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Introduction
Mystery of dark energy

Modified gravity as an alternative to dark energy?

Modification would persist down to small 
length scales…

Need screening mechanism in the vicinity of 
matter

Basic idea

Extra d.o.f is effectively weakly coupled to matter

––– Vainshtein mechanism

Basic idea

Vainshtein (1972)
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Equation of motion
Static, spherically symmetric, non-relativistic source: T µ
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Suppose rc = 3 Gpc

rV � 1 Mpc

rV � 100 pc M = M�

M = 1014 M�

for the Sun (                 )

for a galaxy cluster (                         )



Motivation

Study the Vainshtein mechanism in the most general scalar-
tensor theory, clarifying the conditions under which a 
screened solution is realized

Offer a basic tool to test general scalar-tensor type gravity



Horndeski’s most general 
scalar-tensor theory



Galileon

Unique scalar-field theory in 4D flat spacetime having

Galilean shift symmetry

2nd-order equation of motion

�� � + bµxµ + c

Vainshtein mechanism operates

Nicolis, Rattazzi,Trincherini (2009)
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Burrage, Seery (2010); ………



Generalized Galileon

L = K(�, X)�G3(�, X)��
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Horndeski’s theory
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The most general scalar-tensor theory with second-order field equations

Horndeski (1974); Rediscovered by Charmousis et al. (2011)

The generalized Galileon is equivalent to Horndeski’s theory

TK, Yamaguchi, Yokoyama (2011)



Static, spherically symmetric, 
weak gravitational field
Narikawa, TK, Yamauchi, Saito, 1302.2311



Background
Start with the most general scalar-tensor theory

Minkowski background

ds2 = �µ�dxµdx� , � = �0 = const, X = 0

(Require                                               for the theory to admit Minkowski background)K(�0, 0) = 0, K�(�0, 0) = 0
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Approximations

ds2 = �[1 + 2�(r)]dt2 + [1� 2�(r)]dx2

� = �0 + �(r)

Static, spherically symmetric perturbations produced by non-relativistic matter

T t
t = ��(r)

Perturbations are small, but non-linear terms can be as large as linear terms
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Gravitational field equations
Time-time component:

Space-space component:
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Scalar field equation
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Three equations are integrated once to give
algebraic equations for ��,��,��

Introduce two mass scales               and six dimensionless parameters
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Useful dimensionless quantities:
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Vainshtein radius
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Solution we are looking for
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Outer solution

Linear regime: P (x,A) � �A(r) +
��

2
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x
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Other solutions (if they exist) do not correspond to 
asymptotically flat spacetime

� + 6�2 > 0Stable if (Kinetic term for small fluctuations has right sign)



Inner solution
P (x,A) := �A(r) +
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Inner solution for
P (x,A) � �A� 3�Ax2 � 3�2x5
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Matching inner and outer solutions
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Conditions for smooth matching
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x � xf

Otherwise...
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Case I
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Case II
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Otherwise...
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Inner solution for � = 0
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Matching inner and outer solutions
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Example
Decoupling limit of massive gravity de Rham, Gabadadze, Tolley (2011)

de Rham, Heisenberg (2011)
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Decoupling limit of massive gravity = 2-parameter subclass of Horndeski’s theory

Smooth matching of asymptotically flat and Vainshtein solutions is possible for:
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Smooth matching is possible

Previous results [Sjors and Mortsell (2011); 
Sbisa et al. (2012)] are correctly reproduced



Application



Application: Gravitational lensing
Lensing convergence can be computed for any density profile and 
for any scalar-tensor theory from

�(� + �) =
�3
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d
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Interesting signature in cluster lensing?
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Convergence:
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IV. DECOUPLING LIMIT OF MASSIVE
GRAVITY

Let us confirm that the conditions for smooth match-
ing indeed reproduce the previous result obtained in the
context of massive gravity [15, 16]. To do so, we start
with finding out the concrete form of K,G3, G4, G5 cor-
responding to the decoupling limit of massive gravity.
The correspondence can be seen more clearly if we move
to the covariantized version of the decoupling limit La-
grangian, i.e., the “proxy theory” proposed in Ref. [24].
It turns out that the proxy theory corresponds to

K = 0 = G3, G4 =
M2

Pl

2
+MPlφ+

MPl

Λ3
αX,

G5 = −3
MPl

Λ6
βX. (38)

In massive gravity, the strong coupling scale Λ is given
by m2Λ3 = MPl, where m is the graviton mass.
Since the proxy theory contains the Riemann dual ten-

sor while the Lagrangian of the generalized Galileon not,
one may wonder how the former is included in the latter.
Actually, G5 ∝ X corresponds to the term containing
the Riemann dual tensor in the proxy theory. The easi-
est way to verify this is to compare the field equations of
the two theories.
From Eq. (38) one finds

η = µ = ν = 0, ξ = 1, α #= 0, β #= 0, (39)

so that the parameter space collapses to a two-
dimensional space. The inner solution x− exists only
for β > 0 and is given by x− = −1/

√
3β. Let us define

ζ :=
√
β/α. Then, the condition (31) reads

P (x−, A) =
2

3

x−
ζ2

(
1− 3

√
3ζ + 6ζ2

)
< 0. (40)

Solving the equation ∂xP (x∗, A∗) − x∗∂2xP (x∗, A∗) = 0,
which does not in fact depend on A∗, one finds

x∗ =
1√
5

x−
|ζ|

[
1 + 2ζ2 −

(
1 + 4ζ2 − 11ζ4

)1/2]1/2
. (41)

This exists if

|ζ| ≤

√
2 +

√
15

11
& 0.73. (42)

The equation P (x,A) = 0 has three roots in (x−, 0) for
some interval of A if

P (x∗, A∗) > 0 ⇔ 0 < ζ <

√
5 +

√
13

24
& 0.6. (43)

Therefore, smooth matching of the asymptotically flat
solution and the Vainshtein solution is possible provided
that

α < 0 or

√
β

α
≥

√
5 +

√
13

24
. (44)

FIG. 1: The profile of x as a function of the radial coordi-
nate r. The curves are plotted for (α,β) = (0.5, 0.3) (dot-
ted red), (0.8, 0.34) (dot-dashed green), and (0.985, 0.375)
(dashed blue), respectively. As a halo density profile we
adopt the NFW model with Mvir = 1.28 × 1015M!/h and
cvir = 12.8.

Thus, we have confirmed that the previous result [15, 16]
is reproduced.2

V. GRAVITATIONAL LENSING IN MODIFIED
GRAVITY

In this section, we are going to relate our spherically
symmetric solution to gravitational lensing observations.
To do so, it is instructive to begin with seeing the typical
behavior of the Vainshtein solution in massive gravity,
adopting the Navarro-Frenk-White (NFW) halo density
profile [25, 26] for the source ρ(r) := −T t

t . (See Ap-
pendix B for the detailed description of halo density pro-
files.) Figures 1 and 2 show the profile of x and its deriva-
tive, respectively, as a function of the radial coordinate r
for different values of α and β. The fiducial parameters
of the NFW model we use are Mvir = 1.28× 1015 M#/h
and cvir = 12.8 , which correspond to ρs = 5.91×104 ρcr,0
and rs = 154 kpc/h, respectively. The strong coupling
scale is taken to be Λ3 = (100H0)2MPl = (46.4 km)−3.
Then, the Vainshtein radius determined from Eq. (24) is
rV = 209 kpc/h. (As the parameters characterizing the
profile we choose to use the virial cluster mass Mvir and

2 Note that our notation is different from those in [15, 16]. In
particular, αours = −αSbisa et al..
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FIG. 2: The radial derivative of x as a function of r. Param-
eters and definitions of curves are the same as in Fig. 1.

the concentration parameter cvir rather than ρs and rs.)
One can see that x(r) can have a sharp transition from
outer to inner solutions, depending on the parameters of
the theory, which leads to a peak in x′(r). This occurs
at around the Vainshtein radius.
Having seen the typical behavior of the radial profile

x(r), we now move to investigate how the lensing sig-
nal is modified in massive gravity. We assume that the
background evolution of the universe does not deviate
much from conventional cosmology and use the ΛCDM
background with Ωm = 0.3 , ΩΛ = 0.7 , and h = 0.7.
The background metric (7) is understood to define the
physical coordinates at the location of the lens object.
The basic quantity in gravitational lensing is the con-

vergence, κ, which is expressed in terms of the sum of
the two metric potentials Φ+ := (Φ+Ψ)/2 as

κ =

∫ χS

0
dχ

(χS − χ)χ

χS
∆⊥Φ+, (45)

with χ, χS, and ∆⊥ being the comoving angular diame-
ter distance, the comoving distance between the observer
and the source, and the comoving transverse Laplacian,
respectively. Using the thin lens approximation, we can
rewrite the convergence as

κ " (χS − χL)χL

χS

∫ χS

0
dχ∆Φ+, (46)

where χL is the comoving distance between the observer
and the lens object and ∆ is the comoving three dimen-
sional Laplacian. Let us now introduce a new spatial
coordinate as Z = aL(χ − χL), whose origin is located
at the center of the lens object. The projected radius is

FIG. 3: The lensing convergence κ as a function of θ for
different values of the parameters of the theory. In these plots,
the NFW profile is used with Mvir = 1.28 × 1015 M!/h and
cvir = 12.8. Parameters and definitions of the curves are the
same as in Fig. 1. The points with the error bars represent the
observational data for the high-mass cluster A1689 provided
by Umetsu et al. [27–29].

written as r⊥ = aLχLθ, where θ is the polar angle from
the axis connecting the observer and the lens object, and
aL is the scale factor at the lens object. In terms of these,
the convergence (46) can be written as

κ(θ) =
2(χS − χL)χL

χS

∫ ∞

0
dZ

∆

a2L
Φ+(r), (47)

where r =
√

r2⊥ + Z2. Using Eqs. (21) and (22), we find
that in Horndeski’s theory

∆

a2L
Φ+(r) =

1

r2
d

dr

[
r2Φ+(r)

]

=
Λ3

MPl

[
(
αx2 + 2βx3 + 2A

)
r3]′

2r2
. (48)

Figure 3 shows the lensing convergence for the NFW
profile with different choices of the parameters of the the-
ory. The points with the error bars indicate the observa-
tional data for the high-mass cluster A1689 provided by
Umetsu et al. [27–29]. An interesting feature observed in
Fig. 3 is that a dip appears at a particular polar angle
corresponding to the Vainshtein radius. The dip is most
enhanced for the parameters near the boundary of the re-
gion in which the smooth matching is possible. Clearly,
this is caused by the sharp peak in x′(r) at the Vain-
shtein radius, as seen in Fig. 2. We see from Fig. 4 that
the peak location is certainly determined by the Vain-

�(r) =
�s

(r/rs)(1 + r/rs)2
NFW profile:

Massive gravity (2-parameter subclass of Horndeski)

x�(r) can be large at transition from screened to unscreened regions

-4 -2 0 2 4
-4

-2

0

2

4

6

8

Sharp transition occurs
for parameters near boundary
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FIG. 2: The radial derivative of x as a function of r. Param-
eters and definitions of curves are the same as in Fig. 1.

the concentration parameter cvir rather than ρs and rs.)
One can see that x(r) can have a sharp transition from
outer to inner solutions, depending on the parameters of
the theory, which leads to a peak in x′(r). This occurs
at around the Vainshtein radius.
Having seen the typical behavior of the radial profile

x(r), we now move to investigate how the lensing sig-
nal is modified in massive gravity. We assume that the
background evolution of the universe does not deviate
much from conventional cosmology and use the ΛCDM
background with Ωm = 0.3 , ΩΛ = 0.7 , and h = 0.7.
The background metric (7) is understood to define the
physical coordinates at the location of the lens object.
The basic quantity in gravitational lensing is the con-

vergence, κ, which is expressed in terms of the sum of
the two metric potentials Φ+ := (Φ+Ψ)/2 as

κ =

∫ χS

0
dχ

(χS − χ)χ

χS
∆⊥Φ+, (45)

with χ, χS, and ∆⊥ being the comoving angular diame-
ter distance, the comoving distance between the observer
and the source, and the comoving transverse Laplacian,
respectively. Using the thin lens approximation, we can
rewrite the convergence as

κ " (χS − χL)χL

χS

∫ χS

0
dχ∆Φ+, (46)

where χL is the comoving distance between the observer
and the lens object and ∆ is the comoving three dimen-
sional Laplacian. Let us now introduce a new spatial
coordinate as Z = aL(χ − χL), whose origin is located
at the center of the lens object. The projected radius is

FIG. 3: The lensing convergence κ as a function of θ for
different values of the parameters of the theory. In these plots,
the NFW profile is used with Mvir = 1.28 × 1015 M!/h and
cvir = 12.8. Parameters and definitions of the curves are the
same as in Fig. 1. The points with the error bars represent the
observational data for the high-mass cluster A1689 provided
by Umetsu et al. [27–29].

written as r⊥ = aLχLθ, where θ is the polar angle from
the axis connecting the observer and the lens object, and
aL is the scale factor at the lens object. In terms of these,
the convergence (46) can be written as

κ(θ) =
2(χS − χL)χL

χS

∫ ∞

0
dZ

∆

a2L
Φ+(r), (47)

where r =
√

r2⊥ + Z2. Using Eqs. (21) and (22), we find
that in Horndeski’s theory

∆

a2L
Φ+(r) =

1

r2
d

dr

[
r2Φ+(r)

]

=
Λ3

MPl

[
(
αx2 + 2βx3 + 2A

)
r3]′

2r2
. (48)

Figure 3 shows the lensing convergence for the NFW
profile with different choices of the parameters of the the-
ory. The points with the error bars indicate the observa-
tional data for the high-mass cluster A1689 provided by
Umetsu et al. [27–29]. An interesting feature observed in
Fig. 3 is that a dip appears at a particular polar angle
corresponding to the Vainshtein radius. The dip is most
enhanced for the parameters near the boundary of the re-
gion in which the smooth matching is possible. Clearly,
this is caused by the sharp peak in x′(r) at the Vain-
shtein radius, as seen in Fig. 2. We see from Fig. 4 that
the peak location is certainly determined by the Vain-

Dip in convergence power spectrum

(if we are lucky enough…?)
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FIG. 4: The convergence κ as a function of θ for differ-
ent strong coupling scales. The curves correspond to Λ3 =
(150H0)

2MPl (dotted red), Λ3 = (100H0)
2MPl (dashed blue),

Λ3 = (50H0)
2MPl (dot-dashed green), and ΛCDM (black

solid), respectively. We take α = 0.985 and β = 0.375.

shtein scale. From Fig. 4 we also find that the depth of
the dip increases as Λ decreases.
In Figs. 5 and 6 we compare different assumptions on

the halo density profile. Two representative profiles are
considered here: the generalized NFW (gNFW) [30–32]
and the Einasto [33–36] profiles. We see that a dip ap-
pears at a characteristic polar angle in the gNFW and the
Einasto profiles as well. The depth of the dip is enhanced
for larger γs and larger Γ.
The appearance of a dip is expected to be a generic

feature of scalar-tensor theories exhibiting the Vainshtein
mechanism, because the essential structure of the master
algebraic equation (23) in general cases are the same as in
massive gravity. This helps us put constraints on scalar-
tensor modification of gravity through the observations
of cluster lensing.
The decoupling limit of massive gravity constitutes a

subclass with two free parameters in Horndeski’s theory,
which motivated us to use it for an illustrative purpose.
We would like to point out here that there are several
caveats to be aware of when putting observational con-
straints on massive gravity based on our analysis. First,
there will be some corrections to the decoupling limit
because m and 1/MPl are not exactly zero in reality.
However, the corrections are small enough in the region
outside the Schwarzschild radius rg of a lens object and
inside the Compton length of the graviton [15]. Thus, the
decoupling limit can be used safely at around the Vain-
shtein radius, which is relevant to our purpose, unless the
graviton mass is so large that the Schwarzschild radius

FIG. 5: The convergence κ as a function of θ for the gNFW
profile with Mvir = 1.28×1028 M!/h, and γl = 3. The curves
correspond to γs = 0.5 (dotted red) and γs = 1.5 (dot-dashed
green), respectively. For comparison, the convergence for the
NFW profile (γs = 1) (with the same theory parameters)
is shown by the blue dashed line. We take α = 0.985 and
β = 0.375.

FIG. 6: The convergence κ as a function of θ for the Einasto
profile with Mvir = 1.28 × 1028 M!/h and r−2 = 154 kpc/h.
The curves correspond to Γ = 0.1 (dotted red) and Γ = 0.3
(dot-dashed green), respectively. We take α = 0.985 and
β = 0.375.

Dip is not a consequence of the specific choice of the density profile



Summary



Static, spherically symmetric, weak gravitational field sourced by non-
relativistic matter in Horndeski’s most general scalar-tensor theory

The problem reduces to solving a quintic algebraic equation

Conditions under which a screened solution is realized are clarified

Interesting applications such as testing gravity with cluster lensing

Cosmological background? ––– Sixth-order algebraic equation with 
time-dependent coefficients… [Kimura, TK, Yamamoto (2012)]

Application to other cosmological probes?



Thank you!


