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We consider: K3 surfaces, Calabi-Yau varieties which are

and in toric Fano varieties.
Assume: elliptic fibration is induced by the toric structure.

Want: dictionary between

algebraic geometry «—

For example: we look at

(Toric) sections of the fibrations «—

Is there a toric Weierstrass model? «—
Mordell-Weil group of sections «—

Investigate F-theory set up in this context.

Credits: We used the computer program Sage to first test our conjectures.

Antonella Grassi, Vittorio Perduca (Universit 2 /30



© Toric Geometry
@ Calabi-Yau, Elliptic Fibration
@ Calabi Yau as hypersurfaces in toric varieties

© CElliptically fibered Calabi Yau
@ K3 toric elliptic

© Toric Weierstrass models
@ Review: Weierstrass models
@ Toric Weierstrass model
@ Semistable polytopes
@ Sections
@ Applications

Antonella Grassi, Vittorio Perduca (University On Weierstrass models January 6 2010 3 /30



Toric geometry

Toric varieties (projective):

Antonella Grassi, Vittorio Perduca (University

On Weierstrass models

January 6 2010

4/30



Toric geometry

Toric varieties (projective): defined by fans and/or polytopes.

Antonella Grassi, Vittorio Perduca (University

On Weierstrass models

January 6 2010

4/30



Toric geometry

Toric varieties (projective): defined by fans and/or polytopes.

From fans, via homogeneous coordinates
To every fan ¥ in N >~ 7Z", a lattice, one associates Xy of dimension n
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Example
]P>2

> (v, vy, vz) < (X,y,z) “homogeneous coordinates”
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Example

> (v, vy, Vz) < (X,y,2z) “homogeneous coordinates’

» Define:
X): = C3 — Zz/ ~

with Zy = {0} and quotient action:

(%, ¥,2) ~ (A%x, A\ y, A% z) = (Ax, Ay, Az),

with A € C* = G C (C*)?
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Example
]P>2

> (v, vy, Vz) < (X,y,2z) “homogeneous coordinates’

» Define:
X): = C3 — Zz/ ~

with Zy = {0} and quotient action:
(x,y,2) ~ (A%x, A%y, A% z2) = (Ax, Ay, Az),

with A € C* = G C (C*)?
» Zy, G, quotient action (g;),
are determined by the fan.
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Calabi-Yau, Elliptic Fibration

V is a Calabi-Yau variety if Ky ~ O(V), h'(O(V)) =0, 0 < i < dimV.

dimV =1, V: is an elliptic curve, T2, cubic in P2.

dimV =2, V: is a K3 surface, e, g, quartic in P3

my : V — By is an elliptic fibration with section « 7['\_/1(,0) is a elliptic
curve with a marked point.
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Toric divisors

Fact

Rays ¥ <= (C*)"-invariant irreducible hypersurfaces (divisors) of Xx.
These are the toric divisors
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Toric divisors

Fact

Rays ¥ <= (C*)"-invariant irreducible hypersurfaces (divisors) of Xx.
These are the toric divisors

Example

—Kx, = > Di, D; invariant toric divisors.
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Calabi Yau as hypersurfaces in Fano toric varieties
Let X5 be a toric variety

>

>

(Batyrev et al.) V C Xs is a Calabi-Yau variety <=

the polytope A C M 9 NV ¢ Z" associated to (Xz, LA = —Kxg)
is , =

the codim 1 faces are defined by equations = —1, and 0 is the only

lattice point in the interior of A.

If Ais
A — (Pa,Lp), where Pa := Xy is a toric variety over the fan X on
the faces of V, and

Xz — Pk, where [ANM| =k +1

V € |L| is a hypersurface in Xy;
get explicit equation from A, homogeneous coordinates:
If z1,...,zy are the homogeneous coordinates, £La is generated by

(et th g, e A M
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Example (P?,3H = —Kpz), 3H gives a generic cubic V in P? <= A.
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Example (P?,3H = —Kpz), 3H gives a generic cubic V in P? <= A.
Xs — P2 (Veronese).
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(P2,3H = —Kgp), 3H gives a generic cubic V in P? <= A.
Xs < P9 (Veronese).

V C Ngp A C Mg

B (P2, Op(3))
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(P2,3H = —Kgp), 3H gives a generic cubic V in P? <= A.
Xs < P9 (Veronese).

V C Ngp A C Mg

B (P2, Op(3))

Note: Dy + D, + D, = —Kpz, V elliptic curve, Calabi Yau
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Toric fibrations

A toric fibration X§ :— X2, is a morphism between toric varieties which
sends fans into fans.
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Toric fibrations

A toric fibration X% — X%, is a morphism between toric varieties which
sends fans into fans.

Example
7 Pl x IP’iL —P
- 21,22,123,24] [23,24]
fiber: Xy, = IF’[ZI7Z2].
V C Ng
A
Z3
T
A 4
Z
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In our situation: V C Xy, V Calabi-Yau, X5 toric Fano:

» If there exists a toric fibration, say Xy — B, with fiber f5/, toric
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In our situation: V C Xy, V Calabi-Yau, X5 toric Fano:
» If there exists a toric fibration, say Xy — B, with fiber f5/, toric

» and V C Xg is generic,
> then there exists an induced fibration V — B.
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In our situation: V C Xs, V Calabi-Yau, Xs toric Fano:
» If there exists a toric fibration, say Xy — B, with fiber f5/, toric
» and V C Xg is generic,
» then there exists an induced fibration V — B.

> In the previous example: Xy = P! x P! — P! = B,
Xy € L =0(—2,-2) is an elliptic curve ( 1-dim Calabi-Yau)
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In our situation: V C Xy, V Calabi-Yau, X5 toric Fano:

If there exists a toric fibration, say Xy — B, with fiber f3, toric

S
» and V C Xg is generic,
» then there exists an induced fibration V — B.
> In the previous example: Xy = P! x P! — P! = B,

Xy € L =0(—2,-2) is an elliptic curve ( 1-dim Calabi-Yau)
» X — Pl s fibered by two points.

Two points in P! are a 0-dim Calabi-Yau.
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Example
7w Pl x P! B
. [z1,22 7123,24] [23,22]
fiber: Xy, = IF’[ZI’ZZ].
V C Ngr
A
z3
T
A 4
Z4
1 1 1
]P)[Z3724] P* P[Z1,22,23,24] )
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From now on: K3 toric elliptic

Assume:

» n=3. A C Mg reflexive, X fan on V C Ng;
V €| — Kx;| K3 generic in X5, Fano;
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From now on: K3 toric elliptic

Assume:
» n=3. A C Mg reflexive, X fan on V C Ng;
V €| — Kx;| K3 generic in X5, Fano;
» Xy — P!, toric such that general fiber 5/ is also Fano.
» Then:
» «—— reflexive two-dim polytope V¢ C V,

» £ €| — Kg,| is a generic elliptic curve in fy/,
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From now on: K3 toric elliptic

Assume:
» n=3. A C Mg reflexive, X fan on V C Ng;
V €| — Kx;| K3 generic in X5, Fano;
X5 — P!, toric such that general fiber 5/ is also Fano.
Then:
«—— reflexive two-dim polytope V¢ C V,
E €| — K¢, | is a generic elliptic curve in fs/,
7:V — P! is an elliptic fibred K3.

vV vV.v v Vv
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Example
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All the possible fibrations of K3 in toric threefolds are ~ classified (F.
Rohsiepe).
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All the possible fibrations of K3 in toric threefolds are ~ classified (F.
Rohsiepe).

Assume there is a section o : P! — V of 7: V — P!
induced by a toric section P! — Xz of Xy — PL.
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All the possible fibrations of K3 in toric threefolds are ~ classified (F.
Rohsiepe).

Assume there is a section o : P! — V of 7: V — P!
induced by a toric section P! — Xz of Xy — PL.

We show:

Under some conditions there exists a Weierstrass model adapted to
the toric environment.
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All the possible fibrations of K3 in toric threefolds are ~ classified (F.
Rohsiepe).

Assume there is a section o : P! — V of 7: V — P!
induced by a toric section P! — Xz of Xy — PL.

We show:

Under some conditions there exists a Weierstrass model adapted to
the toric environment.

We will call this the \Weierstrass toric model.
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All the possible fibrations of K3 in toric threefolds are ~ classified (F.
Rohsiepe).

there is a section o : P! — Vof 7: V — P!
Pl —>Xz OfX): —>IP)1.
We show:

Under some conditions there exists a Weierstrass model adapted to
the toric environment.

We will call this the model.

We describe the combinatorial properties of V, A which characterize
the Weierstrass toric models.
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Review: Weierstrass models

Goal: suitably generalize the 1-dimensional case:
torus E = C/Z? — C% as y> =x3+ax+ b, a b,cC,
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Review: Weierstrass models

Goal: suitably generalize the 1-dimensional case:
torus E = C/Z? — C% as y> =x3+ax+ b, a b,cC,
[(Weierstrass model of E.

Know (Nakayama): Given 7 : X — B, elliptic, with section o : B — X,
the Weierstrass model 7y, : W — B is birational to X:

X — w
~N
B

Antonella Grassi, Vittorio Perduca (University On Weierstrass models January 6 2010 16 / 30



Nakayama: W «— P =P(Og @ L2 @ L3), where L ~ p,O1(T).
If X is a K3 surface, B~ P!, and £ ~ Op1(—2):
Weierstrass model: W — P = P(Op1 & Op1(—4) & Op1(—6)).
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Nakayama: W «— P =P(Og @ L2 @ L3), where L ~ p,O1(T).
If X is a K3 surface, B~ P!, and £ ~ Op1(—2):
Weierstrass model: W — P = P(Op1 & Op1(—4) & Op1(—6)).

W is described by the equation y2 = x3 + ax + b, a(s, t) b(s, t)
homogeneous, deg = 8,12.
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Weierstrass model: W — P = P(Op1 & Op1(—4) & Op1(—6)).

W is described by the equation y2 = x3 + ax + b, a(s, t) b(s, t)
homogeneous, deg = 8,12.

In general:
In affine coordinates (x)y? = x3 + a(s)x + b(s), a, b functions on B;
Fix P € B: (x) is a the Weierstrass equation of the elliptic curve (fiber).
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Nakayama: W «— P =P(Og @ L2 @ L3), where L ~ p,O1(T).
Xisa K3 , B~P! and £ ~ Op:(-2):
Weierstrass model: W — P = P(Op1 & Op1(—4) & Op1(—6)).

W is described by the equation y? = x3 4 ax + b, a(s, t) b(s, t)
homogeneous, deg = 8,12.

In general:
In affine coordinates (x)y? = x3 + a(s)x + b(s), a, b functions on B;
Fix P € B: (x) is a the Weierstrass equation of the elliptic curve (fiber).

Problem: W C P, P toric, but not Fano;
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In general:
In affine coordinates (x)y? = x3 + a(s)x + b(s), a, b functions on B;
Fix P € B: (x) is a the Weierstrass equation of the elliptic curve (fiber).

Problem: W C P, P toric, but not Fano;

But: in the toric context, Xy, E already come with equations.
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Nakayama: W «— P =P(Og @ L2 @ L3), where L ~ p,O1(T).
Xisa K3 , B~P! and £ ~ Op:(-2):
Weierstrass model: W — P = P(Op1 & Op1(—4) & Op1(—6)).

W is described by the equation y? = x3 4 ax + b, a(s, t) b(s, t)
homogeneous, deg = 8,12.

In general:
In affine coordinates (x)y? = x3 + a(s)x + b(s), a, b functions on B;
Fix P € B: (x) is a the Weierstrass equation of the elliptic curve (fiber).

Problem: W C P, P toric, but not Fano;
But: in the toric context, Xy, E already come with equations.

Let us see some examples:
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After acting with the toric automorphims:
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Vs

Vz

Vit

Vy

After acting with the toric automorphims: Equation:
y? = x3+ a(s, t)xz* + b(s, t)z° con a, b polynomial generic in s, t of
degree 8 and 12.
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Vs

Vz

Vit

Vy

After acting with the toric automorphims: Equation:
y? = x3+ a(s, t)xz* + b(s, t)z° con a, b polynomial generic in s, t of
degree 8 and 12.

z=0:
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Vs

Vz

Vit

Vy

After acting with the toric automorphims: Equation:
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After acting with the toric automorphims: Equation:
y? = x3+ a(s, t)xz* + b(s, t)z° con a, b polynomial generic in s, t of
degree 8 and 12.

z = 0: oo-section: [1,1,0,s, t], flex point on E.
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Example
3. Diamond:

Equation: ax3 + axyz + az® + ay? 4 axz* + ax?z? + ayz® = 0 with
a(s, t) = aps® + ayst + apt?
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Example
3. Diamond:

Equation: ax3 + axyz + az® + ay? + axz* + ax?>z% + ayz® = 0 with
a(s, t) = ags?® + ayst + axt?

z = 0: is a section: [(s,t),**(s,t),0,s,1],
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Example
3. Diamond:

Equation: ax3 + axyz + az® + ay? + axz* + ax?>z% + ayz® = 0 with
a(s, t) = ags?® + ayst + axt?

z = 0: is a section: [*(s, t),* * (s, t),0,s, t], but not an oo section.
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Recap:

1. 7: Xy — P, X5 Fano, general fiber fs Fano: dim Xy = 3,
dim f):/ = 2;
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What makes V — P! a toric Weierstrass model W?
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What makes V — P! a toric Weierstrass model W?

Is there a combinatorial description of this (i.e. can we tell from the
polytope?)
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What makes V — P! a toric Weierstrass model W?

Is there a combinatorial description of this (i.e. can we tell from the
polytope?)

Can we identify a section from the combinatorics?
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Fix v,, assume it is a section:

Definition

W C Xs is a Weierstrass toric model «—

1. f defining W is f defining E with coefficients functions in (s, t)

2. fi,—o does not depend on s, t: there is an co section (through a flex of
E).
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Fix v,, assume it is a section:

Definition

W C Xs is a Weierstrass toric model «—

1. f defining W is f defining E with coefficients functions in (s, t)

2. fi,—o does not depend on s, t: there is an co section (through a flex of
E).

The toric Weierstrass model satisfies properties of Weierstrass model (as
defined by Nakayama).

Theorem

W is a Weierstrass model <= v, is in the interior of an edge e.
{e, Vf} generate N @ R.

Assume that W is a Weierstrass model:
Case 1. {e, Vfy/} generate N over Z.

Case 2. {e, Vfy/} generate N’ C N sublattice of finite index.

Can reduce to Case 1 via finite maps. From now on: we assume Case 1.
[The “stick” in Candelas-Font]
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Fact: 1. Any polytope: {Vf, e}, with e of length 2 is reflexive.
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Fact: 1. Any polytope: {Vf, e}, with e of length 2 is reflexive.

Definition J

We call these: semistable polytopes.

Fact: 2. The fibers of these elliptic K3 are semistable (Kodaira type /,).
Picture
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Fact: 1. Any polytope: {Vf, e}, with e of length 2 is reflexive.

Definition J

We call these: semistable polytopes.

Fact: 2. The fibers of these elliptic K3 are semistable (Kodaira type /,).
Picture

Fact 3. Using toric automorphisms can write the equations in standard
forms (useful for arithmetic computations.)

Fact 4. Any V C X5 has a toric Weierstrass model «+— Ax is a
subpolytope of Ay, some W semistable.
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Where are the toric sections?

Let D, be a toric divisor of Xs
Case 1: D,y splits into a sum of irreducible divisors, then each of them is
a section.
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a section.
(Note: rk(MW) > 0).
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Where are the toric sections?

Let D, be a toric divisor of Xs
Case 1: D,y splits into a sum of irreducible divisors, then each of them is
a section.

(Note: rk(MW) > 0).

Case 2: D,y is irreducible:
D, is a section if and only if & v, = vi + vo.
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Where are the toric sections?

Let D, be a toric divisor of Xs
Case 1: D,y splits into a sum of irreducible divisors, then each of them is
a section.

(Note: rk(MW) > 0).

Case 2: D,y is irreducible:
D, is a section if and only if & v, = vi + vo.

Example:  (Next page)
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Example

Take two V£, reflexive, as below:

Vf o ]PQ Vf o P(2’1’1)/Zg

m = irreducible toric section
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All the irreducible sections for the 16 (up to SL(2,Z)) two-dimensional
reflexive polytopes :
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Applications...

Recap:
» criterion for toric and non toric
sections
» toric Weierstrass model:
definition
» toric Weierstrass model: criteria

> semistable politopes
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Applications...

Recap:
» criterion for toric and non toric
sections
» toric Weierstrass model:
definition
» toric Weierstrass model: criteria

» semistable politopes
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Arithmetic & Physics:

» Compute: Mordell Weil lattice
of sections

» Find: Torsion sections

» Use: degenerations of K3 to
rational elliptic surfaces (which
arise also in F—theory-Heterotic
Duality)
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Applications...

In progress:
» Toric Jacobian of elliptic toric
fibration without a sections

» Higher dimension: Calabi-Yau
threefold, fourfolds.

» Compute height of sections.

» |s a Toricall Weierstrass model
unique (torically)?

» Find the “Narrow” MW lattice.
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