Mini-workshop "Massive gravity and its cosmological implications" @IPMU

Vainshtein mechanism in Horndeski's general scalar-tensor theory (and in massive gravity)

Tsutomu Kobayashi Rikkyo University

Based on work with Tastuya Narikawa (Osaka), Ryo Saito (YITP), Daisuke Yamauchi (RESCEU) arXiv:1302.2311

Talk plan

Contractor and

Introduction & Motivation

- ✓ Horndeski's most general scalar-tensor theory
- Static, spherically symmetric, weak gravitational field

Application

Introduction

Mystery of dark energy

Modified gravity as an alternative to dark energy?

Filler.

Modification would persist down to small length scales...

Need screening mechanism in the vicinity of matter

Basic idea

Extra d.o.f is effectively weakly coupled to matter

- Vainshtein mechanism Vainshtein (1972)

Example

Sandar and

Cubic Galileon non-minimally coupled to matter:

$$\mathcal{L} = \frac{1}{8\pi G} \left[-\frac{1}{2} (\partial \varphi)^2 - \frac{r_c^2}{3} (\partial \varphi)^2 \Box \varphi \right] + \varphi T_{\mu}^{\ \mu}$$

 $(\varphi: dimensionless)$

Key non-linearity

 $r_c^2 \Box arphi$ can be large even if $arphi \ll 1$

$$\varphi \sim \frac{r_g}{r} \ll 1, \ r_c^2 \Box \varphi \sim \frac{r_c^2 r_g}{r^3} \gtrsim 1 \quad \text{for} \quad r \lesssim (r_c^2 r_g)^{1/3}$$

Equation of motion

Contract of the

Static, spherically symmetric, non-relativistic source: $T_{\mu}^{\ \mu}=ho$

>
$$\frac{1}{r^2} \left\{ (r^2 \varphi')' + \frac{4r_c^2}{3} \left[r(\varphi')^2 \right]' \right\} = 8\pi G \rho$$

 \triangleright Quadratic algebraic equation for φ'

>
$$\varphi' = \frac{3r}{8r_c^2} \left(-1 + \sqrt{1 + \frac{16r_c^2r_g}{3r_c^3}} \right)$$

Vainshtein radius

$$r_V = (r_c^2 r_g)^{1/3}$$

 $\oslash \quad \varphi' \sim \frac{r_g}{r^2} \sim \Phi'$ for $r \gg r_V$ unscreened $\odot \quad \varphi' \sim \frac{r_g}{r^2} \left(\frac{r}{r_V}\right)^{3/2} \ll \Phi' \quad \text{for} \quad r \ll r_V \quad \text{screened}$

(Φ : gravitational potential)

Suppose $r_c = 3 \text{ Gpc}$ $r_V \sim 100 \text{ pc}$ for the Sun $(M = M_{\odot})$ $r_V \sim 1 \text{ Mpc}$ for a galaxy cluster $(M = 10^{14} M_{\odot})$

Motivation

 Study the Vainshtein mechanism in the most general scalartensor theory, clarifying the conditions under which a screened solution is realized

✓ Offer a basic tool to test general scalar-tensor type gravity

Horndeski's most general scalar-tensor theory

Nicolis, Rattazzi, Trincherini (2009)

Galileon

$\mathcal{L} = c_1 \phi + c_2 (\partial \phi)^2 + c_3 (\partial \phi)^2 \Box \phi + c_4 (\partial \phi)^2 \left[(\Box \phi)^2 - (\partial_\mu \partial_\nu \phi)^2 \right]$ $+ c_5 (\partial \phi)^2 \left[(\Box \phi)^3 - 3 \Box \phi (\partial_\mu \partial_\nu \phi)^2 + 2 (\partial_\mu \partial_\nu \phi)^3 \right]$

Vainshtein mechanism operates

Burrage, Seery (2010);

Unique scalar-field theory in 4D flat spacetime having

 \checkmark Galilean shift symmetry $\phi \rightarrow \phi + b_{\mu}x^{\mu} + c$

✓ 2nd-order equation of motion

Deffayet, Gao, Steer, Zahariade (2011)

 $G_{4X} := \frac{\partial G_4}{\partial \mathbf{V}}$

Generalized Galileon

✓ Include gravity

 \checkmark 2nd-order equation of motion both for $g_{\mu
u}$ and ϕ

✓ Forget about any symmetry...

 $\mathcal{L} = K(\phi, X) - G_3(\phi, X) \Box \phi$ + $G_4(\phi, X)R + G_{4X} \left[(\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi)^2 \right]$ + $G_5(\phi, X)G_{\mu\nu}\nabla^\mu \nabla^\nu \phi - \frac{1}{6}G_{5X} \left[(\Box \phi)^3 - 3(\Box \phi)(\nabla_\mu \nabla_\nu \phi)^2 + 2(\nabla_\mu \nabla_\nu \phi)^3 \right]$ $X = -\frac{1}{2}(\partial \phi)^2$ Horndeski (1974); Rediscovered by Charmousis et al. (2011)

Horndeski's theory

The most general scalar-tensor theory with second-order field equations

$$\mathcal{L}_{H} = \delta^{\alpha\beta\gamma}_{\mu\nu\sigma} \bigg[\kappa_{1} \nabla^{\mu} \nabla_{\alpha} \phi R_{\beta\gamma}^{\ \nu\sigma} + \frac{2}{3} \kappa_{1X} \nabla^{\mu} \nabla_{\alpha} \phi \nabla^{\nu} \nabla_{\beta} \phi \nabla^{\sigma} \nabla_{\gamma} \phi \\ + \kappa_{3} \nabla_{\alpha} \phi \nabla^{\mu} \phi R_{\beta\gamma}^{\ \nu\sigma} + 2\kappa_{3X} \nabla_{\alpha} \phi \nabla^{\mu} \phi \nabla^{\nu} \nabla_{\beta} \phi \nabla^{\sigma} \nabla_{\gamma} \phi \bigg] \\ + \delta^{\alpha\beta}_{\mu\nu} \bigg[(F + 2W) R_{\alpha\beta}^{\ \mu\nu} + 2F_{X} \nabla^{\mu} \nabla_{\alpha} \phi \nabla^{\nu} \nabla_{\beta} \phi + 2\kappa_{8} \nabla_{\alpha} \phi \nabla^{\mu} \phi \nabla^{\nu} \nabla_{\beta} \phi \bigg] \\ - 6 (F_{\phi} + 2W_{\phi} - X\kappa_{8}) \Box \phi + \kappa_{9}$$

The generalized Galileon is equivalent to Horndeski's theory

TK, Yamaguchi, Yokoyama (2011)

Static, spherically symmetric, weak gravitational field

Narikawa, TK, Yamauchi, Saito, 1302.2311

Background

Start with the most general scalar-tensor theory

$$\mathcal{L} = K(\phi, X) - G_3(\phi, X) \Box \phi + G_4(\phi, X) R + G_{4X} \left[(\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi)^2 \right] + G_5(\phi, X) G^{\mu\nu} \nabla_\mu \nabla_\nu \phi - \frac{1}{6} G_{5X} \left[(\Box \phi)^3 - 3 \Box \phi (\nabla_\mu \nabla_\nu \phi)^2 + 2 (\nabla_\mu \nabla_\nu \phi)^3 \right]$$

Minkowski background

$$\mathrm{d}s^2 = \eta_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu}, \quad \phi = \phi_0 = \mathrm{const}, \quad X = 0$$

(Require $K(\phi_0, 0) = 0$, $K_{\phi}(\phi_0, 0) = 0$ for the theory to admit Minkowski background)

Approximations

Static, spherically symmetric perturbations produced by non-relativistic matter

$$ds^{2} = -[1 + 2\Phi(r)]dt^{2} + [1 - 2\Psi(r)]dx^{2}$$

$$\phi = \phi_{0} + \varphi(r)$$

$$T_{t}^{t} = -\rho(r)$$

Perturbations are small, but non-linear terms can be as large as linear terms Do not neglect $(\partial \partial \epsilon)^n$ $\partial \partial \epsilon$

$$\begin{split} \epsilon \sim \frac{r_g}{r} & \Longrightarrow \quad r_c^2 (\partial \partial \epsilon)^2 \gtrsim \partial \partial \epsilon \quad \text{for} \quad r \lesssim (r_g r_c^2)^{1/3} \\ (\ll 1) \end{split}$$

Gravitational field equations

Time-time component:

$$G_4 \frac{(r^2 \Psi')'}{r^2} - G_{4\phi} \frac{(r^2 \varphi')'}{2r^2} - (G_{4X} - G_{5\phi}) \frac{[r(\varphi')^2]'}{2r^2} + G_{5X} \frac{[(\varphi')^3]'}{6r^2} = \frac{\rho}{4}$$

Background quantities $G_{5X} = G_{5X}(\phi_0, 0), \cdots$

Space-space component:

$$2G_4 \frac{\left[r^2 \left(\Psi' - \Phi'\right)\right]'}{r^2} - 2G_{4\phi} \frac{(r^2 \varphi')'}{r^2} - (G_{4X} - G_{5\phi}) \frac{\left[r(\varphi')^2\right]'}{r^2} = 0$$
$$(1.h.s.) = \frac{1}{r^2} \frac{d}{dr} (\cdots)$$

Scalar field equation

1 Conner and

$$\begin{split} &(K_X - 2G_{3\phi}) \frac{(r^2 \varphi')'}{r^2} - 2(G_{3X} - 3G_{4\phi X}) \frac{[r(\varphi')^2]'}{r^2} \\ &+ 2G_{4\phi} \frac{[r^2 (2\Psi - \Phi)']'}{r^2} + 4(G_{4X} - G_{5\phi}) \frac{[r\varphi'(\Psi' - \Phi')]'}{r^2} \\ &+ 2\left(G_{4XX} - \frac{2}{3}G_{5\phi X}\right) \frac{[(\varphi')^3]'}{r^2} + 2G_{5X} \frac{[(\varphi')^2 \Phi']'}{r^2} \\ &= -K_{\phi\phi}\varphi \quad \text{Neglect "mass term"} \end{split}$$

(Scalar field is screened if it is sufficiently massive)

$$\frac{1}{r^2} \frac{\mathrm{d}}{\mathrm{d}r} (\cdots) = 0$$

Three equations are integrated once to give algebraic equations for Φ', Ψ', φ'

Introduce two mass scales $(M_{\rm Pl}, \Lambda)$ and six dimensionless parameters

(one is redundant)

Useful dimensionless quantities:

Enclosed mass

$$x(r) := \frac{1}{\Lambda^3} \frac{\varphi'}{r}, \quad A(r) := \frac{1}{M_{\rm Pl}\Lambda^3} \frac{M(r)}{8\pi r^3}$$

Master equations:

$$\frac{M_{\rm Pl}}{\Lambda^3} \frac{\Phi'}{r} = -\xi x + \beta x^3 + A(r),$$

$$\frac{M_{\rm Pl}}{\Lambda^3} \frac{\Psi'}{r} = \xi x + \alpha x^2 + \beta x^3 + A(r),$$

and

Problem reduces to solving quintic equation

Vainshtein radius

Solution we are looking for

 $A \ll 1 \Leftrightarrow r \gg r_V$

 $A \gg 1 \Leftrightarrow r \ll r_V$

Outer solution

Linear regime:
$$P(x, A) \simeq \xi A(r) + \left(\frac{\eta}{2} + 3\xi^2\right) x$$

$$\Leftrightarrow \quad x \approx x_{\rm f} := -\frac{2\xi A(r)}{\eta + 6\xi^2} \ll 1$$

 \sim

Stable if $\eta + 6\xi^2 > 0$ (Kinetic term for small fluctuations has right sign)

Other solutions (if they exist) do not correspond to asymptotically flat spacetime

Inner solution

 $P(x,A) := \xi A(r) + \left(\frac{\eta}{2} + 3\xi^2\right) x + \left[\mu + 6\alpha\xi - 3\beta A(r)\right] x^2$ $+ \left(\nu + 2\alpha^2 + 4\beta\xi\right) x^3 - 3\beta^2 x^5$ = 0

$$\oslash \beta = 0$$

P(x, A) is cubic — consider separately

Structure for $A \gg 1$ is different depending on whether $\beta = 0$ or $\beta \neq 0$

 $P(x, A) \approx \xi A - 3\beta A x^2 - 3\beta^2 x^5$ for $A \gg 1$

 $P(x,A) \approx \xi A - 3\beta A x^2 - 3\beta^2 x^5$

 $\xi\beta < 0$

 $\oslash \quad \xi\beta > 0$

 $X_{x^{3}} \approx -\frac{A}{\beta} \quad \text{and} \quad x \approx x_{\pm} := \pm \sqrt{\frac{\xi}{3\beta}} \quad \Longrightarrow \quad \Phi \simeq \Psi \simeq \Phi_{\text{GR}}$

(Consider for simplicity the case $\xi > 0$)

Matching inner and outer solutions

inner sol.

Profile of x

Outer region

Inner region

Contraction of the second

Conditions for smooth matching

Otherwise...

 $x \rightarrow$

 x_{f}

a la com

Case I

Case II

Local maximum never exceeds P=0

Otherwise...

Inner solution for $\beta = 0$

$$P(x,A) \rightarrow \xi A + \left(\frac{\eta}{2} + 3\xi^2\right) x + \left(\mu + 6\alpha\xi\right) x^2 + \left(\nu + 2\alpha^2\right) x^3$$

Solution for $A \gg 1$

$$x^3 \approx x_i^3 := -\frac{\xi A}{\nu + 2\alpha^2} \quad \frac{(<0)}{(\text{required from stability})}$$

For this inner solution Vainshtein mechanism operates

$$\Phi \simeq \Psi \simeq \Phi_{\rm GR}$$

Matching inner and outer solutions

Condition for smooth matching:

no local extrema in x < 0

Local extrema are in x > 0 if $\mu + 6\alpha\xi < 0$ No local extrema if $\left(\nu + 2\alpha^2\right)\left(\eta + 6\xi^2\right) \ge \frac{2}{3}\left(\mu + 6\alpha\xi\right)^2$ $\mu + 6\alpha \xi \ge 0$

 $M_{\rm Pl} \to \infty, \ m \to 0$ $\Lambda^3 = M_{\rm Pl} m^2$ fixed

"

Example

Decoupling limit of massive gravity

de Rham, Gabadadze, Tolley (2011)

$$\mathcal{L} = -\frac{1}{2}h^{\mu\nu}\mathcal{E}^{\alpha\beta}_{\mu\nu}h_{\alpha\beta} + h^{\mu\nu}\left(X^{(1)}_{\mu\nu} + \frac{a_2}{\Lambda^3}X^{(2)}_{\mu\nu} + \frac{a_3}{\Lambda^6}X^{(3)}_{\mu\nu}\right) + \frac{1}{2M_{\rm Pl}}h^{\mu\nu}T_{\mu\nu}$$

$$\overset{\text{Helicity-2 mode Interactions with helicity-0 mode}_{K = 0 = G_3}$$

$$\overset{X^{(1)}_{M = 2} := \nabla_{\mu}\nabla_{\nu}\phi - \Box M^{\nu}_{Pl}}{M_{Pl}^{Q} + M_{Pl}\phi + \frac{M^{\rho}_{Pl}}{\Lambda^3}\alpha X}$$

$$G_4 = \frac{M^{\rho}_{M = 2}}{M_{Pl}^{2}} + M_{Pl}\phi + \frac{M^{\rho}_{Pl}}{\Lambda^3}\alpha X$$

$$\overset{G_{\text{covariantization}}^{,\prime}}{G_5 = -3}\frac{\text{de } \text{Ph}}{\Lambda^6}\beta X$$

$$\overset{\phi B}{\to} (2R^{\mu\alpha\nu\beta} + \cdots)\partial_{\mu}\phi\partial_{\nu}\phi\partial_{\alpha}\partial_{\beta}\phi \longleftrightarrow G_5 \sim -3X$$

in Horndeski's language

Decoupling limit of massive gravity = 2-parameter subclass of Horndeski's theory

Smooth matching of asymptotically flat and Vainshtein solutions is possible for:

Application

0

Application: Gravitational lensing

Lensing convergence can be computed for any density profile and for any scalar-tensor theory from

$$\Delta(\Phi + \Psi) = \frac{\Lambda^3}{M_{\rm Pl}} \frac{1}{r^2} \frac{\mathrm{d}}{\mathrm{d}r} \left[r^2 (\alpha x^2 + 2\beta x^3 + 2A) \right]$$
$$\supset x'(r)$$

$$\kappa(\theta) = \frac{(\chi_{\rm S} - \chi_{\rm L})\chi_{\rm L}}{\chi_{\rm S}} \int_0^\infty \mathrm{d}Z \frac{\Delta}{a_{\rm L}^2} (\Phi + \Psi)$$

Interesting signature in cluster lensing?

x'(r) can be large at transition from screened to unscreened regions

Dip in convergence power spectrum

(if we are lucky enough...?)

Dip is not a consequence of the specific choice of the density profile

Summary

1.

ð

 Static, spherically symmetric, weak gravitational field sourced by nonrelativistic matter in Horndeski's most general scalar-tensor theory

The problem reduces to solving a quintic algebraic equation

Conditions under which a screened solution is realized are clarified

Interesting applications such as testing gravity with cluster lensing

Cosmological background? —— Sixth-order algebraic equation with time-dependent coefficients... [Kimura, TK, Yamamoto (2012)]

Application to other cosmological probes?

