On the convergence of Fourier-Jacobi expansion

Hiroki Aoki

Tokyo University of Science

March 2010

Motivation

On the symmetric domain of type IV, Borcherds has constructed automorphic forms by infinite product in his paper Automorphic forms on $O_{s+2,2}(\mathbb{R})$ and infinite products in 1995.

In his paper, he set the discrete group $O_{s+2,2}(\mathbb{Z})$. And he gave an open problem: Extend the methods of this paper to level greater than 1.

One of the big obstacle on this problem is convergence. To show the convergence of the infinite product, he did very complicated calculation about asymptotic behavior of the Fourier coefficients of modular forms.

So, it is worth trying to simplify the proof of the convergence.

Motivation

On the symmetric domain of type IV, Borcherds has constructed automorphic forms by infinite product in his paper Automorphic forms on $O_{s+2,2}(\mathbb{R})$ and infinite products in 1995.

In his paper, he set the discrete group $O_{s+2,2}(\mathbb{Z})$. And he gave an open problem: Extend the methods of this paper to level greater than 1.

One of the big obstacle on this problem is convergence. To show the convergence of the infinite product, he did very complicated calculation about asymptotic behavior of the Fourier coefficients of modular forms.

So, it is worth trying to simplify the proof of the convergence.

Motivation

On the symmetric domain of type IV, Borcherds has constructed automorphic forms by infinite product in his paper Automorphic forms on $O_{s+2,2}(\mathbb{R})$ and infinite products in 1995.

In his paper, he set the discrete group $O_{s+2,2}(\mathbb{Z})$. And he gave an open problem: Extend the methods of this paper to level greater than 1.

One of the big obstacle on this problem is convergence. To show the convergence of the infinite product, he did very complicated calculation about asymptotic behavior of the Fourier coefficients of modular forms.

So, it is worth trying to simplify the proof of the convergence.

Motivation

On the symmetric domain of type IV, Borcherds has constructed automorphic forms by infinite product in his paper Automorphic forms on $O_{s+2,2}(\mathbb{R})$ and infinite products in 1995.

In his paper, he set the discrete group $O_{s+2,2}(\mathbb{Z})$. And he gave an open problem: Extend the methods of this paper to level greater than 1.

One of the big obstacle on this problem is convergence. To show the convergence of the infinite product, he did very complicated calculation about asymptotic behavior of the Fourier coefficients of modular forms.

So, it is worth trying to simplify the proof of the convergence.

Abstract

The symmetric domain of type IV is a domain defined from an indefinite quadratic space (V, S) of signature $(2, s+2)$.

Now we treat the case that one can separate two hyperbolic plane from V. Namely, we fix a basis of V and denote

$$
S:=\left(\begin{array}{ll}
& 1^{1} \\
1 & -S_{0}
\end{array}\right)
$$

where S_{0} be an even integral positive definite symmetric matrix with rank s.

The symmetric domain of type IV is a connected component of $\mathcal{H}=\mathrm{P}_{\mathbb{C}} H_{S}$, where

$$
H_{S}:=\left\{\left.w \in \mathbb{C}^{s+4}\right|^{t} \bar{w} S w>0,{ }^{t} w S w=0\right\} .
$$

Abstract

The symmetric domain of type IV is a domain defined from an indefinite quadratic space (V, S) of signature $(2, s+2)$.

Now we treat the case that one can separate two hyperbolic plane from V. Namely, we fix a basis of V and denote

$$
S:=\left(\begin{array}{ll}
& 1 \\
1 & \\
1
\end{array}{ }^{1}\right)
$$

where S_{0} be an even integral positive definite symmetric matrix with rank s.

The symmetric domain of type IV is a connected component of $\mathcal{H}=\mathrm{P}_{\mathbb{C}} H_{S}$, where

$$
H_{S}:=\left\{\left.w \in \mathbb{C}^{s+4}\right|^{t} \bar{w} S w>0,{ }^{t} w S w=0\right\} .
$$

Abstract

The symmetric domain of type IV is a domain defined from an indefinite quadratic space (V, S) of signature $(2, s+2)$.

Now we treat the case that one can separate two hyperbolic plane from V. Namely, we fix a basis of V and denote

$$
S:=\left(\begin{array}{ll}
& { }^{1}{ }^{1}{ }^{1}
\end{array}\right)
$$

where S_{0} be an even integral positive definite symmetric matrix with rank s.

The symmetric domain of type IV is a connected component of $\mathcal{H}=\mathrm{P}_{\mathbb{C}} H_{S}$, where

$$
H_{S}:=\left\{w \in \mathbb{C}^{s+4} \mid{ }^{t} \bar{w} S w>0,{ }^{t} w S w=0\right\} .
$$

Automorphic forms on the symmetric domain of type IV

The orthogonal group $G:=\mathrm{O}(S ; \mathbb{R})^{+}$acts on \mathcal{H} transitively.

Let Γ be a finite index subgroup of $\mathrm{O}(S ; \mathbb{Z}) \cap G$.

A holomorphic function F on H_{S} is an automorphic form of weight k if F is a homogeneous function of weight k and Γ-invariant.

Namely, for a holomorphic function on \mathcal{H}, we can define an automorphic form as a function with corresponded translation formulas. Usually, we set a coordinate of \mathcal{H} by

$$
\mathcal{H} \cong\left\{Z=\left.\left(\begin{array}{l}
\tau \\
z \\
\omega
\end{array}\right) \in \mathbb{C}^{s+2}\right|^{t}(\operatorname{Im} Z) S_{1}(\operatorname{Im} Z)>0, \operatorname{Im} \tau>0\right\},
$$

where $\tau, \omega \in \mathbb{C}$ and $z \in \mathbb{C}^{s}$.

Automorphic forms on the symmetric domain of type IV

The orthogonal group $G:=\mathrm{O}(S ; \mathbb{R})^{+}$acts on \mathcal{H} transitively.

Let Γ be a finite index subgroup of $\mathrm{O}(S ; \mathbb{Z}) \cap G$.

A holomorphic function F on H_{S} is an automorphic form of weight k
if F is a homogeneous function of weight k and Γ-invariant.
Namely, for a holomorphic function on \mathcal{H}, we can define an automorphic form as a function with corresponded translation formulas. Usually, we set a coordinate of \mathcal{H} by

$$
\mathcal{H} \cong\left\{Z=\left.\left(\begin{array}{l}
\tau \\
z \\
\omega
\end{array}\right) \in \mathbb{C}^{s+2}\right|^{t}(\operatorname{Im} Z) S_{1}(\operatorname{Im} Z)>0, \operatorname{Im} \tau>0\right\},
$$

where $\tau, \omega \in \mathbb{C}$ and $z \in \mathbb{C}^{s}$.

Automorphic forms on the symmetric domain of type IV

The orthogonal group $G:=\mathrm{O}(S ; \mathbb{R})^{+}$acts on \mathcal{H} transitively.
Let Γ be a finite index subgroup of $\mathrm{O}(S ; \mathbb{Z}) \cap G$.

A holomorphic function F on H_{S} is an automorphic form of weight k if F is a homogeneous function of weight k and Γ-invariant.

Namely, for a holomorphic function on \mathcal{H}, we can define an automorphic form as a function with corresponded translation
formulas. Usually, we set a coordinate of \mathcal{H} by

$$
\mathcal{H} \cong\left\{\left.Z=\left(\begin{array}{c}
\tau \\
z \\
\omega
\end{array}\right) \in \mathbb{C}^{s+2} \right\rvert\,{ }^{t}(\operatorname{Im} Z) S_{1}(\operatorname{Im} Z)>0, \operatorname{Im} \tau>0\right\}
$$

where $\tau, \omega \in \mathbb{C}$ and $z \in \mathbb{C}^{s}$.

Automorphic forms on the symmetric domain of type IV

The orthogonal group $G:=\mathrm{O}(S ; \mathbb{R})^{+}$acts on \mathcal{H} transitively.

Let Γ be a finite index subgroup of $\mathrm{O}(S ; \mathbb{Z}) \cap G$.

A holomorphic function F on H_{S} is an automorphic form of weight k if F is a homogeneous function of weight k and Γ-invariant.

Namely, for a holomorphic function on \mathcal{H}, we can define an automorphic form as a function with corresponded translation formulas. Usually, we set a coordinate of \mathcal{H} by

$$
\mathcal{H} \cong\left\{Z=\left.\left(\begin{array}{l}
\tau \\
z \\
\omega
\end{array}\right) \in \mathbb{C}^{s+2}\right|^{t}(\operatorname{Im} Z) S_{1}(\operatorname{Im} Z)>0, \operatorname{Im} \tau>0\right\},
$$

where $\tau, \omega \in \mathbb{C}$ and $z \in \mathbb{C}^{s}$.

Automorphic forms on the symmetric domain of type IV

The orthogonal group $G:=\mathrm{O}(S ; \mathbb{R})^{+}$acts on \mathcal{H} transitively.

Let Γ be a finite index subgroup of $\mathrm{O}(S ; \mathbb{Z}) \cap G$.

A holomorphic function F on H_{S} is an automorphic form of weight k if F is a homogeneous function of weight k and Γ-invariant.

Namely, for a holomorphic function on \mathcal{H}, we can define an automorphic form as a function with corresponded translation formulas. Usually, we set a coordinate of \mathcal{H} by

$$
\mathcal{H} \cong\left\{Z=\left.\left(\begin{array}{c}
\tau \\
z \\
\omega
\end{array}\right) \in \mathbb{C}^{s+2}\right|^{t}(\operatorname{Im} Z) S_{1}(\operatorname{Im} Z)>0, \operatorname{Im} \tau>0\right\}
$$

where $\tau, \omega \in \mathbb{C}$ and $z \in \mathbb{C}^{s}$.

Fourier-Jacobi expansion

Fourier-Jacobi expansion

$$
\mathbb{M}_{k} \ni F(\tau, z, \omega)=\sum_{m=0}^{\infty} \varphi_{m}(\tau, z) \exp (2 \pi \sqrt{-1} \omega)
$$

Each φ_{m} is a Jacobi form of index m.

$$
M_{t} \ni F-\left(p_{n}\right) \in \prod_{m=1}^{\infty} J_{k}
$$

This is not surjective.
At least, the image has a kind of symmetry.

Determine the image of this map !!

Fourier-Jacobi expansion

Fourier-Jacobi expansion

$$
\mathbb{M}_{k} \ni F(\tau, z, \omega)=\sum_{m=0}^{\infty} \varphi_{m}(\tau, z) \exp (2 \pi \sqrt{-1} \omega)
$$

Each φ_{m} is a Jacobi form of index m.

$$
\mathbb{M}_{k} \ni F \mapsto\left\{\varphi_{m}\right\} \in \prod_{m=0}^{\infty} \mathbb{J}_{k, m}
$$

This is not surjective.
At least, the image has a kind of symmetry.

Determine the image of this map !!

Fourier-Jacobi expansion

Fourier-Jacobi expansion

$$
\mathbb{M}_{k} \ni F(\tau, z, \omega)=\sum_{m=0}^{\infty} \varphi_{m}(\tau, z) \exp (2 \pi \sqrt{-1} \omega)
$$

Each φ_{m} is a Jacobi form of index m.

$$
\mathbb{M}_{k} \ni F \mapsto\left\{\varphi_{m}\right\} \in \prod_{m=0}^{\infty} \mathbb{J}_{k, m}
$$

This is not surjective.

At least, the image has a kind of symmetry.

Determine the image of this map !!

Fourier-Jacobi expansion

Fourier-Jacobi expansion

$$
\mathbb{M}_{k} \ni F(\tau, z, \omega)=\sum_{m=0}^{\infty} \varphi_{m}(\tau, z) \exp (2 \pi \sqrt{-1} \omega)
$$

Each φ_{m} is a Jacobi form of index m.

$$
\mathbb{M}_{k} \ni F \mapsto\left\{\varphi_{m}\right\} \in \prod_{m=0}^{\infty} \mathbb{J}_{k, m}
$$

This is not surjective.
At least, the image has a kind of symmetry.

Determine the image of this map !!

Fourier-Jacobi expansion

Fourier-Jacobi expansion

$$
\mathbb{M}_{k} \ni F(\tau, z, \omega)=\sum_{m=0}^{\infty} \varphi_{m}(\tau, z) \exp (2 \pi \sqrt{-1} \omega)
$$

Each φ_{m} is a Jacobi form of index m.

$$
\mathbb{M}_{k} \ni F \mapsto\left\{\varphi_{m}\right\} \in \prod_{m=0}^{\infty} \mathbb{J}_{k, m}
$$

This is not surjective.
At least, the image has a kind of symmetry.

Determine the image of this map !!

Fourier-Jacobi expansion

Fourier-Jacobi expansion

$$
\mathbb{M}_{k} \ni F(\tau, z, \omega)=\sum_{m=0}^{\infty} \varphi_{m}(\tau, z) \exp (2 \pi \sqrt{-1} \omega)
$$

Each φ_{m} is a Jacobi form of index m.

$$
\mathbb{M}_{k} \ni F \mapsto\left\{\varphi_{m}\right\} \in \prod_{m=0}^{\infty} \mathbb{J}_{k, m}
$$

This is not surjective.
At least, the image has a kind of symmetry.

Determine the image of this map !!

The simplest case

The simplest case : $s=1, S_{0}=(2)$
(Siegel modular forms of degree 2)

$$
\Gamma:=\operatorname{Sp}(2, \mathbb{Z}) \quad\left(\text { or } \Gamma_{0}(N)\right)
$$

$\mathbb{M}_{k} \quad$: space of Siegel modular forms of weight k
$\mathbb{J}_{k, m} \quad$: space of Jacobi forms of weight k index m

The simplest case

The simplest case : $s=1, S_{0}=(2)$
(Siegel modular forms of degree 2)

$$
\Gamma:=\operatorname{Sp}(2, \mathbb{Z}) \quad\left(\text { or } \Gamma_{0}(N)\right)
$$

$\mathbb{M}_{k} \quad$: space of Siegel modular forms of weight k
$\mathbb{J}_{k, m} \quad$: space of Jacobi forms of weight k index m

The simplest case

The simplest case : $s=1, S_{0}=(2)$
(Siegel modular forms of degree 2)

$$
\Gamma:=\operatorname{Sp}(2, \mathbb{Z}) \quad\left(\text { or } \Gamma_{0}(N)\right)
$$

$\mathbb{M}_{k} \quad$: space of Siegel modular forms of weight k $\mathbb{J}_{k, m} \quad$: space of Jacobi forms of weight k index m

The simplest case

The simplest case : $s=1, S_{0}=(2)$
(Siegel modular forms of degree 2)

$$
\Gamma:=\operatorname{Sp}(2, \mathbb{Z}) \quad\left(\text { or } \Gamma_{0}(N)\right)
$$

$\mathbb{M}_{k} \quad$: space of Siegel modular forms of weight k $\mathbb{J}_{k, m} \quad$: space of Jacobi forms of weight k index m

Fourier-Jacobi expansion

$$
\begin{gathered}
\mathbb{M}_{k} \ni F(\tau, z, \omega)=\sum_{m=0}^{\infty} \varphi_{m}(\tau, z) \exp (2 \pi \sqrt{-1} \omega) \\
\mathbb{M}_{k} \ni F \mapsto\left\{\varphi_{m}\right\} \in \prod_{m=0}^{\infty} \mathbb{J}_{k, m}
\end{gathered}
$$

The simplest case

The simplest case : $s=1, S_{0}=(2)$
(Siegel modular forms of degree 2)

$$
\Gamma:=\operatorname{Sp}(2, \mathbb{Z}) \quad\left(\text { or } \Gamma_{0}(N)\right)
$$

$\mathbb{M}_{k} \quad$: space of Siegel modular forms of weight k
$\mathbb{J}_{k, m} \quad$: space of Jacobi forms of weight k index m

Fourier-Jacobi expansion

$$
\begin{gathered}
\mathbb{M}_{k} \ni F(\tau, z, \omega)=\sum_{m=0}^{\infty} \varphi_{m}(\tau, z) \exp (2 \pi \sqrt{-1} \omega) \\
\mathbb{M}_{k} \ni F \mapsto\left\{\varphi_{m}\right\} \in \prod_{m=0}^{\infty} \mathbb{J}_{k, m}
\end{gathered}
$$

This is not surjective. We determine the image of this map.

Main theorem

Theorem. (The image of Fourier-Jacobi expansion)

These two maps are surjective, hence bijective.

$$
\begin{array}{r}
\mathrm{FJ}: \mathbb{M}_{k} \ni F \mapsto\left\{\varphi_{m}\right\}_{m=0}^{\infty} \in\left(\prod_{m=0}^{\infty} \mathbb{J}_{k, m}\right)^{\mathrm{sym}} \\
\mathrm{FJ}^{\mathrm{c}}: \mathbb{M}_{k}^{\mathrm{c}} \ni F \mapsto\left\{\varphi_{m}\right\}_{m=1}^{\infty} \in\left(\prod_{m=1}^{\infty} \mathbb{J}_{k, m}^{\mathrm{c}}\right)^{\mathrm{sym}}
\end{array}
$$

If $\left\{\varphi_{m}\right\}$ is in the image, the series $\sum_{m=0} \varphi_{m}(\tau, z) \exp (2 \pi \sqrt{-1} \omega)$
converges.

Main theorem

Theorem. (The image of Fourier-Jacobi expansion)

These two maps are surjective, hence bijective.

$$
\begin{array}{r}
\mathrm{FJ}: \mathbb{M}_{k} \ni F \mapsto\left\{\varphi_{m}\right\}_{m=0}^{\infty} \in\left(\prod_{m=0}^{\infty} \mathbb{J}_{k, m}\right)^{\mathrm{sym}} \\
\mathrm{FJ}^{\mathrm{c}}: \mathbb{M}_{k}^{\mathrm{c}} \ni F \mapsto\left\{\varphi_{m}\right\}_{m=1}^{\infty} \in\left(\prod_{m=1}^{\infty} \mathbb{J}_{k, m}^{\mathrm{c}}\right)^{\mathrm{sym}}
\end{array}
$$

If $\left\{\varphi_{m}\right\}$ is in the image, the series $\sum_{m=0}^{\infty} \varphi_{m}(\tau, z) \exp (2 \pi \sqrt{-1} \omega)$ converges.

Application

Application

- convergence of Maass lift
- convergence of Borcherds product

Application

Application

- convergence of Maass lift
- convergence of Borcherds product

Application

Application

- convergence of Maass lift
- convergence of Borcherds product

Application

Application

- convergence of Maass lift
- convergence of Borcherds product

Reference

- M. Eichler, D. Zagier, The theory of Jacobi forms, Birkhäuser, 1985.
- E. Freitag, Siegelsche Modulfunktionen, GMW 254, Springer Verlag, Berlin (1983).
- R.E.Borcherds, Automorphic forms on $O_{s+2,2}(R)$ and infinite products, Invent. Math. 120-1(1995), 161-213.
- J. Bruinier, Borcherds products on $O(2, l)$ and Chern classes of Heegner divisors, LNM 1780. Springer-Verlag, Berlin (2002).

Siegel upper half space of degree 2

We denote Siegel upper half space of degree 2 by

$$
\mathbb{H}_{2}:=\left\{\left.Z={ }^{t} Z=\left(\begin{array}{ll}
\tau & z \\
z & \omega
\end{array}\right) \in \mathrm{M}_{2}(\mathbb{C}) \right\rvert\, \operatorname{Im} Z>0\right\} .
$$

The symplectic group
$G:=\operatorname{Sp}_{2}(\mathbb{R})=\left\{\left.M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \mathrm{M}_{4}(\mathbb{R}) \right\rvert\,{ }^{t} M J M=J:=\left(\begin{array}{cc}O_{2} & -E_{2} \\ E_{2} & O_{2}\end{array}\right)\right\}$
acts on \mathbb{H}_{2} transitively by

$$
\mathbb{H}_{2} \ni Z \longmapsto M\langle Z\rangle:=(A Z+B)(C Z+D)^{-1} \in \mathbb{H}_{2} .
$$

Siegel upper half space of degree 2

We denote Siegel upper half space of degree 2 by

$$
\mathbb{H}_{2}:=\left\{\left.Z={ }^{t} Z=\left(\begin{array}{ll}
\tau & z \\
z & \omega
\end{array}\right) \in \mathrm{M}_{2}(\mathbb{C}) \right\rvert\, \operatorname{Im} Z>0\right\} .
$$

The symplectic group
$G:=\operatorname{Sp}_{2}(\mathbb{R})=\left\{\left.M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \mathrm{M}_{4}(\mathbb{R}) \right\rvert\,{ }^{t} M J M=J:=\left(\begin{array}{cc}O_{2} & -E_{2} \\ E_{2} & O_{2}\end{array}\right)\right\}$
acts on \mathbb{H}_{2} transitively by

$$
\mathbb{H}_{2} \ni Z \longmapsto M\langle Z\rangle:=(A Z+B)(C Z+D)^{-1} \in \mathbb{H}_{2} .
$$

Siegel upper half space of degree 2

We denote Siegel upper half space of degree 2 by

$$
\mathbb{H}_{2}:=\left\{\left.Z={ }^{t} Z=\left(\begin{array}{ll}
\tau & z \\
z & \omega
\end{array}\right) \in \mathrm{M}_{2}(\mathbb{C}) \right\rvert\, \operatorname{Im} Z>0\right\} .
$$

The symplectic group
$G:=\operatorname{Sp}_{2}(\mathbb{R})=\left\{M=\left.\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \mathrm{M}_{4}(\mathbb{R})\right|^{t} M J M=J:=\left(\begin{array}{cc}O_{2} & -E_{2} \\ E_{2} & O_{2}\end{array}\right)\right\}$
acts on \mathbb{H}_{2} transitively by

$$
\mathbb{H}_{2} \ni Z \longmapsto M\langle Z\rangle:=(A Z+B)(C Z+D)^{-1} \in \mathbb{H}_{2} .
$$

Siegel modular form of degree 2

For a holomorphic function $F: \mathbb{H}_{2} \rightarrow \mathbb{C}$ and $k \in \mathbb{Z}$, define

$$
\left(\left.F\right|_{k} M\right)(Z):=\operatorname{det}(C Z+D)^{-k} F(M\langle Z\rangle) .
$$

In today's talk, we set $\Gamma:=\mathrm{Sp}_{2}(\mathbb{Z}):=\mathrm{Sp}_{2}(\mathbb{R}) \cap \mathrm{M}_{4}(\mathbb{Z})$.

Siegel modular form of degree 2

For a holomorphic function $F: \mathbb{H}_{2} \rightarrow \mathbb{C}$ and $k \in \mathbb{Z}$, define

$$
\left(\left.F\right|_{k} M\right)(Z):=\operatorname{det}(C Z+D)^{-k} F(M\langle Z\rangle) .
$$

In today's talk, we set $\Gamma:=\operatorname{Sp}_{2}(\mathbb{Z}):=\operatorname{Sp}_{2}(\mathbb{R}) \cap \mathrm{M}_{4}(\mathbb{Z})$.

Siegel modular form of degree 2

For a holomorphic function $F: \mathbb{H}_{2} \rightarrow \mathbb{C}$ and $k \in \mathbb{Z}$, define

$$
\left(\left.F\right|_{k} M\right)(Z):=\operatorname{det}(C Z+D)^{-k} F(M\langle Z\rangle) .
$$

In today's talk, we set $\Gamma:=\operatorname{Sp}_{2}(\mathbb{Z}):=\operatorname{Sp}_{2}(\mathbb{R}) \cap \mathrm{M}_{4}(\mathbb{Z})$.
Definition. (Siegel modular form of degree 2)
We say F is a Siegel modular form of weight k if a holomorphic function F on \mathbb{H}_{2} satisfies the condition $F=\left.F\right|_{k} M$ for any $M \in \Gamma$. We denote the space of all Siegel modular forms of weight k by \mathbb{M}_{k}.

For simplicity, we denote $F(Z)=F(\tau, z, \omega)$.

Siegel modular form of degree 2

For a holomorphic function $F: \mathbb{H}_{2} \rightarrow \mathbb{C}$ and $k \in \mathbb{Z}$, define

$$
\left(\left.F\right|_{k} M\right)(Z):=\operatorname{det}(C Z+D)^{-k} F(M\langle Z\rangle)
$$

In today's talk, we set $\Gamma:=\operatorname{Sp}_{2}(\mathbb{Z}):=\operatorname{Sp}_{2}(\mathbb{R}) \cap \mathrm{M}_{4}(\mathbb{Z})$.
Definition. (Siegel modular form of degree 2)
We say F is a Siegel modular form of weight k if a holomorphic function F on \mathbb{H}_{2} satisfies the condition $F=\left.F\right|_{k} M$ for any $M \in \Gamma$. We denote the space of all Siegel modular forms of weight k by \mathbb{M}_{k}.

For simplicity, we denote $F(Z)=F(\tau, z, \omega)$.

Koecher principle

Let $F \in \mathbb{M}_{k}$. F has a Fourier expansion

$$
F(Z)=\sum_{n, l, m} a(n, l, m) q^{n} \zeta^{l} p^{m},
$$

where $q^{n}:=\mathbf{e}(n \tau):=\exp (2 \pi \sqrt{-1} n \tau), \zeta^{l}:=\mathbf{e}(l z)$ and $p^{m}:=\mathbf{e}(m \omega)$.

Koecher principle

Let $F \in \mathbb{M}_{k}$. F has a Fourier expansion

$$
F(Z)=\sum_{n, l, m} a(n, l, m) q^{n} \zeta^{l} p^{m},
$$

where $q^{n}:=\mathbf{e}(n \tau):=\exp (2 \pi \sqrt{-1} n \tau), \zeta^{l}:=\mathbf{e}(l z)$ and $p^{m}:=\mathbf{e}(m \omega)$.
Proposition. (Koecher principle)
$a(n, l, m)=0$ if $4 m n-l^{2}<0$ or $m<0$.

Koecher principle

Let $F \in \mathbb{M}_{k}$. F has a Fourier expansion

$$
F(Z)=\sum_{n, l, m} a(n, l, m) q^{n} \zeta^{l} p^{m},
$$

where $q^{n}:=\mathbf{e}(n \tau):=\exp (2 \pi \sqrt{-1} n \tau), \zeta^{l}:=\mathbf{e}(l z)$ and $p^{m}:=\mathbf{e}(m \omega)$.
Proposition. (Koecher principle)
$a(n, l, m)=0$ if $4 m n-l^{2}<0$ or $m<0$.

Definition. (Siegel cusp form)
we say $F \in \mathbb{M}_{k}$ is a cusp form of weight k if F satisfies the condition $a(n, l, m)=0$ unless $4 m n-l^{2}>0$. We denote the space of all cusp forms of weight k by $\mathbb{M}_{k}^{\mathrm{c}}$.

Jacobi group

The element $T:=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$ induces $F(\tau, z, \omega) \mapsto F(\tau, z, \omega+1)$.
Define $G^{J}:=\left\{M \in G \mid M^{-1} T M=T\right\} . \quad\left(G=\mathrm{Sp}_{2}(\mathbb{R})\right)$
If $F: \mathbb{H}_{2} \rightarrow \mathbb{C}$ has a period 1 with respect to ω, then $\left.F\right|_{k} M$ also has a period 1 for any $M \in G^{J}$.

Let $m \in \mathbb{Z}$ and $\varphi(\tau, z)$ be a holomorphic function on $\mathbb{H} \times \mathbb{C}$. The image of $\varphi(\tau, z) p^{m}$ by $M \in G^{J}$ is a product of a holomorphic function on $\mathbb{H} \times \mathbb{C}$ and $p^{m} . \quad\left(p^{m}=\exp (2 \pi \sqrt{-1} m \omega)\right)$

Jacobi group

The element $T:=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$ induces $F(\tau, z, \omega) \mapsto F(\tau, z, \omega+1)$.
Define $G^{J}:=\left\{M \in G \mid M^{-1} T M=T\right\} . \quad\left(G=\mathrm{Sp}_{2}(\mathbb{R})\right)$
If $F: \mathbb{H}_{2} \rightarrow \mathbb{C}$ has a period 1 with respect to ω, then $\left.F\right|_{k} M$ also has a period 1 for any $M \in G^{J}$.

Let $m \in \mathbb{Z}$ and $\varphi(\tau, z)$ be a holomorphic function on $\mathbb{H} \times \mathbb{C}$. The image of $\varphi(\tau, z) p^{m}$ by $M \in G^{J}$ is a product of a holomorphic function on $\mathbb{H} \times \mathbb{C}$ and $p^{m} . \quad\left(p^{m}=\exp (2 \pi \sqrt{-1} m \omega)\right)$

Jacobi group

The element $T:=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$ induces $F(\tau, z, \omega) \mapsto F(\tau, z, \omega+1)$.
Define $G^{J}:=\left\{M \in G \mid M^{-1} T M=T\right\} . \quad\left(G=\mathrm{Sp}_{2}(\mathbb{R})\right)$
If $F: \mathbb{H}_{2} \rightarrow \mathbb{C}$ has a period 1 with respect to ω, then $\left.F\right|_{k} M$ also has a period 1 for any $M \in G^{J}$.

Let $m \in \mathbb{Z}$ and $\varphi(\tau, z)$ be a holomorphic function on $\mathbb{H} \times \mathbb{C}$. The image of $\varphi(\tau, z) p^{m}$ by $M \in G^{J}$ is a product of a holomorphic function on $\mathbb{H} \times \mathbb{C}$ and $p^{m} . \quad\left(p^{m}=\exp (2 \pi \sqrt{-1} m \omega)\right)$

Jacobi group

The element $T:=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$ induces $F(\tau, z, \omega) \mapsto F(\tau, z, \omega+1)$.
Define $G^{J}:=\left\{M \in G \mid M^{-1} T M=T\right\} . \quad\left(G=\mathrm{Sp}_{2}(\mathbb{R})\right)$
If $F: \mathbb{H}_{2} \rightarrow \mathbb{C}$ has a period 1 with respect to ω, then $\left.F\right|_{k} M$ also has a period 1 for any $M \in G^{J}$.

Let $m \in \mathbb{Z}$ and $\varphi(\tau, z)$ be a holomorphic function on $\mathbb{H} \times \mathbb{C}$. The image of $\varphi(\tau, z) p^{m}$ by $M \in G^{J}$ is a product of a holomorphic function on $\mathbb{H} \times \mathbb{C}$ and $p^{m} . \quad\left(p^{m}=\exp (2 \pi \sqrt{-1} m \omega)\right)$

Jacobi group

The element $T:=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$ induces $F(\tau, z, \omega) \mapsto F(\tau, z, \omega+1)$.
Define $G^{J}:=\left\{M \in G \mid M^{-1} T M=T\right\} . \quad\left(G=\operatorname{Sp}_{2}(\mathbb{R})\right)$
If $F: \mathbb{H}_{2} \rightarrow \mathbb{C}$ has a period 1 with respect to ω, then $\left.F\right|_{k} M$ also has a period 1 for any $M \in G^{J}$.

Let $m \in \mathbb{Z}$ and $\varphi(\tau, z)$ be a holomorphic function on $\mathbb{H} \times \mathbb{C}$. The image of $\varphi(\tau, z) p^{m}$ by $M \in G^{J}$ is a product of a holomorphic function on $\mathbb{H} \times \mathbb{C}$ and $p^{m} . \quad\left(p^{m}=\exp (2 \pi \sqrt{-1} m \omega)\right)$

Proposition. (Action of Jacobi group)
For each $m \in \mathbb{Z}$, the group G^{J} acts on the set of all holomorphic functions on $\mathbb{H} \times \mathbb{C}$.

Jacobi group invariant function

Define $\Gamma^{J}:=G^{J} \cap \Gamma . \quad\left(\Gamma=\operatorname{Sp}_{2}(\mathbb{Z})\right)$
Let $m \in \mathbb{Z}$ and $\varphi(\tau, z)$ be a holomorphic function on $\mathbb{H} \times \mathbb{C}$. We assume that $\varphi(\tau, z) p^{m}$ is Γ^{J}-invariant.

Namely, $\varphi(\tau, z)$ satisfies the following two equations:

$$
\begin{gathered}
\varphi(\tau, z)=(c \tau+d)^{-k} \mathrm{e}\left(\frac{-m c z^{2}}{c \tau+d}\right) \varphi\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d}\right) \\
\varphi(\tau, z)=\mathrm{e}\left(m\left(x^{2} \tau+2 x z\right)\right) \varphi(\tau, z+x \tau+y) \\
(\mathrm{e}(x)=\exp (2 \pi \sqrt{-1} x))
\end{gathered}
$$

for any $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ and for any $x, y \in \mathbb{Z}$.
(c.f. the book by Eichler and Zagier)

Jacobi group invariant function

Define $\Gamma^{J}:=G^{J} \cap \Gamma . \quad\left(\Gamma=\operatorname{Sp}_{2}(\mathbb{Z})\right)$
Let $m \in \mathbb{Z}$ and $\varphi(\tau, z)$ be a holomorphic function on $\mathbb{H} \times \mathbb{C}$. We assume that $\varphi(\tau, z) p^{m}$ is Γ^{J}-invariant.

Namely, $\varphi(\tau, z)$ satisfies the following two equations:

$$
\begin{gathered}
\varphi(\tau, z)=(c \tau+d)^{-k} \mathrm{e}\left(\frac{-m c z^{2}}{c \tau+d}\right) \varphi\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d}\right) \\
\varphi(\tau, z)=\mathrm{e}\left(m\left(x^{2} \tau+2 x z\right)\right) \varphi(\tau, z+x \tau+y) \\
(\mathrm{e}(x)=\exp (2 \pi \sqrt{-1} x))
\end{gathered}
$$

for any $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ and for any $x, y \in \mathbb{Z}$.
(c.f. the book by Eichler and Zagier)

Jacobi group invariant function

Define $\Gamma^{J}:=G^{J} \cap \Gamma . \quad\left(\Gamma=\operatorname{Sp}_{2}(\mathbb{Z})\right)$
Let $m \in \mathbb{Z}$ and $\varphi(\tau, z)$ be a holomorphic function on $\mathbb{H} \times \mathbb{C}$. We assume that $\varphi(\tau, z) p^{m}$ is Γ^{J}-invariant.

Namely, $\varphi(\tau, z)$ satisfies the following two equations:

$$
\begin{gathered}
\varphi(\tau, z)=(c \tau+d)^{-k} \mathbf{e}\left(\frac{-m c z^{2}}{c \tau+d}\right) \varphi\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d}\right) \\
\varphi(\tau, z)=\mathbf{e}\left(m\left(x^{2} \tau+2 x z\right)\right) \varphi(\tau, z+x \tau+y) \\
(\mathbf{e}(x)=\exp (2 \pi \sqrt{-1} x))
\end{gathered}
$$

for any $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ and for any $x, y \in \mathbb{Z}$.
(c.f. the book by Eichler and Zagier)

No negative index Jacobi forms

According to the book of Eichler and Zagier, we have the following propositions.

No negative index Jacobi forms

According to the book of Eichler and Zagier, we have the following propositions.

Proposition. (Jacobi form with negative index is zero)
If $m<0$, above φ should be the zero function.

No negative index Jacobi forms

According to the book of Eichler and Zagier, we have the following propositions.

Proposition. (Jacobi form with negative index is zero)
If $m<0$, above φ should be the zero function.

Proposition. (Jacobi form with zero index is constant)
If $m=0$, above φ does not depend on z. Namely, it is a $\mathrm{SL}_{2}(\mathbb{Z})$-invariant holomorphic function on \mathbb{H}.

Hence we may assume $m \geq 0$.

No negative index Jacobi forms

According to the book of Eichler and Zagier, we have the following propositions.

Proposition. (Jacobi form with negative index is zero)
If $m<0$, above φ should be the zero function.

Proposition. (Jacobi form with zero index is constant)
If $m=0$, above φ does not depend on z. Namely, it is a $\mathrm{SL}_{2}(\mathbb{Z})$-invariant holomorphic function on \mathbb{H}.

Hence we may assume $m \geq 0$.

Fourier expansion of Jacobi forms

Above φ has a Fourier expansion

$$
\varphi(\tau, z)=\sum_{n, l} c(n, l) q^{n} \zeta^{l} . \quad\left(q^{n}:=\mathbf{e}(n \tau), \zeta^{l}:=\mathbf{e}(l z)\right)
$$

If $m=0, c(n, l)=0$ for $l \neq 0$.
If $m>0, c(n, l)$ depends only on $4 m n-l^{2}$ and $l(\bmod 2 m)$.
Especially, if $m=1, c(n, l)$ depends only on $4 m n-l^{2}$ and sometimes we denote $c\left(4 m n-l^{2}\right)=c(n, l)$.

Fourier expansion of Jacobi forms

Above φ has a Fourier expansion

$$
\varphi(\tau, z)=\sum_{n, l} c(n, l) q^{n} \zeta^{l} . \quad\left(q^{n}:=\mathbf{e}(n \tau), \zeta^{l}:=\mathbf{e}(l z)\right)
$$

If $m=0, c(n, l)=0$ for $l \neq 0$.

If $m>0, c(n, l)$ depends only on $4 m n-l^{2}$ and $l(\bmod 2 m)$.

Especially, if $m=1, c(n, l)$ depends only on $4 m n-l^{2}$ and sometimes we denote $c\left(4 m n-l^{2}\right)=c(n, l)$.

Fourier expansion of Jacobi forms

Above φ has a Fourier expansion

$$
\varphi(\tau, z)=\sum_{n, l} c(n, l) q^{n} \zeta^{l} . \quad\left(q^{n}:=\mathbf{e}(n \tau), \zeta^{l}:=\mathbf{e}(l z)\right)
$$

If $m=0, c(n, l)=0$ for $l \neq 0$.

If $m>0, c(n, l)$ depends only on $4 m n-l^{2}$ and $l(\bmod 2 m)$.

Especially, if $m=1, c(n, l)$ depends only on $4 m n-l^{2}$ and sometimes we denote $c\left(4 m n-l^{2}\right)=c(n, l)$.

Fourier expansion of Jacobi forms

Above φ has a Fourier expansion

$$
\varphi(\tau, z)=\sum_{n, l} c(n, l) q^{n} \zeta^{l} . \quad\left(q^{n}:=\mathbf{e}(n \tau), \zeta^{l}:=\mathbf{e}(l z)\right)
$$

If $m=0, c(n, l)=0$ for $l \neq 0$.

If $m>0, c(n, l)$ depends only on $4 m n-l^{2}$ and $l(\bmod 2 m)$.

Especially, if $m=1, c(n, l)$ depends only on $4 m n-l^{2}$ and sometimes we denote $c\left(4 m n-l^{2}\right)=c(n, l)$.

Jacobi form

Definition. (Jacobi form)

We say above φ is a Jacobi form of weight k and index m if $c(n, l)=0$ except when $n \geq 0$ and $4 m n-l^{2} \geq 0$.

We denote the space of all Jacobi form of weight k and index m by $\mathbb{J}_{k, m}$.

Jacobi form	$n \geq 0$ and $4 m n-l^{2} \geq 0$	$\mathbb{J}_{k, m}$
Jacobi cusp form	$n>0$ and $4 m n-l^{2}>0$	$\mathbb{J}_{k, m}^{c}$
weak Jacobi form	$n \geq 0$	$\mathbb{J}_{k, m}^{\mathrm{w}}$
w.h. Jacobi form	$n \geq-{ }^{\exists} N$	$\mathbb{J}_{k, m}^{\text {wh }}$

(w.h. . . weakly holomorphic)

Jacobi form

Definition. (Jacobi cusp form)

We say above φ is a Jacobi cusp form of weight k and index m if $c(n, l)=0$ except when $n>0$ and $4 m n-l^{2}>0$.

We denote the space of all Jacobi cusp form of weight k and index m by $\mathbb{J}_{k, m}^{c}$.

Jacobi form	$n \geq 0$ and $4 m n-l^{2} \geq 0$	$\mathbb{J}_{k, m}$
Jacobi cusp form	$n>0$ and $4 m n-l^{2}>0$	$\mathbb{J}_{k, m}^{c}$
weak Jacobi form	$n \geq 0$	$\mathbb{J}_{k, m}^{\mathrm{w}}$
w.h. Jacobi form	$n \geq-{ }^{\boldsymbol{w}} N$	$\mathbb{J}_{k, m}^{\mathrm{wh}}$

(w.h. ... weakly holomorphic)

Jacobi form

Definition. (weak Jacobi form)

We say above φ is a weak Jacobi form of weight k and index m if $c(n, l)=0$ except when $n \geq 0$.

We denote the space of all weak Jacobi form of weight k and index m by $\mathbb{J}_{k, m}^{\mathrm{w}}$.

Jacobi form	$n \geq 0$ and $4 m n-l^{2} \geq 0$	$\mathbb{J}_{k, m}$
Jacobi cusp form	$n>0$ and $4 m n-l^{2}>0$	$\mathbb{J}_{k, m}^{\mathrm{c}}$
weak Jacobi form	$n \geq 0$	$\mathbb{J}_{k, m}^{\mathrm{w}}$
w.h. Jacobi form	$n \geq-{ }^{\exists} N$	$\mathbb{J}_{k, m}^{\mathrm{wh}}$

(w.h. . . . weakly holomorphic)

Jacobi form

Definition. (w.h. Jacobi form)

We say above φ is a w.h. Jacobi form of weight k and index m if $c(n, l)=0$ except when $n \geq-{ }^{\exists} N$.

We denote the space of all w.h. Jacobi form of weight k and index m by $\mathbb{J}_{k, m}^{\mathrm{wh}}$.

$$
\begin{array}{ccc}
\text { Jacobi form } & n \geq 0 \text { and } 4 m n-l^{2} \geq 0 & \mathbb{J}_{k, m} \\
\text { Jacobi cusp form } & n>0 \text { and } 4 m n-l^{2}>0 & \mathbb{J}_{k, m}^{c} \\
\text { weak Jacobi form } & n \geq 0 & \mathbb{J}_{k, m}^{\mathrm{w}} \\
\text { w.h. Jacobi form } & n \geq-{ }^{\exists} N & \mathbb{J}_{k, m}^{\mathrm{wh}}
\end{array}
$$

(w.h. ... weakly holomorphic)

Property of Jacobi forms (1)

For $\varphi \in \mathbb{J}_{k, m}^{\mathrm{wh}}$, a positive valued function

$$
G_{\varphi}(\tau, z):=|\varphi(\tau, z)| \exp \left(\frac{-2 \pi m(\operatorname{Im} z)^{2}}{\operatorname{Im} \tau}\right)(\operatorname{Im} \tau)^{\frac{k}{2}}
$$

is Γ^{J}-invariant, namely $\left.G_{\varphi}\right|_{0,0} M=G_{\varphi}$ for any $M \in \Gamma^{J}$.

Property of Jacobi forms (1)

For $\varphi \in \mathbb{J}_{k, m}^{\mathrm{wh}}$, a positive valued function

$$
G_{\varphi}(\tau, z):=|\varphi(\tau, z)| \exp \left(\frac{-2 \pi m(\operatorname{Im} z)^{2}}{\operatorname{Im} \tau}\right)(\operatorname{Im} \tau)^{\frac{k}{2}}
$$

is Γ^{J}-invariant, namely $\left.G_{\varphi}\right|_{0,0} M=G_{\varphi}$ for any $M \in \Gamma^{J}$.
Proposition. (Upper bound of a Jacobi cusp form)
If $\varphi \in \mathbb{J}_{k, m}^{c}, G_{\varphi}$ has a maximum value.

Property of Jacobi forms (1)

For $\varphi \in \mathbb{J}_{k, m}^{\mathrm{wh}}$, a positive valued function

$$
G_{\varphi}(\tau, z):=|\varphi(\tau, z)| \exp \left(\frac{-2 \pi m(\operatorname{Im} z)^{2}}{\operatorname{Im} \tau}\right)(\operatorname{Im} \tau)^{\frac{k}{2}}
$$

is Γ^{J}-invariant, namely $\left.G_{\varphi}\right|_{0,0} M=G_{\varphi}$ for any $M \in \Gamma^{J}$.
Proposition. (Upper bound of a Jacobi cusp form)
If $\varphi \in \mathbb{J}_{k, m}^{c}, G_{\varphi}$ has a maximum value.
Proposition. (Upper bound of Fourier coefficients)
For $\varphi \in \mathbb{J}_{k, m}^{c}$, there exists a constant K_{φ} such that $|c(n, l)| \leq K_{\varphi}\left(4 m n-l^{2}\right)^{\frac{k}{2}}$.

$$
\left(\varphi(\tau, z)=\sum_{n, l} c(n, l) q^{n} \zeta^{l}, \quad\left(q^{n}:=\mathbf{e}(n \tau), \zeta^{l}:=\mathbf{e}(l z)\right)\right)
$$

Property of Jacobi forms (2)

If $m=0, \varphi$ is a $\mathrm{SL}_{2}(\mathbb{Z})$-invariant holomorphic function on \mathbb{H}. Hence $\mathbb{J}_{k, 0}^{\mathrm{w}}=\mathbb{J}_{k, 0}=\mathbb{A}_{k}$ and $\mathbb{J}_{k, 0}^{c}=\{0\}$, where \mathbb{A}_{k} is a space of all elliptic modular forms of weight k w.r.t. $\mathrm{SL}_{2}(\mathbb{Z})$.
$\mathbb{J}_{*, *}^{\mathrm{w}}:=\bigoplus_{k, m \in \mathbb{Z}} \mathbb{J}_{k, m}^{\mathrm{w}}$ is a graded ring of $\mathbb{A}_{*}:=\bigoplus_{k, m \in \mathbb{Z}} \mathbb{A}_{k}$.

Property of Jacobi forms (2)

If $m=0, \varphi$ is a $\mathrm{SL}_{2}(\mathbb{Z})$-invariant holomorphic function on \mathbb{H}. Hence $\mathbb{J}_{k, 0}^{\mathrm{w}}=\mathbb{J}_{k, 0}=\mathbb{A}_{k}$ and $\mathbb{J}_{k, 0}^{\mathrm{c}}=\{0\}$, where \mathbb{A}_{k} is a space of all elliptic modular forms of weight k w.r.t. $\mathrm{SL}_{2}(\mathbb{Z})$.
$\mathbb{J}_{*, *}^{\mathrm{w}}:=\bigoplus_{k, m \in \mathbb{Z}} \mathbb{J}_{k, m}^{\mathrm{w}}$ is a graded ring of $\mathbb{A}_{*}:=\bigoplus_{k, m \in \mathbb{Z}} \mathbb{A}_{k}$.

Property of Jacobi forms (2)

If $m=0, \varphi$ is a $\mathrm{SL}_{2}(\mathbb{Z})$-invariant holomorphic function on \mathbb{H}. Hence $\mathbb{J}_{k, 0}^{\mathrm{W}}=\mathbb{J}_{k, 0}=\mathbb{A}_{k}$ and $\mathbb{J}_{k, 0}^{\mathrm{c}}=\{0\}$, where \mathbb{A}_{k} is a space of all elliptic modular forms of weight k w.r.t. $\mathrm{SL}_{2}(\mathbb{Z})$.
$\mathbb{J}_{*, *}^{\mathrm{w}}:=\bigoplus_{k, m \in \mathbb{Z}} \mathbb{J}_{k, m}^{\mathrm{w}}$ is a graded ring of $\mathbb{A}_{*}:=\bigoplus_{k, m \in \mathbb{Z}} \mathbb{A}_{k}$.

Proposition. (Structure theorem of weak Jacobi forms)

$\mathbb{J}_{*, *}^{\mathbb{W}}$ is generated by $\varphi_{0,1}, \varphi_{-2,1}$ and $\varphi_{-1,2}$ on \mathbb{A}_{*}.
(We remark that $\mathbb{J}_{*, *}$ is not finitely generated on \mathbb{A}_{*}).

Property of Jacobi forms (2)

If $m=0, \varphi$ is a $\mathrm{SL}_{2}(\mathbb{Z})$-invariant holomorphic function on \mathbb{H}. Hence $\mathbb{J}_{k, 0}^{\mathrm{W}}=\mathbb{J}_{k, 0}=\mathbb{A}_{k}$ and $\mathbb{J}_{k, 0}^{\mathrm{c}}=\{0\}$, where \mathbb{A}_{k} is a space of all elliptic modular forms of weight k w.r.t. $\mathrm{SL}_{2}(\mathbb{Z})$.
$\mathbb{J}_{*, *}^{\mathrm{w}}:=\bigoplus_{k, m \in \mathbb{Z}} \mathbb{J}_{k, m}^{\mathrm{w}}$ is a graded ring of $\mathbb{A}_{*}:=\bigoplus_{k, m \in \mathbb{Z}} \mathbb{A}_{k}$.

Proposition. (Structure theorem of weak Jacobi forms)

$\mathbb{J}_{*, *}^{\mathrm{W}}$ is generated by $\varphi_{0,1}, \varphi_{-2,1}$ and $\varphi_{-1,2}$ on \mathbb{A}_{*}.
(We remark that $\mathbb{J}_{*, *}$ is not finitely generated on \mathbb{A}_{*}).

Fourier-Jacobi expansion

The Fourier Jacobi expansion is a p-expansion of $F \in \mathbb{M}_{k}$ or \mathbb{M}_{k}^{c} :

$$
F(Z)=\sum_{m=0}^{\infty} \varphi_{m}(\tau, z) p^{m}
$$

For $F \in \mathbb{M}_{k}$, we have $\varphi_{m} \in \mathbb{J}_{k, m}$.
For $F \in \mathbb{M}_{k}^{c}$, we have $\varphi_{0}=0$ and $\varphi_{m} \in \mathbb{T}_{k, m}^{c}$.

Fourier-Jacobi expansion

The Fourier Jacobi expansion is a p-expansion of $F \in \mathbb{M}_{k}$ or \mathbb{M}_{k}^{c} :

$$
F(Z)=\sum_{m=0}^{\infty} \varphi_{m}(\tau, z) p^{m}
$$

For $F \in \mathbb{M}_{k}$, we have $\varphi_{m} \in \mathbb{J}_{k, m}$.
For $F \in \mathbb{M}_{k}^{c}$, we have $\varphi_{0}=0$ and $\varphi_{m} \in \mathbb{J}_{k, m}^{c}$.

Fourier-Jacobi expansion

The Fourier Jacobi expansion is a p-expansion of $F \in \mathbb{M}_{k}$ or \mathbb{M}_{k}^{c} :

$$
F(Z)=\sum_{m=0}^{\infty} \varphi_{m}(\tau, z) p^{m}
$$

For $F \in \mathbb{M}_{k}$, we have $\varphi_{m} \in \mathbb{J}_{k, m}$.
For $F \in \mathbb{M}_{k}^{c}$, we have $\varphi_{0}=0$ and $\varphi_{m} \in \mathbb{J}_{k, m}^{c}$.

Fourier-Jacobi expansion

The Fourier Jacobi expansion is a p-expansion of $F \in \mathbb{M}_{k}$ or \mathbb{M}_{k}^{c} :

$$
F(Z)=\sum_{m=0}^{\infty} \varphi_{m}(\tau, z) p^{m}
$$

For $F \in \mathbb{M}_{k}$, we have $\varphi_{m} \in \mathbb{J}_{k, m}$.
For $F \in \mathbb{M}_{k}^{c}$, we have $\varphi_{0}=0$ and $\varphi_{m} \in \mathbb{J}_{k, m}^{c}$.

Definition. (Fourier-Jacobi expansion)

The Fourier Jacobi expansion is a map from \mathbb{M}_{k} or $\mathbb{M}_{k}^{\mathcal{c}}$ to the infinite direct product space of Jacobi forms:

$$
\begin{array}{r}
\text { FJ }: \mathbb{M}_{k} \ni F \mapsto\left\{\varphi_{m}\right\}_{m=0}^{\infty} \in \prod_{m=0}^{\infty} \mathbb{J}_{k, m} \\
\mathrm{FJ}^{\mathrm{c}}: \mathbb{M}_{k}^{\mathrm{c}} \ni F \mapsto\left\{\varphi_{m}\right\}_{m=1}^{\infty} \in \prod_{m=1}^{\infty} \mathbb{J}_{k, m}^{\mathrm{c}}
\end{array}
$$

But these two maps are not surjective !!

Fourier-Jacobi expansion

The Fourier Jacobi expansion is a p-expansion of $F \in \mathbb{M}_{k}$ or \mathbb{M}_{k}^{c} :

$$
F(Z)=\sum_{m=0}^{\infty} \varphi_{m}(\tau, z) p^{m}
$$

For $F \in \mathbb{M}_{k}$, we have $\varphi_{m} \in \mathbb{J}_{k, m}$.
For $F \in \mathbb{M}_{k}^{c}$, we have $\varphi_{0}=0$ and $\varphi_{m} \in \mathbb{J}_{k, m}^{c}$.

Definition. (Fourier-Jacobi expansion)

The Fourier Jacobi expansion is a map from \mathbb{M}_{k} or $\mathbb{M}_{k}^{\mathcal{c}}$ to the infinite direct product space of Jacobi forms:

$$
\begin{array}{r}
\text { FJ }: \mathbb{M}_{k} \ni F \mapsto\left\{\varphi_{m}\right\}_{m=0}^{\infty} \in \prod_{m=0}^{\infty} \mathbb{J}_{k, m} \\
\mathrm{FJ}^{\mathrm{c}}: \mathbb{M}_{k}^{\mathrm{c}} \ni F \mapsto\left\{\varphi_{m}\right\}_{m=1}^{\infty} \in \prod_{m=1}^{\infty} \mathbb{J}_{k, m}^{\mathrm{c}}
\end{array}
$$

But these two maps are not surjective !!

The symmetry

The element $S:=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$ induces $F(\tau, z, \omega) \mapsto(-1)^{k} F(\omega, z, \tau)$. $S \in \Gamma$ gives the information about the image of the Fourier-Jacobi expansion. Namely, on the Fourier expansion

$$
\mathbb{M}_{k} \ni F(Z)=\sum_{n, l, m} a(n, l, m) q^{n} \zeta^{l} p^{m}
$$

we have $a(n, l, m)=(-1)^{k} a(m, l, n)$.

The symmetry

The element $S:=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$ induces $F(\tau, z, \omega) \mapsto(-1)^{k} F(\omega, z, \tau)$. $S \in \Gamma$ gives the information about the image of the Fourier-Jacobi expansion. Namely, on the Fourier expansion

$$
\mathbb{M}_{k} \ni F(Z)=\sum_{n, l, m} a(n, l, m) q^{n} \zeta^{l} p^{m}
$$

we have $a(n, l, m)=(-1)^{k} a(m, l, n)$.

The symmetry

The element $S:=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$ induces $F(\tau, z, \omega) \mapsto(-1)^{k} F(\omega, z, \tau)$. $S \in \Gamma$ gives the information about the image of the Fourier-Jacobi expansion. Namely, on the Fourier expansion

$$
\mathbb{M}_{k} \ni F(Z)=\sum_{n, l, m} a(n, l, m) q^{n} \zeta^{l} p^{m}
$$

we have $a(n, l, m)=(-1)^{k} a(m, l, n)$.

The symmetry

The element $S:=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$ induces $F(\tau, z, \omega) \mapsto(-1)^{k} F(\omega, z, \tau)$. $S \in \Gamma$ gives the information about the image of the Fourier-Jacobi expansion. Namely, on the Fourier expansion

$$
\mathbb{M}_{k} \ni F(Z)=\sum_{n, l, m} a(n, l, m) q^{n} \zeta^{l} p^{m}
$$

we have $a(n, l, m)=(-1)^{k} a(m, l, n)$.
Proposition. (Generators of the symplectic group)
The group $G=\operatorname{Sp}_{2}(\mathbb{R})$ is generated by G^{J} and S. The group $\Gamma=\operatorname{Sp}_{2}(\mathbb{Z})$ is generated by Γ^{J} and S.

The image of the Fourier-Jacobi expansion

Let

$$
\begin{aligned}
& \left(\prod_{m=0}^{\infty} \mathbb{J}_{k, m}\right)^{\mathrm{sym}}:=\left\{\left\{\varphi_{m}\right\} \in \prod_{m=0}^{\infty} \mathbb{J}_{k, m} \mid c_{m}(n, l)=(-1)^{k} c_{n}(m, l)\right\} \\
& \left(\prod_{m=1}^{\infty} \mathbb{J}_{k, m}^{\mathrm{c}}\right)^{\mathrm{sym}}:=\left\{\left\{\varphi_{m}\right\} \in \prod_{m=1}^{\infty} \mathbb{J}_{k, m}^{\mathrm{c}} \mid c_{m}(n, l)=(-1)^{k} c_{n}(m, l)\right\}
\end{aligned}
$$

where we denote $\varphi_{m}(\tau, z)=\sum_{n, l} c_{m}(n, l) q^{n} \zeta^{l}$.

The image of the Fourier-Jacobi expansion

Let

$$
\begin{aligned}
& \left(\prod_{m=0}^{\infty} \mathbb{J}_{k, m}\right)^{\mathrm{sym}}:=\left\{\left\{\varphi_{m}\right\} \in \prod_{m=0}^{\infty} \mathbb{J}_{k, m} \mid c_{m}(n, l)=(-1)^{k} c_{n}(m, l)\right\} \\
& \left(\prod_{m=1}^{\infty} \mathbb{J}_{k, m}^{\mathrm{c}}\right)^{\mathrm{sym}}:=\left\{\left\{\varphi_{m}\right\} \in \prod_{m=1}^{\infty} \mathbb{J}_{k, m}^{\mathrm{c}} \mid c_{m}(n, l)=(-1)^{k} c_{n}(m, l)\right\}
\end{aligned}
$$

where we denote $\varphi_{m}(\tau, z)=\sum_{n, l} c_{m}(n, l) q^{n} \zeta^{l}$.

Theorem. (The image of Fourier-Jacobi expansion)

These two maps are surjective, hence bijective.

$$
\begin{array}{r}
\text { FJ }: \mathbb{M}_{k} \ni F \mapsto\left\{\varphi_{m}\right\}_{m=0}^{\infty} \in\left(\prod_{m=0}^{\infty} \mathbb{J}_{k, m}\right)^{\text {sym }} \\
\mathrm{FJ}^{\mathrm{c}}: \mathbb{M}_{k}^{\mathrm{c}} \ni F \mapsto\left\{\varphi_{m}\right\}_{m=1}^{\infty} \in\left(\prod_{m=1}^{\infty} \mathbb{J}_{k, m}^{\mathrm{c}}\right)^{\mathrm{sym}}
\end{array}
$$

Flow of our proof

Theorem. (The image of Fourier-Jacobi expansion)

These two maps are surjective, hence bijective.

$$
\begin{array}{r}
\mathrm{FJ}: \mathbb{M}_{k} \ni F \mapsto\left\{\varphi_{m}\right\}_{m=0}^{\infty} \in\left(\prod_{m=0}^{\infty} \mathbb{J}_{k, m}\right)^{\mathrm{sym}} \\
\mathrm{FJ}^{\mathrm{c}}: \mathbb{M}_{k}^{\mathrm{c}} \ni F \mapsto\left\{\varphi_{m}\right\}_{m=1}^{\infty} \in\left(\prod_{m=1}^{\infty} \mathbb{J}_{k, m}^{\mathrm{c}}\right)^{\mathrm{sym}}
\end{array}
$$

Does $\sum_{m=0}^{\infty} \varphi_{m}(\tau, z) p^{m}$ converge absolutely and locally uniformly on \mathbb{H} ?

Flow of our proof

Theorem. (The image of Fourier-Jacobi expansion)

These two maps are surjective, hence bijective.

$$
\begin{array}{r}
\mathrm{FJ}: \mathbb{M}_{k} \ni F \mapsto\left\{\varphi_{m}\right\}_{m=0}^{\infty} \in\left(\prod_{m=0}^{\infty} \mathbb{J}_{k, m}\right)^{\mathrm{sym}} \\
\mathrm{FJ}^{\mathrm{c}}: \mathbb{M}_{k}^{\mathrm{c}} \ni F \mapsto\left\{\varphi_{m}\right\}_{m=1}^{\infty} \in\left(\prod_{m=1}^{\infty} \mathbb{J}_{k, m}^{\mathrm{c}}\right)^{\mathrm{sym}}
\end{array}
$$

Does $\sum_{m=0}^{\infty} \varphi_{m}(\tau, z) p^{m}$ converge absolutely and locally uniformly on \mathbb{H} ?

Flow of our proof

Theorem. (The image of Fourier-Jacobi expansion)

These two maps are surjective, hence bijective.

$$
\begin{array}{r}
\mathrm{FJ}: \mathbb{M}_{k} \ni F \mapsto\left\{\varphi_{m}\right\}_{m=0}^{\infty} \in\left(\prod_{m=0}^{\infty} \mathbb{J}_{k, m}\right)^{\mathrm{sym}} \\
\mathrm{FJ}^{\mathrm{c}}: \mathbb{M}_{k}^{\mathrm{c}} \ni F \mapsto\left\{\varphi_{m}\right\}_{m=1}^{\infty} \in\left(\prod_{m=1}^{\infty} \mathbb{J}_{k, m}^{\mathrm{c}}\right)^{\mathrm{sym}}
\end{array}
$$

Does $\sum_{m=0}^{\infty} \varphi_{m}(\tau, z) p^{m}$ converge absolutely and locally uniformly on \mathbb{H} ?

- Step 1. Estimation of Jacobi cusp forms on 'rational' points
- Step 2. Convergence at 'rational' points
- Step 3. Complete the proof of EJc.
- Step 4. Complete the proof of FJ.

Flow of our proof

Theorem. (The image of Fourier-Jacobi expansion)

These two maps are surjective, hence bijective.

$$
\begin{array}{r}
\mathrm{FJ}: \mathbb{M}_{k} \ni F \mapsto\left\{\varphi_{m}\right\}_{m=0}^{\infty} \in\left(\prod_{m=0}^{\infty} \mathbb{J}_{k, m}\right)^{\mathrm{sym}} \\
\mathrm{FJ}^{\mathrm{c}}: \mathbb{M}_{k}^{\mathrm{c}} \ni F \mapsto\left\{\varphi_{m}\right\}_{m=1}^{\infty} \in\left(\prod_{m=1}^{\infty} \mathbb{J}_{k, m}^{\mathrm{c}}\right)^{\mathrm{sym}}
\end{array}
$$

Does $\sum_{m=0}^{\infty} \varphi_{m}(\tau, z) p^{m}$ converge absolutely and locally uniformly on \mathbb{H} ?

- Step 1. Estimation of Jacobi cusp forms on 'rational' points
- Step 2. Convergence at 'rational' points
- Step 3. Complete the proof of FJc.
- Step 4. Complete the proof of FJ.

Flow of our proof

Theorem. (The image of Fourier-Jacobi expansion)

These two maps are surjective, hence bijective.

$$
\begin{array}{r}
\mathrm{FJ}: \mathbb{M}_{k} \ni F \mapsto\left\{\varphi_{m}\right\}_{m=0}^{\infty} \in\left(\prod_{m=0}^{\infty} \mathbb{J}_{k, m}\right)^{\mathrm{sym}} \\
\mathrm{FJ}^{\mathrm{c}}: \mathbb{M}_{k}^{\mathrm{c}} \ni F \mapsto\left\{\varphi_{m}\right\}_{m=1}^{\infty} \in\left(\prod_{m=1}^{\infty} \mathbb{J}_{k, m}^{\mathrm{c}}\right)^{\mathrm{sym}}
\end{array}
$$

Does $\sum_{m=0}^{\infty} \varphi_{m}(\tau, z) p^{m}$ converge absolutely and locally uniformly on \mathbb{H} ?

- Step 1. Estimation of Jacobi cusp forms on 'rational' points
- Step 2. Convergence at 'rational' points
- Step 3. Complete the proof of FJ^{c}.
- Step 4. Complete the proof of FJ.

Flow of our proof

Theorem. (The image of Fourier-Jacobi expansion)

These two maps are surjective, hence bijective.

$$
\begin{array}{r}
\mathrm{FJ}: \mathbb{M}_{k} \ni F \mapsto\left\{\varphi_{m}\right\}_{m=0}^{\infty} \in\left(\prod_{m=0}^{\infty} \mathbb{J}_{k, m}\right)^{\mathrm{sym}} \\
\mathrm{FJ}^{\mathrm{c}}: \mathbb{M}_{k}^{\mathrm{c}} \ni F \mapsto\left\{\varphi_{m}\right\}_{m=1}^{\infty} \in\left(\prod_{m=1}^{\infty} \mathbb{J}_{k, m}^{\mathrm{c}}\right)^{\mathrm{sym}}
\end{array}
$$

Does $\sum_{m=0}^{\infty} \varphi_{m}(\tau, z) p^{m}$ converge absolutely and locally uniformly on \mathbb{H} ?

- Step 1. Estimation of Jacobi cusp forms on 'rational' points
- Step 2. Convergence at 'rational' points
- Step 3. Complete the proof of FJ^{c}.
- Step 4. Complete the proof of FJ.

Step 1. (1)

First, we suppose $\left\{\varphi_{m}\right\}_{m=1}^{\infty} \in\left(\prod_{m=1}^{\infty} \mathbb{J}_{k, m}^{c}\right)^{\text {sym }}$.

Take $x, y \in \mathbb{Q}$ with same denominator D. Then

$$
f_{m}(\tau):=\mathrm{e}\left(m x^{2} \tau\right) \varphi_{m}(\tau, x \tau+y)
$$

is an elliptic cusp form of weight k with respect to the main congruent subgroup of level D^{2}. The Fourier expansion of f_{m} is

$$
f_{m}(\tau)=\sum_{\nu>0} a_{m}(\nu) q^{\nu} \quad\left(a_{m}(\nu)=\sum_{\substack{n, l \in \mathbb{Z} \\ m x^{2}+l x+n=\nu}} c_{m}(n, l)\right)
$$

We remark that the number of the pair (n, l) satisfying $m x^{2}+l x+n=\nu$ is less than $4 \sqrt{m \nu}+1$. These (n, l) satisfies the condition $4 m n-l^{2} \leq 4 m \nu$.

Step 1. (1)

First, we suppose $\left\{\varphi_{m}\right\}_{m=1}^{\infty} \in\left(\prod_{m=1}^{\infty} \mathbb{J}_{k, m}^{c}\right)^{\text {sym }}$.

Take $x, y \in \mathbb{Q}$ with same denominator D. Then

$$
f_{m}(\tau):=\mathbf{e}\left(m x^{2} \tau\right) \varphi_{m}(\tau, x \tau+y)
$$

is an elliptic cusp form of weight k with respect to the main congruent subgroup of level D^{2}. The Fourier expansion of f_{m} is

$$
f_{m}(\tau)=\sum_{\nu>0} a_{m}(\nu) q^{\nu} \quad\left(a_{m}(\nu)=\sum_{\substack{n, l \in \mathbb{Z} \\ m x^{2}+l x+n=\nu}} c_{m}(n, l)\right) .
$$

We remark that the number of the pair (n, l) satisfying $m x^{2}+l x+n=\nu$ is less than $4 \sqrt{m \nu}+1$. These (n, l) satisfies the condition $4 m n-l^{2} \leq 4 m \nu$.

Step 1. (1)

First, we suppose $\left\{\varphi_{m}\right\}_{m=1}^{\infty} \in\left(\prod_{m=1}^{\infty} \mathbb{J}_{k, m}^{c}\right)^{\text {sym }}$.
Take $x, y \in \mathbb{Q}$ with same denominator D. Then

$$
f_{m}(\tau):=\mathbf{e}\left(m x^{2} \tau\right) \varphi_{m}(\tau, x \tau+y)
$$

is an elliptic cusp form of weight k with respect to the main congruent subgroup of level D^{2}. The Fourier expansion of f_{m} is

$$
f_{m}(\tau)=\sum_{\nu>0} a_{m}(\nu) q^{\nu} \quad\left(a_{m}(\nu)=\sum_{\substack{n, l \in \mathbb{Z} \\ m x^{2}+l x+n=\nu}} c_{m}(n, l)\right) .
$$

We remark that the number of the pair (n, l) satisfying $m x^{2}+l x+n=\nu$ is less than $4 \sqrt{m \nu}+1$. These (n, l) satisfies the condition $4 m n-l^{2} \leq 4 m \nu$.

Step 1. (1)

First, we suppose $\left\{\varphi_{m}\right\}_{m=1}^{\infty} \in\left(\prod_{m=1}^{\infty} \mathbb{J}_{k, m}^{c}\right)^{\text {sym }}$.
Take $x, y \in \mathbb{Q}$ with same denominator D. Then

$$
f_{m}(\tau):=\mathbf{e}\left(m x^{2} \tau\right) \varphi_{m}(\tau, x \tau+y)
$$

is an elliptic cusp form of weight k with respect to the main congruent subgroup of level D^{2}. The Fourier expansion of f_{m} is

$$
f_{m}(\tau)=\sum_{\nu>0} a_{m}(\nu) q^{\nu} \quad\left(a_{m}(\nu)=\sum_{\substack{n, l \in \mathbb{Z} \\ m x^{2}+l x+n=\nu}} c_{m}(n, l)\right) .
$$

We remark that the number of the pair (n, l) satisfying $m x^{2}+l x+n=\nu$ is less than $4 \sqrt{m \nu}+1$. These (n, l) satisfies the condition $4 m n-l^{2} \leq 4 m \nu$.

Step 1. (1)

First, we suppose $\left\{\varphi_{m}\right\}_{m=1}^{\infty} \in\left(\prod_{m=1}^{\infty} \mathbb{J}_{k, m}^{c}\right)^{\text {sym }}$.
Take $x, y \in \mathbb{Q}$ with same denominator D. Then

$$
f_{m}(\tau):=\mathbf{e}\left(m x^{2} \tau\right) \varphi_{m}(\tau, x \tau+y)
$$

is an elliptic cusp form of weight k with respect to the main congruent subgroup of level D^{2}. The Fourier expansion of f_{m} is

$$
f_{m}(\tau)=\sum_{\nu>0} a_{m}(\nu) q^{\nu} \quad\left(a_{m}(\nu)=\sum_{\substack{n, l \in \mathbb{Z} \\ m x^{2}+l x+n=\nu}} c_{m}(n, l)\right) .
$$

We remark that the number of the pair (n, l) satisfying $m x^{2}+l x+n=\nu$ is less than $4 \sqrt{m \nu}+1$. These (n, l) satisfies the condition $4 m n-l^{2} \leq 4 m \nu$.

Step 1. (2)

Because the space of the above elliptic cusp forms is finite dimensional, there exist L and C such that

$$
\left|f_{m}(\tau)\right| \leq C\left(\sum_{\nu \leq L}\left|a_{m}(\nu)\right|\right)(\operatorname{Im} \tau)^{-\frac{k}{2}}
$$

Hence we have

where G_{m} means $G_{\varphi_{m}}$.

Step 1. (2)

Because the space of the above elliptic cusp forms is finite dimensional, there exist L and C such that

$$
\left|f_{m}(\tau)\right| \leq C\left(\sum_{\nu \leq L}\left|a_{m}(\nu)\right|\right)(\operatorname{Im} \tau)^{-\frac{k}{2}}
$$

Hence we have

$$
G_{m}(\tau, x \tau+y) \leq C\left\{\sum_{\nu \leq L}\left(\sum_{\substack{n, l \in \mathbb{Z} \\ m x^{2}+l x+n=\nu}}\left|c_{m}(n, l)\right|\right)\right\}
$$

where G_{m} means $G_{\varphi_{m}}$.

Step 2. (1)

Here we denote the Fourier coefficient $c\left(\begin{array}{cc}n & l / 2 \\ l / 2 & m\end{array}\right)=c_{m}(n, l)$.
For any $A \in \mathrm{SL}_{2}(\mathbb{Z}),\left(\begin{array}{cc}{ }^{t} A & O_{2} \\ O_{2} & A^{-1}\end{array}\right) \in \Gamma$ induces $\left.c(T)=c{ }^{(t} A T A\right)$.
For $x=\frac{\alpha}{\beta}$, take $A=\left(\begin{array}{c}* \\ * \\ *\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$. Then we have

$$
c\left(\begin{array}{cc}
n & l / 2 \\
l / 2 & m
\end{array}\right)=c\left(\begin{array}{cc}
t & \left.A\left(\begin{array}{cc}
n & l / 2 \\
l / 2 & m
\end{array}\right) A\right)=c\left(\begin{array}{cc}
* & * \\
* & n \beta^{2}+l \alpha \beta+m \alpha^{2}
\end{array}\right) . ~ . ~
\end{array}\right.
$$

Because $n \beta^{2}+l \alpha \beta+m \alpha^{2}=\left(m x^{2}+l x+n\right) \beta^{2} \leq\left(m x^{2}+l x+n\right) D^{2}$, we regard that m in $\left|c_{m}(n, l)\right|$ at Step 1 is sufficiently small.

Step 2. (1)

Here we denote the Fourier coefficient $c\left(\begin{array}{cc}n & l / 2 \\ l / 2 & m\end{array}\right)=c_{m}(n, l)$.
For any $A \in \mathrm{SL}_{2}(\mathbb{Z}),\left(\begin{array}{cc}{ }^{t} A & O_{2} \\ O_{2} & A^{-1}\end{array}\right) \in \Gamma$ induces $c(T)=c\left({ }^{t} A T A\right)$.
For $x=\frac{\alpha}{\beta}$, take $A=\left(\begin{array}{c}* \beta \\ * \\ \alpha\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{Z})$. Then we have

$$
c\left(\begin{array}{cc}
n & l / 2 \\
l / 2 & m
\end{array}\right)=c\left({ }^{t} A\left(\begin{array}{cc}
n & l / 2 \\
l / 2 & m
\end{array}\right) A\right)=c\left(\begin{array}{cc}
* & * \\
* & n \beta^{2}+l \alpha \beta+m \alpha^{2}
\end{array}\right) .
$$

Because $n \beta^{2}+l \alpha \beta+m \alpha^{2}=\left(m x^{2}+l x+n\right) \beta^{2} \leq\left(m x^{2}+l x+n\right) D^{2}$, we regard that m in $\left|c_{m}(n, l)\right|$ at Step 1 is sufficiently small.

Step 2. (1)

Here we denote the Fourier coefficient $c\left(\begin{array}{cc}n & l / 2 \\ l / 2 & m\end{array}\right)=c_{m}(n, l)$.
For any $A \in \mathrm{SL}_{2}(\mathbb{Z}),\left(\begin{array}{cc}{ }^{t} A & O_{2} \\ O_{2} & A^{-1}\end{array}\right) \in \Gamma$ induces $c(T)=c\left({ }^{t} A T A\right)$.
For $x=\frac{\alpha}{\beta}$, take $A=\binom{*}{* \alpha} \in \mathrm{SL}_{2}(\mathbb{Z})$. Then we have

$$
c\left(\begin{array}{cc}
n & l / 2 \\
l / 2 & m
\end{array}\right)=c\left({ }^{t} A\left(\begin{array}{cc}
n & l / 2 \\
l / 2 & m
\end{array}\right) A\right)=c\left(\begin{array}{cc}
* & * \\
* & n \beta^{2}+l \alpha \beta+m \alpha^{2}
\end{array}\right) .
$$

Because $n \beta^{2}+l \alpha \beta+m \alpha^{2}=\left(m x^{2}+l x+n\right) \beta^{2} \leq\left(m x^{2}+l x+n\right) D^{2}$, we regard that m in $\left|c_{m}(n, l)\right|$ at Step 1 is sufficiently small.

Step 2. (1)

Here we denote the Fourier coefficient $c\left(\begin{array}{cc}n & l / 2 \\ l / 2 & m\end{array}\right)=c_{m}(n, l)$.
For any $A \in \mathrm{SL}_{2}(\mathbb{Z}),\left(\begin{array}{cc}{ }^{t} A & O_{2} \\ O_{2} & A^{-1}\end{array}\right) \in \Gamma$ induces $c(T)=c\left({ }^{t} A T A\right)$.
For $x=\frac{\alpha}{\beta}$, take $A=\left(\begin{array}{c}* \beta \\ *\end{array} \alpha\right) \in \operatorname{SL}_{2}(\mathbb{Z})$. Then we have

$$
c\left(\begin{array}{cc}
n & l / 2 \\
l / 2 & m
\end{array}\right)=c\left({ }^{t} A\left(\begin{array}{cc}
n & l / 2 \\
l / 2 & m
\end{array}\right) A\right)=c\left(\begin{array}{cc}
* & * \\
* & n \beta^{2}+l \alpha \beta+m \alpha^{2}
\end{array}\right) .
$$

Because $n \beta^{2}+l \alpha \beta+m \alpha^{2}=\left(m x^{2}+l x+n\right) \beta^{2} \leq\left(m x^{2}+l x+n\right) D^{2}$, we regard that m in $\left|c_{m}(n, l)\right|$ at Step 1 is sufficiently small.

Step 2. (1)

Here we denote the Fourier coefficient $c\left(\begin{array}{cc}n & l / 2 \\ l / 2 & m\end{array}\right)=c_{m}(n, l)$.
For any $A \in \mathrm{SL}_{2}(\mathbb{Z}),\left(\begin{array}{cc}{ }^{t} A & O_{2} \\ O_{2} & A^{-1}\end{array}\right) \in \Gamma$ induces $c(T)=c\left({ }^{t} A T A\right)$.
For $x=\frac{\alpha}{\beta}$, take $A=\left(\begin{array}{c}* \\ * \\ *\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$. Then we have

$$
c\left(\begin{array}{cc}
n & l / 2 \\
l / 2 & m
\end{array}\right)=c\left({ }^{t} A\left(\begin{array}{cc}
n & l / 2 \\
l / 2 & m
\end{array}\right) A\right)=c\left(\begin{array}{cc}
* & * \\
* & n \beta^{2}+l \alpha \beta+m \alpha^{2}
\end{array}\right) .
$$

Because $n \beta^{2}+l \alpha \beta+m \alpha^{2}=\left(m x^{2}+l x+n\right) \beta^{2} \leq\left(m x^{2}+l x+n\right) D^{2}$, we regard that m in $\left|c_{m}(n, l)\right|$ at Step 1 is sufficiently small.

Step 2. (2)

Namely, from

$$
G_{m}(\tau, x \tau+y) \leq C\left\{\sum_{\nu \leq L}\left(\sum_{\substack{n, l \in \mathbb{Z} \\ m x^{2}+l x+n=\nu}}\left|c_{m}(n, l)\right|\right)\right\},
$$

there exists a constant K such that

$$
G_{m}(\tau, x \tau+y) \leq C K\left\{\sum_{\nu \leq L}\left(\sum_{\substack{n, l \in \mathbb{E} \\ m x^{2}+l x+n=\nu}}\left(4 m n-l^{2}\right)^{\frac{k}{2}}\right)\right\},
$$

namely, there exists a constant C^{\prime} (depends on D) such that

$$
G_{m}(\tau, x \tau+y) \leq C^{\prime} m^{\frac{k+1}{2}}
$$

Step 2. (2)

Namely, from

$$
G_{m}(\tau, x \tau+y) \leq C\left\{\sum_{\nu \leq L}\left(\sum_{\substack{n, l \in \mathbb{Z} \\ m x^{2}+l x+n=\nu}}\left|c_{m}(n, l)\right|\right)\right\},
$$

there exists a constant K such that

$$
G_{m}(\tau, x \tau+y) \leq C K\left\{\sum_{\nu \leq L}\left(\sum_{\substack{n, l \in \mathbb{Z} \\ m x^{2}+l x+n=\nu}}\left(4 m n-l^{2}\right)^{\frac{k}{2}}\right)\right\},
$$

namely, there exists a constant C^{\prime} (depends on D) such that

$$
G_{m}(\tau, x \tau+y) \leq C^{\prime} m^{\frac{k+1}{2}}
$$

Step 2. (2)

Namely, from

$$
G_{m}(\tau, x \tau+y) \leq C\left\{\sum_{\nu \leq L}\left(\sum_{\substack{n, l \in \mathbb{Z} \\ m x^{2}+l x+n=\nu}}\left|c_{m}(n, l)\right|\right)\right\},
$$

there exists a constant K such that

$$
G_{m}(\tau, x \tau+y) \leq C K\left\{\sum_{\nu \leq L}\left(\sum_{\substack{n, l \in \mathbb{E} \\ m x^{2}+l x+n=\nu}}\left(4 m n-l^{2}\right)^{\frac{k}{2}}\right)\right\},
$$

namely, there exists a constant C^{\prime} (depends on D) such that

$$
G_{m}(\tau, x \tau+y) \leq C^{\prime} m^{\frac{k+1}{2}}
$$

Step 3.

Proposition. (Structure theorem of weak Jacobi forms)
$\mathbb{J}_{*, *}^{\mathbb{W}}$ is generated by $\varphi_{0,1}, \varphi_{-2,1}$ and $\varphi_{-1,2}$ on \mathbb{A}_{*}.
For any $R>1$ and $\left(\tau_{0}, z_{0}\right) \in \mathbb{H} \times \mathbb{C}$, there exist its neighbourhood U and $x, y \in \mathbb{Q}$ such that $G_{m}(\tau, z) \leq R^{m} C^{\prime} m^{\frac{k+1}{2}}$ for any $(\tau, z) \in U$. Namely,

$$
|\varphi(\tau, z)| \leq R^{m} C^{\prime} m^{\frac{k+1}{2}} \exp \left(\frac{2 \pi m(\operatorname{Im} z)^{2}}{\operatorname{Im} \tau}\right)(\operatorname{Im} \tau)^{-\frac{k}{2}} .
$$

Hence we know the series $\sum_{m=1}^{\infty} \varphi_{m}(\tau, z) p^{m}$ is holomorphic on \mathbb{H}_{2}.
$\left(\right.$ Under the assumption $\left.\left\{\varphi_{m}\right\}_{m=1}^{\infty} \in\left(\prod_{m=1}^{\infty} \mathbb{J}_{k, m}^{c}\right)^{\text {sym }}\right)$

Step 3.

Proposition. (Structure theorem of weak Jacobi forms)
$\mathbb{J}_{*, *}^{\mathrm{w}}$ is generated by $\varphi_{0,1}, \varphi_{-2,1}$ and $\varphi_{-1,2}$ on \mathbb{A}_{*}.
For any $R>1$ and $\left(\tau_{0}, z_{0}\right) \in \mathbb{H} \times \mathbb{C}$, there exist its neighbourhood U and $x, y \in \mathbb{Q}$ such that $G_{m}(\tau, z) \leq R^{m} C^{\prime} m^{\frac{k+1}{2}}$ for any $(\tau, z) \in U$. Namely,

$$
|\varphi(\tau, z)| \leq R^{m} C^{\prime} m^{\frac{k+1}{2}} \exp \left(\frac{2 \pi m(\operatorname{Im} z)^{2}}{\operatorname{Im} \tau}\right)(\operatorname{Im} \tau)^{-\frac{k}{2}}
$$

Hence we know the series $\sum_{m=1}^{\infty} \varphi_{m}(\tau, z) p^{m}$ is holomorphic on \mathbb{H}_{2}.
$\left(\right.$ Under the assumption $\left.\left\{\varphi_{m}\right\}_{m=1}^{\infty} \in\left(\prod_{m=1}^{\infty} \mathbb{J}_{k, m}^{c}\right)^{\operatorname{sym}}\right)$

Step 3.

Proposition. (Structure theorem of weak Jacobi forms) $\mathbb{J}_{*, *}^{\mathrm{w}}$ is generated by $\varphi_{0,1}, \varphi_{-2,1}$ and $\varphi_{-1,2}$ on \mathbb{A}_{*}.

For any $R>1$ and $\left(\tau_{0}, z_{0}\right) \in \mathbb{H} \times \mathbb{C}$, there exist its neighbourhood U and $x, y \in \mathbb{Q}$ such that $G_{m}(\tau, z) \leq R^{m} C^{\prime} m^{\frac{k+1}{2}}$ for any $(\tau, z) \in U$. Namely,

$$
|\varphi(\tau, z)| \leq R^{m} C^{\prime} m^{\frac{k+1}{2}} \exp \left(\frac{2 \pi m(\operatorname{Im} z)^{2}}{\operatorname{Im} \tau}\right)(\operatorname{Im} \tau)^{-\frac{k}{2}}
$$

Hence we know the series $\sum_{m=1}^{\infty} \varphi_{m}(\tau, z) p^{m}$ is holomorphic on \mathbb{H}_{2}.
$\left(\right.$ Under the assumption $\left.\left\{\varphi_{m}\right\}_{m=1}^{\infty} \in\left(\prod_{m=1}^{\infty} \mathbb{J}_{k, m}^{c}\right)^{\text {sym }} \cdot\right)$

Step 3.

Proposition. (Structure theorem of weak Jacobi forms)

$\mathbb{J}_{*, *}^{\mathrm{w}}$ is generated by $\varphi_{0,1}, \varphi_{-2,1}$ and $\varphi_{-1,2}$ on \mathbb{A}_{*}.
For any $R>1$ and $\left(\tau_{0}, z_{0}\right) \in \mathbb{H} \times \mathbb{C}$, there exist its neighbourhood U and $x, y \in \mathbb{Q}$ such that $G_{m}(\tau, z) \leq R^{m} C^{\prime} m^{\frac{k+1}{2}}$ for any $(\tau, z) \in U$. Namely,

$$
|\varphi(\tau, z)| \leq R^{m} C^{\prime} m^{\frac{k+1}{2}} \exp \left(\frac{2 \pi m(\operatorname{Im} z)^{2}}{\operatorname{Im} \tau}\right)(\operatorname{Im} \tau)^{-\frac{k}{2}}
$$

Hence we know the series $\sum_{m=1}^{\infty} \varphi_{m}(\tau, z) p^{m}$ is holomorphic on \mathbb{H}_{2}. $\left(\right.$ Under the assumption $\left.\left\{\varphi_{m}\right\}_{m=1}^{\infty} \in\left(\prod_{m=1}^{\infty} \mathbb{J}_{k, m}^{c}\right)^{\text {sym }} \cdot\right)$

Step 3.

Proposition. (Structure theorem of weak Jacobi forms)

$\mathbb{J}_{*, *}^{\mathrm{w}}$ is generated by $\varphi_{0,1}, \varphi_{-2,1}$ and $\varphi_{-1,2}$ on \mathbb{A}_{*}.
For any $R>1$ and $\left(\tau_{0}, z_{0}\right) \in \mathbb{H} \times \mathbb{C}$, there exist its neighbourhood U and $x, y \in \mathbb{Q}$ such that $G_{m}(\tau, z) \leq R^{m} C^{\prime} m^{\frac{k+1}{2}}$ for any $(\tau, z) \in U$. Namely,

$$
|\varphi(\tau, z)| \leq R^{m} C^{\prime} m^{\frac{k+1}{2}} \exp \left(\frac{2 \pi m(\operatorname{Im} z)^{2}}{\operatorname{Im} \tau}\right)(\operatorname{Im} \tau)^{-\frac{k}{2}}
$$

Hence we know the series $\sum_{m=1}^{\infty} \varphi_{m}(\tau, z) p^{m}$ is holomorphic on \mathbb{H}_{2}.
$\left(\right.$ Under the assumption $\left.\left\{\varphi_{m}\right\}_{m=1}^{\infty} \in\left(\prod_{m=1}^{\infty} \mathbb{J}_{k, m}^{c}\right)^{\text {sym }} \cdot\right)$

Step 4.

Let $\Delta_{10} \in \mathbb{M}_{10}^{c}$ be a unique Siegel cusp form of weight 10 . We remark that $\Delta_{10}(\tau, 0, \omega)=0$.

Step 4.

Let $\Delta_{10} \in \mathbb{M}_{10}^{c}$ be a unique Siegel cusp form of weight 10 . We remark that $\Delta_{10}(\tau, 0, \omega)=0$.

Proposition. (Freitag)

If $F \in \mathbb{M}_{k}(k \in 2 \mathbb{Z})$ satisfies $F(\tau, 0, \omega)=0$, then $F / \Delta_{10} \in \mathbb{M}_{k-10}$.
Now suppose $k \in 2 \mathbb{Z},\left\{\varphi_{m}\right\}_{m=0}^{\infty} \in\left(\prod_{m=0}^{\infty} \mathbb{J}_{k, m}\right)^{\text {sym }}$ and regard
$F:=\sum_{m=0}^{\infty} \varphi_{m}(\tau, z) p^{m}$ as a power series of p.

Then each coefficients of p^{m} on $F \Delta_{10}$ is a Jacobi cusp form, hence by Step 3, $F \Delta_{10}$ is holomorphic.

Therefore, by above proposition, F is holomorphic.

For odd k, we have a similar proof. (use Δ_{35})

Step 4.

Let $\Delta_{10} \in \mathbb{M}_{10}^{c}$ be a unique Siegel cusp form of weight 10 . We remark that $\Delta_{10}(\tau, 0, \omega)=0$.

Proposition. (Freitag)

If $F \in \mathbb{M}_{k}(k \in 2 \mathbb{Z})$ satisfies $F(\tau, 0, \omega)=0$, then $F / \Delta_{10} \in \mathbb{M}_{k-10}$.
Now suppose $k \in 2 \mathbb{Z},\left\{\varphi_{m}\right\}_{m=0}^{\infty} \in\left(\prod_{m=0}^{\infty} \mathbb{J}_{k, m}\right)^{\text {sym }}$ and regard $F:=\sum_{m=0}^{\infty} \varphi_{m}(\tau, z) p^{m}$ as a power series of p.

Then each coefficients of p^{m} on $F \Delta_{10}$ is a Jacobi cusp form, hence by Step 3, $F \Delta_{10}$ is holomorphic.

Therefore, by above proposition, F is holomorphic.
For odd k, we have a similar proof. (use Δ_{35})

Step 4.

Let $\Delta_{10} \in \mathbb{M}_{10}^{c}$ be a unique Siegel cusp form of weight 10 . We remark that $\Delta_{10}(\tau, 0, \omega)=0$.

Proposition. (Freitag)

If $F \in \mathbb{M}_{k}(k \in 2 \mathbb{Z})$ satisfies $F(\tau, 0, \omega)=0$, then $F / \Delta_{10} \in \mathbb{M}_{k-10}$.
Now suppose $k \in 2 \mathbb{Z},\left\{\varphi_{m}\right\}_{m=0}^{\infty} \in\left(\prod_{m=0}^{\infty} \mathbb{J}_{k, m}\right)^{\text {sym }}$ and regard $F:=\sum_{m=0}^{\infty} \varphi_{m}(\tau, z) p^{m}$ as a power series of p.

Then each coefficients of p^{m} on $F \Delta_{10}$ is a Jacobi cusp form, hence by Step 3, $F \Delta_{10}$ is holomorphic.

Therefore, by above proposition, F is holomorphic.
For odd k, we have a similar proof. (use Δ_{35})

Step 4.

Let $\Delta_{10} \in \mathbb{M}_{10}^{c}$ be a unique Siegel cusp form of weight 10 . We remark that $\Delta_{10}(\tau, 0, \omega)=0$.

Proposition. (Freitag)

If $F \in \mathbb{M}_{k}(k \in 2 \mathbb{Z})$ satisfies $F(\tau, 0, \omega)=0$, then $F / \Delta_{10} \in \mathbb{M}_{k-10}$.
Now suppose $k \in 2 \mathbb{Z},\left\{\varphi_{m}\right\}_{m=0}^{\infty} \in\left(\prod_{m=0}^{\infty} \mathbb{J}_{k, m}\right)^{\text {sym }}$ and regard $F:=\sum_{m=0}^{\infty} \varphi_{m}(\tau, z) p^{m}$ as a power series of p.

Then each coefficients of p^{m} on $F \Delta_{10}$ is a Jacobi cusp form, hence by Step 3, $F \Delta_{10}$ is holomorphic.

Therefore, by above proposition, F is holomorphic.
For odd k, we have a similar proof. (use Δ_{35})

Step 4.

Let $\Delta_{10} \in \mathbb{M}_{10}^{c}$ be a unique Siegel cusp form of weight 10 . We remark that $\Delta_{10}(\tau, 0, \omega)=0$.

Proposition. (Freitag)

If $F \in \mathbb{M}_{k}(k \in 2 \mathbb{Z})$ satisfies $F(\tau, 0, \omega)=0$, then $F / \Delta_{10} \in \mathbb{M}_{k-10}$.
Now suppose $k \in 2 \mathbb{Z},\left\{\varphi_{m}\right\}_{m=0}^{\infty} \in\left(\prod_{m=0}^{\infty} \mathbb{J}_{k, m}\right)^{\text {sym }}$ and regard $F:=\sum_{m=0}^{\infty} \varphi_{m}(\tau, z) p^{m}$ as a power series of p.

Then each coefficients of p^{m} on $F \Delta_{10}$ is a Jacobi cusp form, hence by Step 3, $F \Delta_{10}$ is holomorphic.

Therefore, by above proposition, F is holomorphic.

For odd k, we have a similar proof. (use Δ_{35})

Convergence of Maass lift

Theorem. (Maass Lift)

For any $\varphi \in \mathbb{J}_{k, 1}^{c}$, there exists $F \in \mathbb{M}_{k}^{c}$ such that $\mathrm{FJ}_{1}^{\mathrm{c}}(F)=\varphi$.
The Hecke operator $T_{-}(m)$ induces a map from $\mathbb{J}_{k, 1}^{c}$ to $\mathbb{J}_{k, m}^{c}$.

$$
\left(\varphi \mid T_{-}(m)\right)(\tau, z):=\sum_{a d=m} \sum_{b=0}^{d-1} a^{k} \varphi\left(\frac{a \tau+b}{d}, a z\right)
$$

The series

$$
\begin{aligned}
F(Z) & :=\sum_{m=1}^{\infty} \frac{1}{m}\left(\varphi \mid T_{-}(m)\right)(\tau, z) p^{m} \\
& =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{l}\left(\sum_{a \mid(n, l, m)} a^{k-1} c\left(\frac{m n}{a^{2}}, \frac{l}{a}\right)\right) q^{n} \zeta^{l} p^{m}
\end{aligned}
$$

converges by our main theorem.

Convergence of Maass lift

Theorem. (Maass Lift)

For any $\varphi \in \mathbb{J}_{k, 1}^{c}$, there exists $F \in \mathbb{M}_{k}^{c}$ such that $\mathrm{FJ}_{1}^{\mathrm{c}}(F)=\varphi$.
The Hecke operator $T_{-}(m)$ induces a map from $\mathbb{T}_{k, 1}^{c}$ to $\mathbb{J}_{k, m}^{c}$.

$$
\left(\varphi \mid T_{-}(m)\right)(\tau, z):=\sum_{a d=m} \sum_{b=0}^{d-1} a^{k} \varphi\left(\frac{a \tau+b}{d}, a z\right)
$$

The series

$$
\begin{aligned}
F(Z) & :=\sum_{m=1}^{\infty} \frac{1}{m}\left(\varphi \mid T_{-}(m)\right)(\tau, z) p^{m} \\
& =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{l}\left(\sum_{a \mid(n, l, m)} a^{k-1} c\left(\frac{m n}{a^{2}}, \frac{l}{a}\right)\right) q^{n} \zeta^{l} p^{m}
\end{aligned}
$$

Convergence of Maass lift

Theorem. (Maass Lift)

For any $\varphi \in \mathbb{J}_{k, 1}^{c}$, there exists $F \in \mathbb{M}_{k}^{c}$ such that $\mathrm{FJ}_{1}^{\mathrm{c}}(F)=\varphi$.
The Hecke operator $T_{-}(m)$ induces a map from $\mathbb{J}_{k, 1}^{c}$ to $\mathbb{J}_{k, m}^{c}$.

$$
\left(\varphi \mid T_{-}(m)\right)(\tau, z):=\sum_{a d=m} \sum_{b=0}^{d-1} a^{k} \varphi\left(\frac{a \tau+b}{d}, a z\right)
$$

The series

$$
\begin{aligned}
F(Z) & :=\sum_{m=1}^{\infty} \frac{1}{m}\left(\varphi \mid T_{-}(m)\right)(\tau, z) p^{m} \\
& =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{l}\left(\sum_{a \mid(n, l, m)} a^{k-1} c\left(\frac{m n}{a^{2}}, \frac{l}{a}\right)\right) q^{n} \zeta^{l} p^{m}
\end{aligned}
$$

converges by our main theorem.

Lift of a weakly holomorphic Jacobi form

Now let $\varphi(\tau, z)=\sum_{n, l} c\left(4 m n-l^{2}\right) q^{n} \zeta^{l} \in \mathbb{J}_{0,1}^{\mathrm{wh}}$.
Calculate the Maass lift of φ, although it does not converge:

$$
\begin{aligned}
& \sum_{m=1}^{\infty} \sum_{n=-N}^{\infty} \sum_{l}\left(\sum_{a \mid(n, l, m)} a^{-1} c\left(\frac{4 m n-l^{2}}{a^{2}}\right)\right) q^{n} \zeta^{l} p^{m} \\
= & \sum_{m=1}^{\infty} \sum_{n=-N}^{\infty} \sum_{l}\left(\sum_{a=1}^{\infty} a^{-1} c\left(4 m n-l^{2}\right)\right)\left(q^{n} \zeta^{l} p^{m}\right)^{a} \\
= & \sum_{m=1}^{\infty} \sum_{n=-N}^{\infty} \sum_{l} c\left(4 m n-l^{2}\right)\left(-\log \left(1-q^{n} \zeta^{l} p^{m}\right)\right) .
\end{aligned}
$$

Lift of a weakly holomorphic Jacobi form

Now let $\varphi(\tau, z)=\sum_{n, l} c\left(4 m n-l^{2}\right) q^{n} \zeta^{l} \in \mathbb{J}_{0,1}^{\mathrm{wh}}$.
Calculate the Maass lift of φ, although it does not converge:

$$
\begin{aligned}
& \sum_{m=1}^{\infty} \sum_{n=-N}^{\infty} \sum_{l}\left(\sum_{a \mid(n, l, m)} a^{-1} c\left(\frac{4 m n-l^{2}}{a^{2}}\right)\right) q^{n} \zeta^{l} p^{m} \\
= & \sum_{m=1}^{\infty} \sum_{n=-N}^{\infty} \sum_{l}\left(\sum_{a=1}^{\infty} a^{-1} c\left(4 m n-l^{2}\right)\right)\left(q^{n} \zeta^{l} p^{m}\right)^{a} \\
= & \sum_{m=1}^{\infty} \sum_{n=-N}^{\infty} \sum_{l} c\left(4 m n-l^{2}\right)\left(-\log \left(1-q^{n} \zeta^{l} p^{m}\right)\right) .
\end{aligned}
$$

Lift of a weakly holomorphic Jacobi form

Now let $\varphi(\tau, z)=\sum_{n, l} c\left(4 m n-l^{2}\right) q^{n} \zeta^{l} \in \mathbb{J}_{0,1}^{\mathrm{wh}}$.
Calculate the Maass lift of φ, although it does not converge:

$$
\begin{aligned}
& \sum_{m=1}^{\infty} \sum_{n=-N}^{\infty} \sum_{l}\left(\sum_{a \mid(n, l, m)} a^{-1} c\left(\frac{4 m n-l^{2}}{a^{2}}\right)\right) q^{n} \zeta^{l} p^{m} \\
= & \sum_{m=1}^{\infty} \sum_{n=-N}^{\infty} \sum_{l}\left(\sum_{a=1}^{\infty} a^{-1} c\left(4 m n-l^{2}\right)\right)\left(q^{n} \zeta^{l} p^{m}\right)^{a} \\
= & \sum_{m=1}^{\infty} \sum_{n=-N}^{\infty} \sum_{l} c\left(4 m n-l^{2}\right)\left(-\log \left(1-q^{n} \zeta^{l} p^{m}\right)\right) .
\end{aligned}
$$

Borcherds product

Hence, formally,

$$
\prod_{m=1}^{\infty} \prod_{n=-N}^{\infty} \prod_{l}\left(1-q^{n} \zeta^{l} p^{m}\right)^{c\left(4 m n-l^{2}\right)}
$$

is a Γ^{J}-invariant function of weight 0 . By slight modification, Borcherds constructs a Γ-invariant function of weight $c(0) / 2$:

$$
p^{a} \zeta^{b} q^{c} \prod_{(m, n, l)>0}\left(1-q^{n} \zeta^{l} p^{m}\right)^{c\left(4 m n-l^{2}\right)},
$$

where $a=\frac{1}{2} \sum_{l>0} l^{2} c\left(-l^{2}\right), b=-\frac{1}{2} \sum_{l>0} l c\left(-l^{2}\right), c=\frac{1}{24} \sum_{l \in \mathbb{Z}} c\left(-l^{2}\right)$ and
(m, n, l) >0 means $m>0$ or $m=0, n>0$ or $m=n=0, l>0$.

Borcherds product

Hence, formally,

$$
\prod_{m=1}^{\infty} \prod_{n=-N}^{\infty} \prod_{l}\left(1-q^{n} \zeta^{l} p^{m}\right)^{c\left(4 m n-l^{2}\right)}
$$

is a Γ^{J}-invariant function of weight 0 . By slight modification, Borcherds constructs a Γ-invariant function of weight $c(0) / 2$:

$$
p^{a} \zeta^{b} q^{c} \prod_{(m, n, l)>0}\left(1-q^{n} \zeta^{l} p^{m}\right)^{c\left(4 m n-l^{2}\right)}
$$

where $a=\frac{1}{2} \sum_{l>0} l^{2} c\left(-l^{2}\right), b=-\frac{1}{2} \sum_{l>0} l c\left(-l^{2}\right), c=\frac{1}{24} \sum_{l \in \mathbb{Z}} c\left(-l^{2}\right)$ and $(m, n, l)>0$ means $m>0$ or $m=0, n>0$ or $m=n=0, l>0$.

Convergence

This infinite product (Borcherds product) is a Γ-invariant function and has a symmetry.

However, generally, this infinite product (Borcherds product) does not converge. Borcherds has investigated its analytic continuation. He has determined all zero and poles of this product and shown it to be a meromorphic modular form on \mathbb{H}_{2}.

By our main theorem, if we show each coefficient of the p-expansion of this infinite product, it should be a holomorphic function. Our main theorem holds even when Γ has a level. This gives a partial answer of Borcherds open problem: Extend the methods of this paper to level greater than 1 .

Convergence

This infinite product (Borcherds product) is a Γ-invariant function and has a symmetry.

However, generally, this infinite product (Borcherds product) does not converge. Borcherds has investigated its analytic continuation. He has determined all zero and poles of this product and shown it to be a meromorphic modular form on \mathbb{H}_{2}.

By our main theorem, if we show each coefficient of the p-expansion of this infinite product, it should be a holomorphic function. Our main theorem holds even when Γ has a level. This gives a partial answer of Borcherds open problem: Extend the methods of this paper to level greater than 1 .

Convergence

This infinite product (Borcherds product) is a Γ-invariant function and has a symmetry.

However, generally, this infinite product (Borcherds product) does not converge. Borcherds has investigated its analytic continuation. He has determined all zero and poles of this product and shown it to be a meromorphic modular form on \mathbb{H}_{2}.

By our main theorem, if we show each coefficient of the p-expansion of this infinite product, it should be a holomorphic function. Our main theorem holds even when Γ has a level. This gives a partial answer of Borcherds open problem: Extend the methods of this paper to level greater than 1.

Automorphic forms on $\mathrm{O}(2, \mathrm{~s}+2)$

Generalize our main theorem to automorphic forms on the symmetric domain of type IV:

$$
\mathcal{H}:=G / K \quad(K=\mathrm{O}(2) \times \mathrm{O}(s+2): \text { max. cpt. }) \quad \curvearrowleft \quad \Gamma
$$

Automorphic forms on $\mathrm{O}(2, \mathrm{~s}+2)$

Generalize our main theorem to automorphic forms on the symmetric domain of type IV:

$$
\mathcal{H}:=G / K \quad(K=\mathrm{O}(2) \times \mathrm{O}(s+2): \text { max. cpt. }) \quad \curvearrowleft \quad \Gamma
$$

Obstacles

Automorphic forms on $\mathrm{O}(2, \mathrm{~s}+2)$

Generalize our main theorem to automorphic forms on the symmetric domain of type IV:

$$
\mathcal{H}:=G / K \quad(K=\mathrm{O}(2) \times \mathrm{O}(s+2): \text { max. cpt. }) \quad \curvearrowleft \quad \Gamma
$$

Obstacles

- Step 2 : Can we make m so small ?
(Is the Fourier group sufficiently large?)
- Step 3 : Is the space of Jacobi forms always finitely generated?
- Step 4 : Does the good cusp forms like Δ_{10} always exist?

Automorphic forms on $\mathrm{O}(2, \mathrm{~s}+2)$

Generalize our main theorem to automorphic forms on the symmetric domain of type IV:

$$
\mathcal{H}:=G / K \quad(K=\mathrm{O}(2) \times \mathrm{O}(s+2): \text { max. cpt. }) \quad \curvearrowleft \quad \Gamma
$$

Obstacles

- Step 2 : Can we make m so small ? (Is the Fourier group sufficiently large?)
- Step 3 : Is the space of Jacobi forms always finitely generated?
- Step 4 : Does the good cusp forms like Δ_{10} always exist?

Automorphic forms on $\mathrm{O}(2, \mathrm{~s}+2)$

Generalize our main theorem to automorphic forms on the symmetric domain of type IV:

$$
\mathcal{H}:=G / K \quad(K=\mathrm{O}(2) \times \mathrm{O}(s+2): \text { max. cpt. }) \quad \curvearrowleft \quad \Gamma
$$

Obstacles

- Step 2 : Can we make m so small ? (Is the Fourier group sufficiently large?)
- Step 3 : Is the space of Jacobi forms always finitely generated?
- Step 4 : Does the good cusp forms like Δ_{10} always exist?

Thank you for your kind attention.

