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We consider: K 3 surfaces, Calabi-Yau varieties which are elliptically
fibered,

and hypersurfaces in toric Fano varieties.

Assume: elliptic fibration is induced by the toric structure.

Want: dictionary between

algebraic geometry ←→ combinatorics property of polytopes.

For example: we look at
(Toric) sections of the fibrations ←→ ??
Is there a toric Weierstrass model? ←→ ??
Mordell-Weil group of sections ←→ ??

Investigate F-theory set up in this context.

Credits: We used the computer program Sage to first test our conjectures.
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1 Toric Geometry
Calabi-Yau, Elliptic Fibration
Calabi Yau as hypersurfaces in toric varieties

2 Elliptically fibered Calabi Yau
K 3 toric elliptic

3 Toric Weierstrass models
Review: Weierstrass models
Toric Weierstrass model
Semistable polytopes
Sections
Applications
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Toric geometry

Toric varieties (projective):

defined by fans and/or polytopes.

From fans, via homogeneous coordinates

To every fan Σ in N ' Zn, a lattice, one associates XΣ of dimension n
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Example

P2

vz

vy

vx

I (vx , vy , vz)↔ (x , y , z) “homogeneous coordinates”

I Define:
XΣ := C3 − ZΣ/ ∼

with ZΣ = {0} and quotient action:

(x , y , z) ∼ (λqx x , λqy y , λqz z) = (λx , λy , λz),

with λ ∈ C∗ = G ⊂ (C∗)2

I ZΣ, G , quotient action (qi ),
are determined by the fan.
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Calabi-Yau, Elliptic Fibration

V is a Calabi-Yau variety if KV ∼ O(V ), hi (O(V )) = 0, 0 < i < dimV .

dimV = 1, V : is an elliptic curve, T 2, cubic in P2.

dimV = 2, V : is a K 3 surface, e, g, quartic in P3

πV : V → BV is an elliptic fibration with section ↔ π−1
V (p) is a elliptic

curve with a marked point.
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Toric divisors

Fact

Rays Σ ⇐⇒ (C∗)n-invariant irreducible hypersurfaces (divisors) of XΣ.
These are the toric divisors

Example

−KXΣ
=

∑
Di , Di invariant toric divisors.
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Calabi Yau as hypersurfaces in Fano toric varieties
Let XΣ be a toric variety

I (Batyrev et al.) V ⊂ XΣ is a Calabi-Yau variety ⇐⇒

I the polytope ∆ ⊂ M
def.
= N∨ ⊂ Zn associated to (XΣ,L∆ = −KXΣ

)
is reflexive, ⇐⇒

I the codim 1 faces are defined by equations = −1, and 0 is the only
lattice point in the interior of ∆.

I If ∆ is reflexive
I ∆ ↔ (P∆,L∆), where P∆ := XΣ is a toric variety over the fan Σ on

the faces of ∇, and

XΣ ↪→ Pk , where |∆ ∩M| = k + 1

I V ∈ |L| is a hypersurface in XΣ;
get explicit equation from ∆, homogeneous coordinates:

I If z1, . . . , zN are the homogeneous coordinates,

L∆ is generated by

{z〈v1,ω〉+1
1 z

〈v2,ω〉+1
2 · . . . · z〈vN ,ω〉+1

N }, ∀ω ∈ ∆ ∩M
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Example (P2, 3H = −KP2), 3H gives a generic cubic V in P2 ⇐⇒ ∆.

XΣ ↪→ P9 (Veronese).

yz2

x3

xyz

y 2z

z3

xz2 x2z

vy

vx

vz

∇ ⊂ NR ∆ ⊂ MR
y 3

xy 2

x2y

Σ

(P2,OP2 (3))P2
[x ,y ,z]

Fact: ∇ reflexive ⇐⇒ ∆ reflexive.
Note: Dx + Dy + Dz = −KP2 , V elliptic curve, Calabi Yau
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Toric fibrations
A toric fibration X 1

Σ :→ X 2
Σ, is a morphism between toric varieties which

sends fans into fans.

Example

π : P1 × P1
[z1,z2,z3,z4] → P1

[z3,z4],

fiber: X∇f
= P1

[z1,z2].

∇ ⊂ NR

π

Σ

P1 × P1
[z1,z2,z3,z4]P1

[z3,z4]

z1z2

z3

z4

z3

z4
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In our situation: V ⊂ XΣ, V Calabi-Yau, XΣ toric Fano:

I If there exists a toric fibration, say XΣ → B, with fiber fΣ′ , toric

I and V ⊂ XΣ is generic,

I then there exists an induced fibration V → B.

I In the previous example: XΣ = P1 × P1 → P1 = B,
XΣ ∈ L = O(−2,−2) is an elliptic curve ( 1-dim Calabi-Yau)

I X → P1 is fibered by two points.
Two points in P1 are a 0-dim Calabi-Yau.
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Example

π : P1 × P1
[z1,z2,z3,z4] → P1

[z3,z4],

fiber: X∇f
= P1

[z1,z2].

∇ ⊂ NR

π

Σ

P1 × P1
[z1,z2,z3,z4]P1

[z3,z4]

z1z2

z3

z4

z3

z4
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From now on: K3 toric elliptic

Assume:

I n = 3. ∆ ⊂ MR reflexive, Σ fan on ∇ ⊂ NR;
V ∈ | − KXΣ

| K 3 generic in XΣ, Fano;

I XΣ → P1, toric such that general fiber fΣ′ is also Fano.

I Then:

I ←→ reflexive two-dim polytope ∇f ⊂ ∇,

I E ∈ | − KfΣ′ | is a generic elliptic curve in fΣ′ ,

I π : V → P1, is an elliptic fibred K 3.
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Example

∇f

vz

v1

vs

v2

∇

0
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All the possible fibrations of K 3 in toric threefolds are ∼ classified (F.
Rohsiepe).

Assume there is a section σ : P1 → V of π : V → P1

induced by a toric section P1 → XΣ of XΣ → P1.

We show:

Under some conditions there exists a Weierstrass model adapted to
the toric environment.

We will call this the Weierstrass toric model.

We describe the combinatorial properties of ∇, ∆ which characterize
the Weierstrass toric models.
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Review: Weierstrass models

Goal: suitably generalize the 1-dimensional case:
torus E = C/Z2 ↪→ C2: as y 2 = x3 + ax + b, a, b,∈ C,

Weierstrass model of E .

Know (Nakayama): Given π : X → B, elliptic, with section σ : B → X ,
the Weierstrass model πW : W → B is birational to X :

X

π
!!CC

CC
CC

CC
−→ W

πW

||zz
zz

zz
zz

B
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Nakayama: W ↪→ P = P(OB ⊕ L2 ⊕ L3), where L ' p∗OT (T ).

If X is a K 3 surface, B ' P1, and L ' OP1(−2):

Weierstrass model: W ↪→ P = P(OP1 ⊕OP1(−4)⊕OP1(−6)).

W is described by the equation y 2 = x3 + ax + b, a(s, t) b(s, t)
homogeneous, deg = 8, 12.

In general:
In affine coordinates (∗)y 2 = x3 + a(s)x + b(s), a, b functions on B;
Fix P ∈ B: (∗) is a the Weierstrass equation of the elliptic curve (fiber).

Problem: W ⊂ P, P toric, but not Fano;

But: in the toric context, XΣ,E already come with equations.

Let us see some examples:
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Example

1.

vy

0

vs

vz

vt

vx

∇′15

After acting with the toric automorphims: Equation:
y 2 = x3 + a(s, t)xz4 + b(s, t)z6 con a, b polynomial generic in s, t of
degree 8 and 12.

z = 0: ∞-section: [1, 1, 0, s, t], flex point on E .
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Example

2.

No toric automorphims: Equation: x3 = y 3 + a(s, t)xyz + b(s, t)z3 with
a, b polynomial generic in s, t.

z = 0: ∞-section: [1, 1, 0, s, t], flex point on E .
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Example

3.

Diamond:

Equation: ax3 + axyz + az6 + ay 2 + axz4 + ax2z2 + ayz3 = 0 with
a(s, t) = a0s2 + a1st + a2t2

z = 0: is a section: [∗(s, t), ∗ ∗ (s, t), 0, s, t], but not an ∞ section.
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Recap:

1. π : XΣ → P1, XΣ Fano, general fiber fΣ′ Fano: dim XΣ = 3,
dim fΣ′ = 2;

2. V ⊂ XΣ generic K 3, E ⊂ fΣ′ generic elliptic;
π induces V → P1 with general fiber E , elliptic.

3. There exists σ : P1 → XΣ, section of π such that σ(P1) = D is a toric
divisor. In Cox coordinate, we take z = 0, equation of such divisor.
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Example

vy

0
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What makes V → P1 a toric Weierstrass model W ?

Is there a combinatorial description of this (i.e. can we tell from the
polytope?)

Can we identify a section from the combinatorics?
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Fix vz , assume it is a section:

Definition

W ⊂ XΣ is a Weierstrass toric model ←→
1. f defining W is f defining E with coefficients functions in (s, t)

2. f|z=0 does not depend on s, t: there is an ∞ section (through a flex of
E ).

The toric Weierstrass model satisfies properties of Weierstrass model (as
defined by Nakayama).

Theorem

W is a Weierstrass model ⇐⇒ vz is in the interior of an edge e.
{e,∇f } generate N ⊗ R.

Assume that W is a Weierstrass model:
Case 1. {e,∇fΣ′} generate N over Z.

Case 2. {e,∇fΣ′} generate N ′ ⊂ N sublattice of finite index.

Can reduce to Case 1 via finite maps. From now on: we assume Case 1.
[The “stick” in Candelas-Font]
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Fact: 1. Any polytope: {∇f , e}, with e of length 2 is reflexive.

Definition

We call these: semistable polytopes.

Fact: 2. The fibers of these elliptic K 3 are semistable (Kodaira type In).
Picture

Fact 3. Using toric automorphisms can write the equations in standard
forms (useful for arithmetic computations.)

Fact 4. Any V ⊂ XΣ has a toric Weierstrass model ←→ ∆XΣ
is a

subpolytope of ∆W , some W semistable.
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Where are the toric sections?

Let Dz be a toric divisor of XΣ

Case 1: DzV splits into a sum of irreducible divisors, then each of them is
a section.

(Note: rk(MW ) > 0).

Case 2: DzV is irreducible:
Dz is a section if and only if ⇔ vz = v1 + v2.

Example: (Next page)
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Example

Take two ∇f , reflexive, as below:

= irreducible toric section

∇f : P2 ∇f : P(2,1,1)/Z2
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All the irreducible sections for the 16 (up to SL(2,Z)) two-dimensional
reflexive polytopes :
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Applications...

Recap:

I criterion for toric and non toric
sections

I toric Weierstrass model:
definition

I toric Weierstrass model: criteria

I semistable politopes

Arithmetic & Physics:

I Compute: Mordell Weil lattice
of sections

I Find: Torsion sections

I Use: degenerations of K 3 to
rational elliptic surfaces (which
arise also in F−theory-Heterotic
Duality)
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Applications...

In progress:

I Toric Jacobian of elliptic toric
fibration without a sections

I Higher dimension: Calabi-Yau
threefold, fourfolds.

I Compute height of sections.

I Is a Toricall Weierstrass model
unique (torically)?

I Find the “Narrow” MW lattice.
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