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Talk plan

Introduction & Motivation
Horndeski's most general scalar-tensor theory

Static, spherically symmetric, weak gravitational field

« Application

Summary



INntroduction

Mystery of dark energy

Modified gravity as an alternative to dark energy!

Modification would persist down to small
length scales. ..

Need screening mechanism in the vicinity of
matter

Basic idea

Extra d.o.f is effectively weakly coupled to matter

— Vainshtein mechanism Vainshtein (1972)



Cubic Galileon non-minimally coupled to matter:
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Equation of motion

Static, spherically symmetric, non-relativistic source: TM“ = —p
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Quadratic algebraic equation for '

Vainshtein radius

rv = (T2T9>1/3
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(P : gravitational potential)

Suppose T = 3 Gpc
\
| ryv ~ 100 pc  forthe Sun (M = My)

rv ~ 1 Mpc fora salaxy cluster (M = 104 M@)




Motivation

Study the Vainshtein mechanism in the most general scalar-
tensor theory, clarifying the conditions under which a
screened solution is realized

Offer a basic tool to test general scalar-tensor type gravity
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Nicolis, Rattazzi, Trincherini (2009)

(Galileon

L = ad+e(09) +c3(09)°0¢ + ca(99)* [(O9)* - (9.0.9)°]
+¢5(06)% [(09)° — 306(0,0,6)* + 2(0u0,9)*

Vainshtein mechanism operates

Burrage, Seery (2010); .........
Unique scalar-field theory in 4D flat spacetime having

« Galilean shift symmetry ¢ — ¢ + b, 2" + ¢

« 2nd-order equation of motion



Deffayet, Gao, Steer, Zahariade (2011)

Generalized Galileon

Include gravity
2nd-order equation of motion both for guv and @

Forget about any symmetry... ~ 0Gy

L = K(¢7X) - G3(¢7X) ¢
+G4(¢, X)R + Gux [( ) — (Vuqub)Q]

+G5(6, X)Cpu V' V"6 — < Gsx[(00)°

1  —3(09) (VaVee)’ +2(V,Vu0)’|




Horndeski (1974); Rediscovered by Charmousis et al. (2011)

Horndeski's theory

The most general scalar-tensor theory with second-order field equations
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The generalized Galileon is equivalent to Horndeski’s theory

TK, Yamaguchi, Yokoyama (2011)



Static, spherically symmetric;
weak gravitational field . . -

Narikawa, TK, Yamauchi, Saito, 1302.2311 '
0 o



Background

Start with the most general scalar-tensor theory

L = K(¢,X)—Gs(¢,X)0¢ + Ga(e, X)R + Gax [(09)> — (VuV.0)?]
+G5(6, X)G"V,V,6 — Cox [(O8)° — 306(V,V,0)? + 2V, V,0)’]

Minkowski background

ds® = Nwdzrtdz”, ¢ = ¢g =const, X =0

(Require K (¢p,0) =0, Kg(¢po,0) =0 for the theory to admit Minkowski background)



Approximations

Static, spherically symmetric perturbations produced by non-relativistic matter

ds* = —[142®(r)]dt? +[1 — 2¥(r)]dx"
¢ = o+ (1)
Ttt = —p(r)
Perturbations are small, but non-linear terms can be as large as linear terms
Do not neglect (00¢€)™ 00e
€ ~ %g == r3(00€)? > 90e for r < (r,r2)t/3

(< 1)



Gravitational field equations

Time-time component:

(7“2\1//)/ (7,2%0/)/

Gy — Gyg ST (Gax — Gs¢)

r2 o2 T 672

Backsround quantities Gsx = Gsx (¢0,0),- -

Space-space component:
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Scalar field equation
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(Scalar field 1s screened If it Is sufficiently massive)
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Three equations are integrated once to give
algebraic equations for ®' ¥’ '

Introduce two mass scales (Mpy, A) and six dimensionless parameters

G _ Mlg)l ." --------------------------------- \I
S 9 - Previous example:
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Gsx = X Plﬁ (one Is redundant)



Useful dimensionless quantities:
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ILotg 1 M(r)
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Master equations:

‘Enclosed mass

]\Xgl (I: — —&x+ B2+ A(r),
]\/{gl \I;/ = fx+ax® + Pz’ 4+ A(r),
and
r ' - — = )
Pz A) = cA(n) + (g +36%) 2+ [+ 608 — 3FA(r)] 27
+ (v + 20° 4 453¢) 2° — 33%2°
- == z(r) = z[A(r)]

Problem reduces to solving quintic equation



A(Tv) = |

Vainshtein radius

A(r) (Concrete form depends on density profile)
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Solution we are looking for

z(A)] Inner region
1.07‘ ]
| Vainshtein mechanism operates
0.8 - |
b~V ~ (I)GR
0.6 - |
Outer region -3 [ - )
Asymptotically flat oz
r — 0 |
‘ s s A
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Outer solution

Linear regime:  P(x, A) ~ £A(r) + (g + 3§2> T
26 A(r)
~ = 1
= @~ Iy n 652 <

Stable It 1 + 652 > (0 (Kinetic term for small fluctuations has right sign)

Other solutions (if they exist) do not correspond to
asymptotically flat spacetime



Inner solution

P(z,4) = EA(r)+ (3 +36%) @+ [+ 6ag — 3BA(r)] 2"
+ (v + 20° 4 453¢) 2° — 35%2°
= )
@ (=0 Structure for A > 1

s different depending on

whether 38 =0 or 0
P(x, A) is cubic — consider separately 0 b7

@ B#0

P(x, A) = £EA — 3BAz* — 3B°z°> for A > 1



INnner solution for B # 0

P(x, A) = £A — 3B3Ax* — 33°z°
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(Consider for simplicity the case & > 0)

Matching iInner and outer solutions

inner sol.
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Conditions for smooth matching

P(x, A) = 0 has asingle rootin (z_,0) forany A > ()
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Otherwise...




Case |
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 x, and A, do not exist satisfying -
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Otherwise...




Inner solution for 6 =0

(g g 352) x4+ (u+ 6af) z° + (V + 2042) T

=

P(x,A) — £EA +

Solution for A > 1

(required from stability)

For this inner solution Vainshtein mechanism operates

O~ U~ Pap



Matching iInner and outer solutions

T ~ Tj 6 O
inner sol. A > 1 ; Condrition for smooth matching:
; no local extrema in x<O
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~20 -15 -10 -05 : 0.5 ﬂ
K | 1+ 6a€ <0
% >< No local extrema if
03 2
02} (V == 2&2) (77 -+ 652) > § (,LL -+ 6615§)2
! |+ 6a >0
ty=f8 _ (N 2\ . 2 2\ 3
: Yy = 2+3§ z— (p+6af)x? — (v+2a%)




-------------------------------

0 Bxamble
A° = Mpym? fixed ':

-------------------------------

Decoupling limit of massive gravity de Rham, Gabadadze, Tolley (2011)
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In Horndeski's language



Decoupling limit of massive gravity = 2-parameter subclass of Horndeski’s theory

Smooth matching of asymptotically flat and Vainshtein solutions is possible for:

o

Smooth matching

s possible

Previous results [Sjors
Shisa et al. (2012)] are

and Mortsell (2011);
> correctly reproduced
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Application: Gravitational lensing

Lensing convergence can be computed for any density profile and
for any scalar-tensor theory from

A3 1 d
Mpy r2 dr

A(® + V) =

r(ax® 4 28z° + 2A))]

D 2'(r)

Convergence:

_ 0 A
k() = (Xs = X)Xt / dZ = (® + ¥)
XS 0 ar,

Interesting signature in cluster lensing?
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Dip in convergence power spectrum

(It we are lucky enough...?)
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Dip 1s not a consequence of the specific choice of the density profile
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¢ Static, spherically symmetric, weak gravitational field sourced by non-
relativistic matter in Horndeski’s most general scalar-tensor theory

he problem reduces to solving a quintic algebraic equation

> Conditions under which a screened solution is realized are clarified

¢ Interesting applications such as testing gravity with cluster lensing

.- Cosmological background! — Sixth-order algebraic equation with
time-dependent coefficients... [Kimura, TK, Yamamoto (2012)]

.© Application to other cosmological probes!



Thank you!




