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Linear massive spin-2 fields

The Fierz-Pauli equation:
Linear massive spin-2 field, hµν , in background metric ḡµν

Ēρσµν hρσ − Λ
(

hµν − 1
2 ḡµνhρ

ρ

)
+

m2
FP
2

(
hµν − ḡµνhρ

ρ

)
= 0

[Fierz-Pauli, 1939]

I 5 propagating modes (massive spin-2)
I Massive gravity?
I What determines ḡµν? (flat, dS, AdS, · · · )
I Nonlinear generalizations?

[The Boulware-Deser ghost (1972)]



Nonlinear generalizations of FP theory

I Massive gravity (fixed fµν):

L = m2
p
√
−g
[
R −m2 V (g−1f )

]

I Massive spin-2 field + gravity (dynamical f ):

L = m2
p
√
−g
[
R −m2 V (g−1f )

]
+ L(∇f )(?)

Bimetric: L(∇f ) = m2
f

√
−f Rf (?)

[Isham-Salam-Strathdee, 1971, 1977]

Generically, both contain a GHOST at the nonlinear level
[Boulware-Deser, 1972]



Counting modes:

Generic massive gravity:
I Linear: 5 modes

I Non-linear: 6 modes (massive spin-2 + ghost)

Generic bimetric theory:
I Linear: 5 modes (massive, (δg − δf ))

2 mode (massless, (δg + δf ))

I Non-linear: 7 modes + 1 (ghost)

Complication: Since the ghost shows up nonlinearly, its
absence needs to be established nonlinearly



Construction of ghost-free nonlinear theories

Based on “Decoupling limit” (perturbative):

A specific V (
√

g−1η) was obtained and shown to be ghost-free
in a “decoupling limit” and also perturbatively in h = g − η

[de Rham, Gabadadze, 2010; de Rham, Gabadadze, Tolley, 2010]

Non-linear Hamiltonian methods (non-perturbative):

Questions not answerable by “decoupling limit”:
I Is massive gravity with V (

√
g−1η) ghost-free nonlinearly?

[SFH, Rosen (1106.3344, 1111.2070)]

I Is it ghost-free for generic fixed fµν?
[SFH, Rosen, Schmidt-May (1109.3230)]

(see Cedric’s talk for alternative approaches)
I Can fµν be given ghost-free dynamics?

[SFH, Rosen (1109.3515)]
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Ghost-free bimetric theory
Digression: Elementary symmetric polynomials of X with
eigenvalues λ1 , · · · , λ4:

e0(X) = 1, e1(X) = λ1 + λ2 + λ3 + λ4 ,

e2(X) = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4,

e3(X) = λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4 ,

e4(X) = λ1λ2λ3λ4 = det X .

e0(X) = 1 , e1(X) = [X] ,

e2(X) = 1
2([X]2 − [X2]),

e3(X) = 1
6([X]3 − 3[X][X2] + 2[X3]) ,

e4(X) = 1
24([X]4 − 6[X]2[X2] + 3[X2]2 + 8[X][X3]− 6[X4]) ,

ek (X) = 0 for k > 4 ,

[X] = Tr(X) , en(X) ∼ (X)n



I The en(X)’s and det(1 + X):

det(1 + X) =
∑4

n=0
en(X)

=
4∑

n=0

−1
n!(4−n)! εµ1···µnλn+1···λ4 ε

ν1···νnλn+1···λ4 Xµ1
ν1
· · ·Xµn

νn

I Introduce “deformed determinant” :

d̂et(1 + X) =
∑4

n=0
βn en(X)

I Observation:

V (
√

g−1f ) = d̂et(1 +
√

g−1f )

[SFH & R. A. Rosen (1103.6055)]



Ghost-free bi-metric theory

Ghost-free combination of kinetic and potential terms for g & f :

L = m2
g
√
−gRg − 2m4√−g

4∑
n=0

βn en(
√

g−1f ) + m2
f

√
−f Rf

Note,
√
−g

4∑
n=0

βn en(
√

g−1f ) =
√
−f

4∑
n=0

β4−n en(
√

f−1g)

Hamiltonian analysis: 7 nolinear propagating modes, no ghost!

C(γ, π) = 0 , C2(γ, π) = d
dt C(x) = {H,C} = 0

[SFH, Rosen (1109.3515,1111.2070)]
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Mass spectrum of bimetric theory

[SFH, A. Schmidt-May, M. von Strauss 1208:1515, 1212:4525]

Sgf = −
∫

ddx
[
md−2

g
√

gRg−2md√g
d∑

n=0

βn en(S)+md−2
f

√
fRf

]
Equations of motion:

Rµν(g)− 1
2gµνR(g) + V g

µν = T g
µν

Rµν(f )− 1
2 fµνR(f ) + V f

µν = T f
µν

(for classical solutions, see talk by Mikhail Volkov)

I When are the 7 fluctuations in δgµν , δfµν good mass
eigenstates? (well-defined FP mass)

I How to characterize deviations from General Relativity?



Mass spectrum: proportional backgrounds

FP masses exist only around,

f̄µν = c2ḡµν

g and f equations:

Rµν(ḡ)− 1
2 ḡµνR(ḡ) +

(
Λg

Λf

)
ḡµν = 0 or

(
T g
µν

T f
µν

)

Λg= md

md−2
g

d−1∑
k=0

(
d − 1

k

)
ckβk , Λf=

md

md−2
f

d∑
k=1

(
d − 1
k − 1

)
ck+2−dβk

Implication:

Λg = Λf ⇒ c = c(βn, α ≡ mf/mg)

(Exception: Partially massless (PM) theory)



Mass spectrum around proportional backgrounds

Linear modes:

δMµν = 1
2c

(
δfµν − c2δgµν

)
, δGµν =

(
δgµν + αd−2cd−4δfµν

)

Ēρσµν δGρσ − Λg
(
δGµν − 1

2 ḡµν ḡρσδGρσ

)
= 0 ,

Ēρσµν δMρσ − Λg
(
δMµν − 1

2 ḡµν ḡρσδMρσ

)
+1

2m2
FP
(
δMµν − ḡµν ḡρσδMρσ

)
= 0

The FP mass of δM:

m2
FP =

md

md−2
g

(
1 + (αc)2−d

) d−1∑
k=1

(
d − 2
k − 1

)
ckβk



Bimetric as massive spin-2 field + gravity

Nonlinear extensions of linear modes:

Gµν = gµν + cd−4αd−2fµν , MG
µν = Gµρ

(√
g−1f

)ρ
ν
− cGµν

G: No ghost-free matter coupling, not the gravitational metric.

I Bimetric as gravity + massive spin-2 field:

gµν , Mµν = gµρ

(√
g−1f

)ρ
ν
− cgµν , mg >> mf

(see talk by Keisuke Izumi)
I M = 0⇒ GR.

M 6= 0⇒ deviations from GR, driven by matter couplings.
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Partial masslessness in FP theory

Ēρσµν hρσ − Λ
(
hµν − 1

2 ḡµνhρ
ρ

)
+

m2
FP
2

(
hµν − ḡµνhρ

ρ

)
= 0

dS/Einstein backgrounds:

ḡµν : Rµν − 1
2gµνR + Λgµν = 0

Higuchi Bound:
m2

FP = 2
3Λ

New gauge symmetry:

∆hµν = (∇µ∇ν + Λ
3 )ξ(x)

Gives 5-1=4 propagating modes
[Deser, Waldron, · · · (1983-2012)]

Can a nonlinear extension of PM theory exist?



Partial masslessness beyond FP theory

Non-linear PM theory = Nonlinear spin-2 fields with a gauge
invariance!

Does it exist? Independent of dS/Einstein backgrounds?

Known perturbative results around dS:

I Cubic PM vertices (∼ h3) in d = 4 [Zinoviev (2006)]

I Cubic PM vertices exist only in d = 3,4 with 2 derivatives
For d > 4, higher derivative theory needed.

[Joung, Lopez, Taronna (2012)]

We will identify a specific bimetric theory as the candidate
nonlinear PM theory
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Partial masslessness in Bimetric theory

[SFH, Schmidt-May, von Strauss, 1208:1797, 1212:4525]
1) Assume a nonlinear bimetric theory with PM symmetry exists

2) Around f̄ = c2ḡ, δMµν ∼ hµν satisfies the FP equation. Then
the action of symmetry on δMµν & δGµν must be:

δMµν → δMµν +
(
∇µ∇ν + Λ

3 ḡµν

)
ξ(x) , δGµν → δGµν

I Find the transformation of δgµν & δfµν .
I Shift the transf. to dynamical backgrounds ḡµν & f̄µν
I For the dS-preserving subset ξ = ξ0 (cont), this gives,

ḡ′µν = (1 + aξ0 )ḡµν , f̄ ′µν = (1 + bξ0 )f̄µν

f̄ ′ = c′2(ξ0) ḡ′ c′ 6= c

A symmetry can exist only if Λg = Λf does not determine c
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Candidate PM bimetric theory in d=4

The necessary condition for the existence of PM symmetry is
that c is not determined by Λg = Λf , or

β1 +
(

3β2 − α2β0

)
c+
(

3β3 − 3α2β1

)
c2

+
(
β4 − 3α2β2

)
c3 + α2β3c4 = 0

This gives the candidate nonlinear PM theory (d=4)

α2β0 = 3β2 , 3α2β2 = β4 , β1 = β3 = 0



Nonlinear PM bimetric theory

Checks:
I m2

FP = 2m4

m2
g

(
α−2 + c2)β2 = 2

3Λg

I For d > 4, all βn = 0. Nonlinear PM bimetric exists only for
d = 3,4.

I In d > 4 PM is restored by Lanczos-Lovelock terms

I Realization of the ξ0 gauge transformation in the nonlinear
theory.

Full Gauge symmetry of the nonlinear theory? (not yet known,
but ....)
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Higher derivative gravity and Conformal gravity

HD gravity:

SHD
(2) [g] = m2

g

∫
d4x
√

g
[

Λ + cRR(g)− cRR

m2

(
RµνRµν −

1
3

R2
)]

7 modes: 2 (massless spin-2) + 5 (massive spin-2 ghost)
[Stelle (1977)]

Coformal Gravity:

SCG[g] = −c
∫

d4x
√

g
[
RµνRµν −

1
3

R2
]

Invariant under Weyl scalings⇒
6 modes: 2 (massless spin-2) + 4 ghost modes

[Riegert (1984), Maldacena (2011)]



Conformal gravity and PM theory

I Maldacena: CG spectrum in dS background ∼ linear PM.
CG nonlinear PM candidate?

I Deser-Waldron: No PM spectrum away from dS
backgrounds (caveate: too restrictive condition on the
spectrum)



HD gravity from Bimetric theory

Define

S =
√

g−1f , Pµν = Rµν −
1

2(d − 1)
gµνR

Solve the bimetric gµν equation algebraically for fµν , as an
expansion in Rµν(g)/m2,

Sµ
ν = aδµν +

a1

m2 Pµ
ν +

a2

m4

[(
Pµ

ν
2 − PPµ

ν

)
+

1
d − 1

e2(P)δµν

]
+O(m−6)

Compute f = f (g). Then

SBM[g, f (g)] = SHD[g]
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HD gravity from Bimetric theory

I 4-derivative (∼ R2) truncation:

SBM
(2) [g, f (g)] = SHD

(2) [g]

The spin-2 ghost in 4-derivative HD gravity is an artifact of
this truncation (can be illustrated in a linear theory).

I The correspondence is not an equivalence of the truncated
theories (in general). Different truncated EoM’s.

I For PM bimetric theory one obtains conformal gravity.
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Equivalence between CG and PM bimetric theory

I CG equation of motion: The Bach equation,

Bµν = 0

Propagates 6 modes due to conformal invariance.

I In PM bimetric theory, determine fµν from g-equation.
Substitute in f -equation (not in the action) to get,

Bµν +O(R3/m2) = 0

In the low curvature limit, PM bimetric theory has a gauge
symmetry even away from dS and definitely propagates
7− 1 = 6 modes! None is a ghost

I CG eom is the low curvature limit of PM bimetric eom.
Conversely, PM bimetric is a ghost-free completion of CG
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