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Motivation

In Phys. Rev. Lett. 110, 111101 (Deser and Waldron)

Super luminal propagation
Acausal 1ty

Based on Characteristics analysis

not every

On )@ hypersurface
Characteristics equation iIs satisfied
and thus information can propagate to any direction
even If 1t Is spacelike.

We revisited this problem
and obtain different result
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Characteristics (Single field ODE)

Quasi-|inear n—th order derivative equation
f19, 0, -+, (8" 91(8)"¢ + gl¢, O, - -+, (B)" 9] = 0

Time evolution
1, Initial condition; &,0:,---,(0)" '¢ at t =t

[T f6,0i0, -, (8)"'¢]#0

2, Eoll EE) (3)"¢lis,

((0)"¢li=t, is uniquely fixed)
3, (0)"P[t = to + At] = (9) @[t = to] At + (8)" o[t = ¢]
(1 <k<n)



Characteristics (Single field ODE)

[T fl¢, 00, -, (8)" 9] =0
2, EoM P (961,
((0)"¢li=t, can be arbitrary)
3, (8)" o[t =ty+ At] = (0) p[t = to] At + () o[t = to]
(1<k<n-—1)

(8)" o[t =ty + At] =77



Characteristics (Multi field OD]

.
D)

Quasi—|inear 1st order derivative equations

for n scalar fields
Z;f;l fijlé1, - PulOsdj + gil b1, - ] =0
(1
® det f@]#o

<i<mn)

® We can obtain the solution for all O:is

» Solution is unique

® det f;; =0 ==) Characterist

A |inear combination of 9« can

1CS

be arbitrary



Characteristics (Single field PDE)

Quasi—|1near n—th order derivative equation
fyl yn[¢ 8ﬂ¢7 8ﬂn 1¢] Z8 al/n¢ -+ g[¢v aﬂ¢7 T aﬂf ' °aun—1¢] =0

T1me evolut|on
1, Initial condition on initial hypersurface ).

¢7 at¢7 T (at)n_1¢ Z . t — tO
2 8z¢7 ataiqba a'aj¢7 T
I f ft ¢7 ,LL¢7 w1 a,LLn_1¢] 7é0

3. EoM» (8) qb\t:to

( (0)"Pli=, is uniquely fixed)

Time evolution is unique 0 = lim lzHaz]—¢[z]
Azt —




Characteristics (Single field PD.

.
D)

Quasi—|inear n—th order derivative equation

27 az¢7 atai¢, 8287§b .
l _F ft . .tw’ 8M¢, e @M. : °aun_1¢] —0

3, Eoll Y (9",

( (0)"¢li=;, can be arbitrary)

Time evolution is not unique| 9, = 1i




2nd order PDE — 1st order PDE

Cauchy Kovalevskaya theorem :
theorem of unique time evolution

Quasi—Ilinear 2nd order derivative equation

/B VN o o

vaolutlo_gp¢/iTrIV|ally nonzero
u =
v; 1= O0;¢p

"0 + 70w+ glo, u,v;] =0

Evolution equation for T Nontrivial
U :={o,u, v} coefficient
M[U] - 9,U = N[U] - ;U + V[U]
Characteristic equation: det M[U] = 0




Characteristics (single — multi field)

In single field
Characteristic equation 1Is

(Highest order derivatives w.r.t “t7 ) =0

@“Q oy Oy .8ﬂn—l¢] 0,0 + 9o, Op@s 5 Oy a“"—1¢] =1

i‘:
ft [¢7 ,u(/ba i 3ﬂn_1¢] =0

In multi field

Is checking highest order derivatives enough??

Sometimes yes, but generically No



Characteristics (Multi field, simple case)

Two Quasi-Ilinear 2nd order derivative equations

1919, 00,9, 0a1]0,0,6 + 9" (6, 0, ¥, 0at)] 0,0
+ h(@, 0ath, ¥, 0atp] =0

Y10, 00, 1, 0a¥]0,0,0 + G (¢, 0atp, 1, 0a¥] 0,000
+ H[¢7 0a®, Y, 8a¢] =0

Coefficients of higi’rder time derivatives
t tt
g
_Ptt (;ﬁ

Characteristic equation: det M[U] = 0



Characteristics (Multi field, general case)

Two equations
1@, 0u, ¥)0,0,0 + ¢ (P, 0.0, Y0 + hlp, D¢, ] =0

El¢, 0u¢, 9] =0
Ui 5370000 +5:0,0 +H|, 860, 9] = 0

Coefficients of hi'order time derivatives

L0
M = (—g; 0)
0(0)
Characteristic equation:det M[U] = 0

is always satisfied 7?77



Characteristics (Multi field, general case)

Two equations

1416, 0,6(]D 0,0 + o'[#. aﬂqs@gp} B[, 06 (¥])= 0

Fl¢,0u9, 9] := T, 0u9] =9 =0

4
(1" + 9'5557) 0600 + H, 8atp] = 0

Characteristic equation:(fu_+£f OF )-—-O
0(0)

Different from that on previous slide



Characteristics (Multi field, general case)

Two equations

f10\ @5 0, ]0,0u + ¢|@, 05 |0t + h[d, Opp, h] = 0

Elg, 0ug, 9] =0

D 5am0n0 +5:0u00 +H[, 0, 9] = 0

Trivially nonzero

AR T NG
rofutio

INontrivial

coefficients

M

)

O

(

(0)




Our model of Massive gravity

Action .
fuw = e,

_ 1
S = (2k)"" [d*ze(R + 2 Zi:() ;L) eaM . dynamical tetrad

Ly=1 f¢,: fiducial tetrad
Ly=f MV
Ly = f* = funf" f = Jwg

For simplicity, consider the case where @2 — Q3 — Q4 — 0

EoM

G aOguu+a1(fuu _|_fguy =0

B =i



Characteristic in Massive gravity

Introducing new variable OM = 90f
M,uu)\ c= a[,ufy])\

Moio = - Ot foo, O:Moio, O:Mo;; o
My = A B C\ ”
M ) M=(D E F| I
O E ijk
FoM G H I
Characteristic equation:det M|U| =0

® First order derivative equations of f,,, M,
® Give the time evolutions of f007M0i07M0ij



Summary

We can not naively extend the characteristic analysis
In single field to multi field case.

5%f@3joins In the Characteristic equations, and then
we have different result from Deser and Waldron’ s

» Not every hypersuface can be characteristics

In order to understand the causal structure
we need the detailed analysis
of Characteristic equations



