

λ # 2ω

3(ω − 6)

(r∗
r

)3
(28)

for r " r∗.
When r $ r∗, the highest nonlinear term dominates, so there are two solutions depending on the sign of ω, which

are

λ # ±
(

3|ω|
16(1 + α)2

)1/5 (r∗
r

)3/5
(29)

negative λ corresponds to positive ω, and positive λ corresponds to negative ω. These solutions are only solutions no
matter what the solution ouside the Vainshtein radius. However, negative ω leads to ghost of σ field (see Appendix).
Therefore, we disregard this solution and only consider positive ω, which corresponds to negative λ solution.
It is interesting to see the effective energy density contributed from the scalar fieldis. For the constant λ solutions

correspoding to constant λ which are λ1,2,3,4, the effective energy density is

ρ = MPlG00 # −3λ(1− αλ)Λ3MPl (30)

and the effective pressure is

p =
MPl

3
Gi

i # −λ(−2 + αλ)Λ3MPl (31)

Since we are focusing on negative λ solution, we have positive energy and negative pressure if α > 0.
For assymptotic Minkowski solution, the effective energy density is

ρ # −4αω2Λ3MPl

3(w − 6)2

(r∗
r

)6
(32)

and the effective pressure is

p # 4αω2Λ3MPl

9(w − 6)2

(r∗
r

)6
(33)

In this case, the effective equation of state is w = −1/3. In order to have positive energy density we require α < 0 for
this solution. However, we need positive α to avoid ghost inside distributed matter because of disformal coupling of
π field to matter. Therefore, there is no stable assymptotic Minkowski solution.
Now we want to see what is going to happen in perturbations. We summerized the quadratic action for the scalar

fields. The leading term of time component of the kinetic term in the Vainshtein region is

L(2)
DL # − 34/5

10× 21/5
(1 + α)(10 + 7α)

ω

(
ω

(1 + α)2

)4/5 (r∗
r

)12/5
(∂tφ)

2 (34)

Thus as long as α is positive, we always have ghost and there is no stable solution for any solutions.

✓ λ=0 solution (Asymptotically flat solution)

✓ λ=constant solutions (Asymptotic cosmological solutions)
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✓ Quadratic Lagrangian

6

Appendix A: Perturbations

We perturbe the scalar and dilaton,

π → Φ(r) + φ(t, x) (A1)

σ → Ψ(r) + ψ(t, x) (A2)

Then, the quadratic Lagrangian for the scalar parts is

L(2)
DL = A1(∂tφ)

2 −A2(∂rφ)
2 −A3(∂Ωφ)

2 + B1(∂tψ)
2 − B2(∂rψ)

2 − B3(∂Ωψ)
2 (A3)

+C1∂tφ∂tψ − C2∂rφ∂rψ − C3∂Ωφ∂Ωψ (A4)

where

A1 =
3

4
− 1

Λ3

[
3

2
α

(
Φ′′ + 2

Φ′

r

)
+ 2γ1

(
Ψ′′ + 2

Ψ′

r

)]
(A5)

+
1

Λ6

[
3

2
α2

(
Φ′2

r2
+ 2

Φ′Φ′′

r

)
− 6γ2

(
Ψ′Φ′

r2
+

Ψ′′Φ′

r
+

Ψ′Φ′′

r

)]
(A6)

− 12γ3
Λ9

(
Ψ′′Φ′2

r2
+ 2

Ψ′Φ′Φ′′

r2

)
(A7)

A2 =
3

4
+

3

2
αa+ 2γ1b−

1

Λ3

[
3(α+ α2a− 2γ2b)

Φ′

r
+ 2(2γ1 − 3γ2a)

Ψ′

r

]
(A8)

+
1

Λ6

[
3

2

(
α2 + 8γ3b

) Φ′2

r2
− 6(γ2 − 4γ3a)

Ψ′Φ′

r2

]
(A9)

A3 =
3

4
+
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ω
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ω
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ω

2
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Λ3
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(A16)

C3 = −6γ0 + 4γ1b−
4γ1 − 3γ2(a+ b)

Λ3

(
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r

)
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Φ′Φ′′

r
(A17)

(A18)

Diagonalizing the time derivative terms gives

L(2)
DL ⊃ A1(∂tφ)

2 + B1(∂tψ)
2 + C1(∂tφ)(∂tψ) (A19)
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(
∂tφ+

C1
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∂tψ

)2
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(
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C2
1

4A1

)
(∂tψ)

2 (A20)

Thus we require

A1 > 0, B1 −
C2
1

4A1
> 0 (A21)

Thus as one can see from the coeffients, the minimum condition of the parameter ω for avoiding ghost is ω > 0.
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We perturbe the scalar and dilaton,

π → Φ(r) + φ(t, x) (A1)

σ → Ψ(r) + ψ(t, x) (A2)

Then, the quadratic Lagrangian for the scalar parts is
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2 −A2(∂rφ)
2 −A3(∂Ωφ)

2 + B1(∂tψ)
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Ψ′′ + 2

Ψ′

r

)]
(A5)

+
1

Λ6

[
3

2
α2

(
Φ′2

r2
+ 2

Φ′Φ′′
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Ψ′

r

]
(A8)

+
1

Λ6

[
3

2

(
α2 + 8γ3b

) Φ′2

r2
− 6(γ2 − 4γ3a)

Ψ′Φ′

r2

]
(A9)

A3 =
3

4
+

3

2
αa+ 2γ1b−

1

Λ3

[
3

2
(α+ α2a− 2γ2b)

(
Φ′′ +

Φ′

r

)
+ (2γ1 − 3γ2a)

(
Ψ′′ +

Ψ′

r

)]
(A10)

+
1

Λ6

[
3

2

(
α2 + 8γ3b

) Φ′Φ′′

r
− 3(γ2 − 4γ3a)

Φ′Ψ′′ +Ψ′Φ′′

r

]
(A11)

B1 =
ω

2
(A12)

B2 =
ω

2
(A13)

B3 =
ω

2
(A14)

C1 = −6γ0 −
4γ1
Λ3

(
Φ′′ + 2

Φ′

r

)
− 6

γ2
Λ6

(
Φ′2

r2
+ 2

Φ′Φ′′

r

)
− 24γ3

Λ9

Φ′2Φ′′

r2
(A15)

C2 = −6γ0 + 4γ1b−
8γ1 − 6γ2(a+ b)

Λ3

Φ′

r
− 6γ2 − 8γ3(2a+ b)

Λ6

Φ′2

r2
(A16)

C3 = −6γ0 + 4γ1b−
4γ1 − 3γ2(a+ b)

Λ3

(
Φ′′ +

Φ′

r

)
− 6γ2 − 8γ3(2a+ b)

Λ6

Φ′Φ′′

r
(A17)

(A18)

Diagonalizing the time derivative terms gives
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DL ⊃ A1(∂tφ)

2 + B1(∂tψ)
2 + C1(∂tφ)(∂tψ) (A19)
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(
∂tφ+
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2A1

∂tψ

)2

+

(
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1

4A1

)
(∂tψ)

2 (A20)

Thus we require

A1 > 0, B1 −
C2
1

4A1
> 0 (A21)

Thus as one can see from the coeffients, the minimum condition of the parameter ω for avoiding ghost is ω > 0.
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We perturbe the scalar and dilaton,

π → Φ(r) + φ(t, x) (A1)

σ → Ψ(r) + ψ(t, x) (A2)

Then, the quadratic Lagrangian for the scalar parts is
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2 (A3)

+C1∂tφ∂tψ − C2∂rφ∂rψ − C3∂Ωφ∂Ωψ (A4)
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2
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− 6
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)
− 6γ2 − 8γ3(2a+ b)

Λ6

Φ′Φ′′

r
(A17)
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Diagonalizing the time derivative terms gives

L(2)
DL ⊃ A1(∂tφ)

2 + B1(∂tψ)
2 + C1(∂tφ)(∂tψ) (A19)

= A1

(
∂tφ+

C1
2A1

∂tψ

)2

+

(
B1 −

C2
1

4A1

)
(∂tψ)

2 (A20)

Thus we require

A1 > 0, B1 −
C2
1

4A1
> 0 (A21)

Thus as one can see from the coeffients, the minimum condition of the parameter ω for avoiding ghost is ω > 0.

where
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✓ Quadratic Lagrangian (Inside the source + Vainshtein radius)

✓ The static clump of dust of constant density
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Appendix A

In order to study the stability, we split the scalar degree of freedom into the back-
ground Φ and the fluctuation σ as follows

π = Φ+ σ. (A-I)

As a result, to the second order in perturbations, the Lagrangian (3) becomes5

Lσ =

{[
−
3

2
+ 3

α

Λ3
3

!Φ+
3

2

α2

Λ6
3

(
(∂α∂βΦ)

2 − (!Φ)2
)]

ηµν

+

[
−3

α

Λ3
3

∂µ∂νΦ+ 3
α2

Λ6
3

(−∂α∂µΦ∂α∂νΦ+!Φ∂µ∂νΦ)

]}

×∂µσ∂νσ +
1

Mpl
σT +

α

MplΛ3
3

∂µσ∂νσT
µν . (A-II)

For the static clump of dust of constant density, that is for Tµν = ρδ0µδ
0
νθ(R− r), we

obtain the following kinetic term (to the leading order) inside the source
[
α

ρ

MplΛ3
3

+ 9

(
α1/3r∗
R

)2
]
(∂tσ)

2. (A-III)

Here, the second term in brackets comes from the quartic Galileon term after we have
substituted the classical solution within Vainshtein region (9). After the replacement
ρ → M/R3, (A-III) leads to the conclusion that in α < 0 parameter space the scalar
perturbations have ghost-like kinetic term within the source of radius R $ α1/3r∗.
The latter condition can be translated on the language of the source density as

αρ > MplΛ
3
3. (A-IV)

For phenomenologically interesting value of Λ−1
3 ∼ 1000 km the above bound be-

comes αρ > 10−29 g/cm3.

5Here we give only the scalar part of the Lagrangian, since the tensor mode is completely
decoupled and propagates according to the linearized Einstein-Hilbert action.
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Appendix A: Perturbations

We perturbe the scalar and dilaton,

π → Φ(r) + φ(t, x) (A1)

σ → Ψ(r) + ψ(t, x) (A2)

Then, the quadratic Lagrangian for the scalar parts is

L(2)
DL = A1(∂tφ)

2 −A2(∂rφ)
2 −A3(∂Ωφ)

2 + B1(∂tψ)
2 − B2(∂rψ)

2 − B3(∂Ωψ)
2 (A3)

+C1∂tφ∂tψ − C2∂rφ∂rψ − C3∂Ωφ∂Ωψ (A4)

where

A1 =
3

4
− 1

Λ3

[
3

2
α

(
Φ′′ + 2

Φ′

r

)
+ 2γ1

(
Ψ′′ + 2

Ψ′

r

)]
(A5)

+
1

Λ6

[
3

2
α2

(
Φ′2

r2
+ 2

Φ′Φ′′

r

)
− 6γ2

(
Ψ′Φ′

r2
+

Ψ′′Φ′

r
+

Ψ′Φ′′

r

)]
(A6)

− 12γ3
Λ9

(
Ψ′′Φ′2

r2
+ 2

Ψ′Φ′Φ′′

r2

)
(A7)

A2 =
3

4
+

3

2
αa+ 2γ1b−

1

Λ3

[
3(α+ α2a− 2γ2b)

Φ′

r
+ 2(2γ1 − 3γ2a)

Ψ′

r

]
(A8)

+
1

Λ6

[
3

2

(
α2 + 8γ3b

) Φ′2

r2
− 6(γ2 − 4γ3a)

Ψ′Φ′

r2

]
(A9)

A3 =
3

4
+

3

2
αa+ 2γ1b−

1

Λ3

[
3

2
(α+ α2a− 2γ2b)

(
Φ′′ +

Φ′

r

)
+ (2γ1 − 3γ2a)

(
Ψ′′ +

Ψ′

r

)]
(A10)

+
1

Λ6

[
3

2

(
α2 + 8γ3b

) Φ′Φ′′

r
− 3(γ2 − 4γ3a)

Φ′Ψ′′ +Ψ′Φ′′

r

]
(A11)

B1 =
ω

2
(A12)

B2 =
ω

2
(A13)

B3 =
ω

2
(A14)

C1 = −6γ0 −
4γ1
Λ3

(
Φ′′ + 2

Φ′

r

)
− 6

γ2
Λ6

(
Φ′2

r2
+ 2

Φ′Φ′′

r

)
− 24γ3

Λ9

Φ′2Φ′′

r2
(A15)

C2 = −6γ0 + 4γ1b−
8γ1 − 6γ2(a+ b)

Λ3

Φ′

r
− 6γ2 − 8γ3(2a+ b)

Λ6

Φ′2

r2
(A16)

C3 = −6γ0 + 4γ1b−
4γ1 − 3γ2(a+ b)

Λ3

(
Φ′′ +

Φ′

r

)
− 6γ2 − 8γ3(2a+ b)

Λ6

Φ′Φ′′

r
(A17)

(A18)

Diagonalizing the time derivative terms gives

L(2)
DL ⊃ A1(∂tφ)

2 + B1(∂tψ)
2 + C1(∂tφ)(∂tψ) (A19)

= A1

(
∂tφ+

C1
2A1

∂tψ

)2

+

(
B1 −

C2
1

4A1

)
(∂tψ)

2 (A20)

Thus we require

A1 > 0, B1 −
C2
1

4A1
> 0 (A21)

Thus as one can see from the coeffients, the minimum condition of the parameter ω for avoiding ghost is ω > 0.
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We perturbe the scalar and dilaton,

π → Φ(r) + φ(t, x) (A1)

σ → Ψ(r) + ψ(t, x) (A2)

Then, the quadratic Lagrangian for the scalar parts is
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2 −A2(∂rφ)
2 −A3(∂Ωφ)
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Diagonalizing the time derivative terms gives
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2 + B1(∂tψ)
2 + C1(∂tφ)(∂tψ) (A19)
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+
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Thus we require

A1 > 0, B1 −
C2
1

4A1
> 0 (A21)

Thus as one can see from the coeffients, the minimum condition of the parameter ω for avoiding ghost is ω > 0.

6

Appendix A: Perturbations

We perturbe the scalar and dilaton,

π → Φ(r) + φ(t, x) (A1)

σ → Ψ(r) + ψ(t, x) (A2)
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r

)
− 6

γ2
Λ6

(
Φ′2

r2
+ 2

Φ′Φ′′

r

)
− 24γ3

Λ9

Φ′2Φ′′

r2
(A15)

C2 = −6γ0 + 4γ1b−
8γ1 − 6γ2(a+ b)

Λ3

Φ′

r
− 6γ2 − 8γ3(2a+ b)

Λ6

Φ′2

r2
(A16)

C3 = −6γ0 + 4γ1b−
4γ1 − 3γ2(a+ b)

Λ3

(
Φ′′ +

Φ′

r

)
− 6γ2 − 8γ3(2a+ b)

Λ6

Φ′Φ′′

r
(A17)

(A18)

Diagonalizing the time derivative terms gives

L(2)
DL ⊃ A1(∂tφ)

2 + B1(∂tψ)
2 + C1(∂tφ)(∂tψ) (A19)

= A1

(
∂tφ+

C1
2A1

∂tψ

)2

+

(
B1 −

C2
1

4A1

)
(∂tψ)

2 (A20)

Thus we require

A1 > 0, B1 −
C2
1

4A1
> 0 (A21)

Thus as one can see from the coeffients, the minimum condition of the parameter ω for avoiding ghost is ω > 0.

✓ Inside Vainshtein radius,

B1 = !/2

C2
1

4A1
/

⇣r⇤
r

⌘12/5

One of the scalar field has always ghost !!!

Ghost ??

L(2)
DL ' A1(@t�)

2 � C2
1

4A1
(@t )

2



Summary

Quasi-dilaton massive gravity with β=0 (Restricted bi-galileon)

• does not have “healthy” asymptotically flat solution (vDVZ 

solution) as well as cosmological solution

• It seems that there is some “healthy” time-dependent solutions (in 

progress)


