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Lorentz violation, Horava gravity,  
Naturalness and all that 



Plan 
Part 1: Lorentz violation in Horava gravity. An attempt of preserving 
approximate Lorentz symmetry using the scale separation. Current 
status of the proposal. Based on 2010 paper with Y. Shang.	

	

Part 2: Aether and one-loop effective action. Can one preserve the 
reparametrization invariance at loop level? (My collaborator, N. 
Afshordi, and I seem to have different views on that.)	

	

Part 3: Re-profiling the terrestrial searches of Lorentz violation to 
searches of transient effects. Work in collaboration with Budker, 
Gawlik, Jackson-Kimball, Ledbetter, Pustelny. Future directions. 	

	

	




Questions for Part I 
High-energy gravity is notorious for “bad behaviour” in UV. Specific 
form of explicit loss of LI in the UV (Horava, 2009) can be beneficial 
for rectifying this problem. “Maybe gravity is asymptotically free” 	

	

1.  Is Horava theory just a nice tool, or can it be more than that? Can 

one make this theory consistent with stringent constraints on LV? 	


2.  Status of ΛHL << Mplanck proposal, (MP, Shang, 2010).	


3.  How to enforce cgravity ~ cmatter? And how strictly should that be 
enforced? 	


	


	




Questions for Part II 
Theories with LV can be covariantized by introducing dynamical 
spurions, or aether, which has to have self-interaction, and in general 
non-linear propagation/self-interaction terms. (In the context of Horava 
gravity emphasized by Blas, Pujolas, Sibiryakov).	

	

1.  How to construct a 1-loop effective action for such fields? 	


2.  Do loops necessarily result in the loss of the reparametrization 
invariance for aether (reacting N. Afshordi’s ideas)? 	


	

	


	




Questions for Part III 
Several Labs around the world have searched for the breakdown of 
rotational invariance using atomic spins, torsion balances etc. (If there 
is aether, and you move over it, the rotational invariance is lost). In 
short, it is a search of some soft background that persists in time.  	

	

1.  Can we extend the class of phenomena that are being searched for 

to include those that last a finite amount of time? Transient LV.	


2.  Macroscopic size monopoles, strings and domain walls (possibly 
clumps of DM) are some generic candidates. Do such experiments 
have capabilities to probe/set constraints on transients over and 
beyond cosmology? 	


3.  How to implement such things in practice?	

	


	




Lorentz violation at first glance 
Suppose that our theory admits “external fields” with open Lorentz 
indices – I call them LV spurions – and physical fields couple to them, 	

	

	

	

	

	


	
 	
 	
 	
	

	

	

	

	

aµ, bµ, kµ, Hµν, etc   are the LV spurions. They might result from some 
form of the spontaneous symmetry breaking (like in Jacobson and 
collaborators model of gravitational aether) or be a consequence of 
fundamental loss of LI in the UV (for example, a-la Horava-Lifshitz).	

	

	

	

	

  



Lorentz violation at first glance 
Effective field theory approach to LV is useful: allows to compare results 
of different experiments, and assign them a figure of merit in terms of 
sensitivity to spurions. Developed by A. Kostelecky and collaborators, 
with important contribution from S. Coleman and S. Glashow. 	

	

If CPT is violated due to some unspecified dynamics at a very high scale,  

its more sensible that LI breaking is communicated via higher-
dimensional operators (R.Myers, MP), so that it can be decoupled 
from low-energy phenomenology if needed.  

 
As for example in the following dimension 5 operators:  
 
	

	

	

  

Selection rules and operators

Dimension 5 operators are severely constrained by these selection
rules. The only possible operators that give E3 modification of
the dispersion relations are

Scalars:
Ls = i

κ

MPl
Φ̄(n · ∂)3Φ

Vectors:

Lγ =
ξ

MPl
naFadn · ∂(nbF̃

bd)

Fermions:

Lf =
1

MPl
Ψ̄ (η1n/ + η2n/γ5) (n · ∂)2Ψ

There are no modifications to disperison relation for a real scalar!
For photons, this modification is helicity dependent,



E2 − p2 ± 2ξ

MPl
p3



 (εx ± iεy) = 0

Only three constants are relevant for QED, η1,2 and ξ.
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Experimental constraints are strong 
1.  UV-enhanced operators are constrained by Cherenkov radiation in 

vacuum (Coleman, Glashow) and by the very existence of high-
energy cosmic rays (Moore, Gagnon). Strong constraints on QED 
LV terms are derived by (e.g.) Jacobson, Liberati, Mattingly and 
others. The difference in the “speed of light” for different species 
is limited to better than 1 part per 1022	


2.  By low-energy spin precession data, which constrain dim=5 LV at 
10-8-10-7/MPl level. New experiments at Princeton (group of M. 
Romalis) have improved these bounds by ~ two orders of 
magnitude.	


	

Given that there are strong constraints on LV in matter sector, one has 

to make sure that if gravity does violate LI, it does not get 
communicated into the matter sector easily. 	
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Dimensional transmutation problem 
Free particles are utopia. Real particles interact – at least gravitationally.	

It makes it difficult to “localize” LV to higher-dimensional operators. 	


Dimension 5   à   Dimension 3	
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Another example, dim=6 LV in non-commutative QED:	

	

	

  	

 
 

Naturalness problem

We assumed dimension 5 operators without checking whether
dimension 3 exist. They do! See e.g. papers by A. Kostelecky.
Again, for QED,

L(3)
QED = −bµψ̄γµγ5ψ − 1

2
Hµνψ̄σµνψ − kµε

µναβAν
∂

∂xα
Aβ,

Dimension three coefficients can be induced from dimension 5
via quantum loops with a predictable outcome,

bµ ∼ (loop factor) × ξ
Λ2

UV

MPl
.

It is a disaster unless either fine-tuning happens, or Λ2
UV -

divergence is absent, or the cutoff scale is moderate to low.

Another example, in NC QED,

Leff = (two loop factor) × Λ2
UV θµνmeψ̄σµνψ

Very large dimension 3 operator will be induced if Λ2θ ∼ O(1).
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Loop Effects: exact SUSY

Figure 1: 1-loop corrections to the chiral LV operators. Solid line denotes the chiral propagator, wiggled
line represents the gauge superfield propagator, crossed circle represents an insertion of the LV operators.

Figure 2: 1-loop corrections to the gauge LV operator.

Since dimension 3 is prohibited in exact SUSY, Λ2-divergence
cannot appear, which can be verified by explicit calculation. The
evolution of operators is logarithmic.
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Self-regulation + scale separation 

Known examples of controlled dimensional transmutation use wide scale	

separation. 	

Consider two sectors coupled via irrelevant interaction:	

and let LI be broken in 1 sector by 100%. How much 	

feedback do you have on another sector via loops? 	

	

	

In HL theories you do not have to cut loop integrals by hand – instead 

they are self-regulated by Lifshitz propagators	

	

	

	

•  Unlike Lee-Wick, such theories can have physical realizations. 	

•  In NC field theories ~1/2 of loop integrals is convergent – but HL is 

much better because all of them can be convergent of log-divergent. 	

	

	

 	

  

1 Introduction

Lorentz symmetry, and its universality with respect to propagation and interaction of differ-
ent types of particles, is a very well-established symmetry of nature. Stringent constraints
are derived on the parameters of effective Lagrangian that encode possible departures from
Lorentz symmetry [1, 2]. Models of Lorentz symmetry breaking did not go far beyond the
effective Lagrangian description, and the idea that either a vector or the gradient of a scalar
field condense at intermediate or low energy while restoring the Lorentz symmetry at high
energies [3–5] so far has not found any reasonable ultraviolet (UV) completion. Even more,
it is not fully understood whether such completions exist in principle.

It is also conceivable that Lorentz symmetry is somehow broken by the UV physics, and
for example quantum gravity is often being tauted as being capable of causing that (see
e.g. [6]). If Lorentz violation (LV) is indeed a UV-related phenomenon, there is a significant
conceptual hierarchy problem. One would expect that LV should manifest itself in the lowest
dimensional operators. Since the set of such operators starts from dimensions 3 and 4 [1,2],
one should naively expect that the strength of LV interactions is of the order of ΛLV for
dimension 3 operators, and O(1) for dimension 4. Several mechanisms of protecting higher-
dimensional LV operators from “leaking” into the lower dimensional ones have been proposed
and partially summarized in [7].

The localization of LV to higher-dimensional operators can occur in various ways. For
example, Ref. [8] assumed that operators responsible for Lorentz violation are tensors of a
higher rank and irreducible, and therefore their appearance in dimension 3 and 4 operators is
prohibited. Refs. [9, 10] argue that supersymmetrization of the Standard Model (SM) leads
to automatic elimination of lower dimensional LV operators. The soft-breaking terms allow
this leakage into lower dimensions to happen, but in a controllable way: e.g. the coefficients
of dimension 4 operators are induced by the dimension 6 operators:

c(4)LV ∼ m2
softc

(6)
LV ∼

m2
soft

Λ2
LV

. (1)

If there is a wide enough scale separation between the SUSY breaking mass and the high-
energy scale where LV originates, msoft " ΛLV, the existence of Lorentz breaking can be
made consistent with the variety of experimental constraints. Dimension 4 coefficients c(4)LV

induce a difference between propagation speed for different particles, limited by the most
stringent constraints to be at the level of 10−23 (see e.g. [11]), which is perfectly safe, for
example, if msoft is at the weak scale and ΛLV is close to Planck scale.

In this paper we examine another generic but very different way of protecting against
LV leaking into the SM sector. Consider a LV-sector that couples to the SM via a power-
suppressed interaction:

1

Mn+k−4
O(n)

LVO
(k)
SM, (2)

where On
LV and Ok

SM are some operators from LV and SM sectors of dimensions n and k
respectively and n+ k ≥ 5, and M is a very high energy scale. Being power-suppressed, this
operator would typically generate a power-divergent loop integral. For example, when n = 1

1

and k = 4, integrating out fields in the LV sector is likely to generate a quadratic divergence
leading to an LV term in the SM as:

1

M
O(1)

LVO
(4)
SM →

Λ2
UV

M2
O(4)

SM,LV. (3)

Theories of this kind are usually not considered viable on the phenomenological ground. The
induced LV term is generically of order 1 since naturally ΛUV ∼ M . However, particularly
interesting cases exist when the loops in the LV sector are stabilized at high energy through
certain mechanism so that ΛUV gets replaced by a well-defined physical scale that can be
separated far from M . In the latter case, the induced LV terms as in (3) can be made
arbitrarily small.

A well-known class of mechanisms of such kind is introducing higher-derivative terms in
the interactions or propagators, which improves the convergence of loop integrals. Examples
include the non-commutative field theories [12, 13], the so-called Lee-Wick theories [14, 15]
and Hořava-Lifshitz type theories [16,17]. In the last example, the following modification of
a particle propagator is assumed at very large spatial momentum:

i

ω2 − k2 →
i

ω2 − k6

Λ4
HL

. (4)

While such an propagator leads to better convergent loop integrals, the absence of higher
derivatives with respect to time in the Lagrangian, and consequently the absence of ω4 etc.
terms in the propagator allows one to extend the regime of validity of this theory beyond
ΛHL without immediately encountering pathological ghost-like features. But at the same time
such a construction leads to the violation of Lorentz symmetry explicitly above the Lifshitz
scale. If, however, a theory of this type is coupled to SM sector through power-suppressed
interactions only, it’s conceivable that the size of induced LV terms in SM is controlled by
the ratio Λ2

HL/M
2 and can be made small, given a sufficiently large separation between ΛHL

and M . There would be no need of fine-tuning since radiative corrections become stabilized
so that ΛHL $ M alone would be sufficient.

We shall illustrate this mechanism in a toy example with a neutral fermion that has
a Lifshitz-type propagator. It couples to photon through an anomalous magnetic moment,
which is a power-suppressed interaction. In this case, as expected, the LV corrections induced
by the fermion to the photon sector is controlled by µ2Λ2

HL, where µ is the anomalous
magnetic moment. Given that this product can be made arbitrarily small, approximate
Lorentz symmetry in the photon sector is maintained despite it’s completely broken for the
neutral fermion.

This type of construction is motivated by considering including gravity into the picture.
Besides many interesting features of Lifshitz type field theories that have been intensively
studied in the past, it has attracted a lot attention when it was proposed by Hořava that
a theory of this type stands as a candidate for a renormalizable theory of gravity [17].
Among different issues that Hořava’s theory for gravity is facing at phenomenological level,
the question of LV is not the last on the list. Given that the graviton propagators violate
Lorentz symmetry in the ultraviolet, is it reasonable to expect that such a theory would

2
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Self-regulation + scale separation:  
main idea 

1.  Break LI in some irrelevantly coupled/poorly probed sector such as 
gravity or axions etc. Preserve LI in the SM sector	


2.  Make the HL scale much lower than inverse coupling constant 1/M. 	

3.  Leakage of LV into SM is proportional to Λ2

HL/M2 – will be under 
control if scales are widely separated.	


	

	


Gravity “lattice” has much coarser 
graining 1/ΛHL than matter 
field lattice with 1/M spacial 
cutoff. In Petr’s terminology – 
“multicritical” Universe 
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What if ΛHL ~ Mpl or matter and gravity become 
“Lifshits” at a common scale? 

1. If SM fields become Lifshits-type at some scale, then normal SM 
loops introduce difference in propagation speeds at > 0.1% level. 	


	

2. If matter kept “normal”, then normal matter + HL gravity with 	

ΛHL ~ΛHL ~ Mplanck will induce same O(0.1%) differences in the 
propagations speeds because of the gravitational loops.  	

	

So, one needs either new protection mechanism or the scale of non-linear 
behavior to be much lower the Planck scale.	
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Toy examples 

We checked this logic explicitly in	

	

1.  “Normal” fermion + HL axion coupled via ∂αφ/Μ ψγµγ5ψ 	


2.  “Normal” photon + HL neutral fermion with dipole moment µ=1/M	

	

In both examples the one-loop correction is explicitly calculated. In both 

cases      ΔcSM ~  (Λ2
HL/M2)log(M/ΛHL). 	


	
It is under control if ΛHL ~ 10-9M	

	

“Normal” matter + HL gravity with ΛHL << Mplanck	
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Application to Horava-Lifshitz gravity 

Nonlinear terms in the action on top of EH	

	

	

	

We decompose gravity into 3 sectors of spins 2, 1, 0, 	

	

	

	

	

	

	

Fix the gauge,  	

	

and calculate all propagators and apply to photon vs scalar propagation 

speed. 	

 
 

of the propagation speed, and if so with what coefficients. In fact, as we would show be-
low, such corrections are generically not universal and different c2 for different species would
induce observable LV effects.

In this section, let us briefly describe the gravity theory and present the propagators
in a particular gauge that we find most convenient. As we will see, the fact that Hořava
theory is a gauge theory which contains constraints and non-dynamical fields makes the
problem a lot more involved than the simple toy example presented above. At the 1-loop
level, the theory exhibits mixed properties: while some loops better convergent as expected,
some others remaining quadratically divergent. Non-linearity makes any gravitational theory
quite difficult to analyze perturbatively without running into various subtleties. The physics
is much more transparent in simpler examples such as a Lifshitz-type QED, which we present
in Appendix B as an analogy to the calculation we perform for gravity below.

We define the fields for the metric perturbations above the flat spacetime background as

−g00 = 1 + n , (16)

g0i = nj , (17)

gij = δij + hij . (18)

Einstein’s theory of general relativity, expressed in ADM formalism, is described by the
Lagrangian LEH = M2

pl
√
γN(R + KijKij −K2). The action for Hořava gravity is different

from it in two aspects, both leading to the violation of Lorentz symmetry. In the low
momentum limit it differs from GR in that the combination KijKij − K2 is replaced by a
more general expression KijKij−λK2, where a model-dependent parameter λ is introduced.
In the large momentum limit, it is proposed that higher spatial derivative terms dominate
the action and they are the key ingredients that render the graviton loop more convergent
and the theory renormalizable. For our purpose, the highest dimensional operators are the
most important, and they include Rij∆Rij and R∆R. We adopt the so-called “healthy
extension” [20] of the original theory in this paper, where additional terms such as

R∆2n = −
2σ∆3n

M2
pl

(19)

and n∆3n are also needed to completely “Lifshitzise” the scalar sector, as it will become
an important ingredient in our calculations. All the fields introduced above are spacetime-
dependent functions and it is the so-called “non-projectable” version that is being considered
here. We parameterize the highest spatial derivative terms by

LHořava = M2
pl

(

· · ·+ Λ−4
HLRij∆Rij +

a− 3

8
Λ−4

HLR∆R +
b

2
Λ−4

HLn∆
3n−

c

2
Λ−4

HLR∆2n

)

. (20)

Here, a Lifshitz scale ΛHL as well as three model dependent parameters a, b and c are
introduced. In this study, we will leave these parameters completely undetermined (other
than requiring b #= 0). We simply assume that some reasonable choices of these parameters
exist such that the theory is free from instabilities or strong coupling issues.

To derive the propagators, we expand the metric perturbation into different modes that
do not mix with each other, and then invert the kinetic term in each sector individually. It

7

is most natural in this setup to decompose the fields into different spin sectors with respect
to the 3-dimensional rotational symmetry. From that point of view, n is a scalar and we
define

ni = n
T

i + ∂iϕ, (21)

hij = h
TT

ij +
(

∂iV
T

j + ∂jV
T

i

)

+

(

δij −
∂i∂j
∆

)

σ +
∂i∂j
∆

τ , (22)

where notation TT and T denote traceless-transverse and transverse conditions respectively.
We have altogether one transverse-traceless tensor hTT

ij , two transverse vectors V T

i and nT

i ,
and four scalars n, ϕ, σ, and τ .

Expanding the action LHořava in terms of these variables to quadratic order, we decompose
it into three independent sectors which are referred to as the spin-2, spin-1, and spin-0 parts
of the action and denoted by L2,1,0 respectively. Explicitly, they are

L2 =
1

4
ḣ

TT2
ij +

1

4
h

TTij∆h
TT

ij +
1

4Λ4
L

h
TT

ij ∆
3h

TTij ,

L1 =−
1

2

(

V̇
T

i − n
Ti
)

∆
(

V̇
Ti − n

T

i

)

,

L0 =
1− 2λ

2
σ̇2 −

1

2
σ∆σ − (λ− 1)

(

∆ϕ−
1

2
τ̇

)2

+ λσ̇ (2∆ϕ− τ̇ )− 2n∆σ

+
a

2Λ4
L

σ∆3σ +
b

2Λ4
HL

n∆3n +
c

Λ4
HL

σ∆3n .

(23)

Since λ appears only in L0, both L1 and L2 are identical for LEH and LHořava if higher
derivative terms are omitted.

In a truncated expansion of the gravity action the full diffeomorphism symmetry is lost
but a “partial gauge symmetry” remains. It is easily verified that the actions given above
make explicit the following gauge symmetry:

V
T

i → V
T

i + ζ
T

i , n
T

i → n
T

i + ζ̇
T

i , (24)

ϕ → ϕ+ ω̇ , τ → τ + 2∆ω , (25)

where ζ
T

i and ω are arbitrary infinitesimal parameters. When λ = 1, the linearized Einstein-
Hilbert action enjoys an additional gauge symmetry generated by

n → n− 2χ̇ , ϕ → ϕ + χ . (26)

Let us now work out the propagators in each spin sector.

The spin-2 part, L2, does not contain any gauge symmetry, and is identical for both
Einstein and Hořava’s theories apart from the higher derivative terms. The propagator can
be directly read off from the action and is given by

〈

h
TT

ij h
TT

kl

〉

= −
Π(*k)ij,kl

ω2 − *k2 − Λ−4
HL
*k6

, (27)
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where

Π(!k)ij,kl =

(

δik −
kikk
!k2

)(

δjl −
kjkl
!k2

)

+

(

δjk −
kjkk
!k2

)(

δil −
kikl
!k2

)

−
(

δij −
kikj
!k2

)(

δkl −
kkkl
!k2

)

.

(28)

Of course, this propagator is free from any gauge dependence.

The propagators in the spin-1 part, L1, to the contrary, cannot be determined without
making a gauge choice. The action is identical in both Einstein’s and Hořava’s theories and
contains a gauge symmetry generated by (24). In standard GR, it is most convenient to use
the Lorentz-invariant gauge. Let us temporarily switch back to the covariant formulation
and denote

gµν = ηµν + hµν (29)

where ηµν =
(

−1
δij

)

, and we use the notation hµν for the metric perturbation in covariant
language to distinguish it from hij introduced before. The EH action expanded to the second
order reads

(
√
−gR)(2)(γµν) =

1

4
h
µν
!hµν +

1

2
(∂µh

µν
)2 +

1

2
h
µν
∂µ∂νh−

1

4
h!h . (30)

It is conventional to use the so-called harmonic gauge that sets ∂µhµν − 1
2∂νh = 0. To do so,

we can add in the action a gauge fixing term,

LGF = −
1

2ξ
(∂µhµν −

1

2
∂νh)

2 , (31)

derive the propagators, and then take the ξ → 0 limit in the final result1. But in the quantum
field theory it is often more convenient, as the Feynman gauge in gauge theories, to choose a
finite value of ξ of convenience, which corresponds to not fixing LGF to 0 but rather allowing
it to be equal to any constant f , which is then averaged in the path integral over a Gaussian
distribution centered at 0 with a width ≈ ξ. By gauge symmetry, the physical results should
remain the same for any value of ξ. One finds that setting ξ = 1 is the most convenient
since the action becomes diagonal once the gauge fixing term is included. In Hořava gravity,
this exact gauge fixing procedure is not legitimate. It is overly-constraining since the theory
maintains only three diffeomorphisms. We would have to look for a most convenient gauge
fixing procedure for that theory later. But for now, we notice that the gauge fixing term
(31), with ξ = 1, restricted to the spin-1 sector is nothing but

LGF for spin-1 = −
1

2
(ṅ

T

i −∆V
T

i )
2, (32)

and since the spin-1 part of the action is completely identical in both GR and Hořava’s
theory, let us temporarily assume that we can use the same gauge fixing term in this sector

1At the linearized level, we do not need to worry about the Fadeev-Popov ghosts.
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29 

TT gravitons are “safe” – only Logs 
Annoying !2 corrections from s = 1 sector 

We were 50% successful!
!
!
!
!
!

! ! !     healthy pieces ! ! !       needs treatment!

•  non-Lifshitz, GR-like propagators for vectors sources !2 

•  Despite the fact that the sector of s=1 is gauge-dependent, the 
answer for "c is not. Explicitly checked using R# gauge, and then 
proven in general. !

•  The coefficient in front of the quadratic divergence is regularization 
dependent. (The referee was saying “choose DR and all your worries are gone”)!

•  We need an extra term in the gravity action to make s=1 Lifshitz!

Finally, let us examine the difference of the graviton 1-loop correction to the speed of
propagation for different species, found for the two examples shown above. The final answer
is rather simple and is given by

(δc2)photon−(δc2)scalar = −
2

3
L−

1

3
〈σ2 + 2στ〉 · L′ −

2

3
Q

=−
Λ2

HL

36π2M2
pl

log
Λ2

UV

Λ2
HL

−
3λ+ 1

3(3λ− 1)

Λ′2
HL

24π2M2
pl

log
Λ2

UV

Λ′2
HL

−
Λ2

UV

24π2M2
pl

.
(68)

It is this quantity that measures the actual violation of the Lorentz symmetry, which can not
be simply scaled away by field and coordinate redefinitions. As promised, the final result
appears largely independent of the parameters in the model of Hořava type gravity, except
only that they do enter this expression through the induced Lifshitz scale Λ′

HL defined by
(40). All model dependent quadratic divergences contributed by the spin-0 gravitons are
completely cancelled out in the final answer. The only remaining quadratic divergences
arises from the contributions of the spin-1 sector, which is model independent.

It should have become clear that all the non-Lifshitz type propagators in this theory
are subjected to an arbitrariness of the gauge choice. When analysing the theory for pure
gravity, it is much more straightforward not to gauge fix the action as we did, but solve
the constraints for the non-dynamical fields and substitute the solutions back into the ac-
tion so that the theory contains only the dynamical degrees of freedom. This approach is
possible but very cumbersome when matter sources coupled to graviton are included. As
in gauge theories, once the sources are present, it is much more convenient not to solve the
constraints, but rather find a gauge such that perturbative calculations are controlled order
by order. While this approach avoids the complication of solving the constraints which can
be intractable when matter fields are included, the price to pay is that the perturbative
expansion can be gauge dependent at each individual level and the constraints are only re-
alized when all loops contributions to infinite order are re-summed. In the current study,
reaching only the 1-loop level, the exact numerical results associated to the quadratically
divergent radiative corrections are not physically meaningful. The presence of these diver-
gences, however, is expected, and should have physical consequences. Hypothetically, if one
solves the constraints and integrates out the non-dynamical degrees of freedom with matters
included, the resultant effective Lagrangian will contain higher order interaction terms built
from matter fields and those new vertices can form closed 1-loop diagrams that would gener-
ate corrections to the kinetic term of the matter fields as well. On dimensional grounds, these
diagrams are quadratically divergent as usual since matter propagators are not Lifshitz-type.
These are precisely the same quadratic divergences we found above when the gauge modes
of graviton propagate in the loops. While we cannot reach a gauge independent conclusion
at 1-loop order, the fact that there are some quadratically divergent LV terms is expected
and most likely would remain true in a full nonlinear analysis of the theory. Indeed, since
Lorentz invariance is not a good symmetry of the Hořavas theory, when all the loop con-
tributions are re-summed, without fine-tuning, the full answer most naturally violates the
Lorentz symmetry.

In the case of simple Lifshitz Abelian gauge theory, a very similar quadratic divergence
arises, but since there one can work with the full theory without expanding the action into

17



29 

TT gravitons are “safe” – only Logs 
Annoying !2 corrections from s = 1 sector 

We were 50% successful!
!
!
!
!
!

! ! !     healthy pieces ! ! !       needs treatment!

•  non-Lifshitz, GR-like propagators for vectors sources !2 

•  Despite the fact that the sector of s=1 is gauge-dependent, the 
answer for "c is not. Explicitly checked using R# gauge, and then 
proven in general. !

•  The coefficient in front of the quadratic divergence is regularization 
dependent. (The referee was saying “choose DR and all your worries are gone”)!

•  We need an extra term in the gravity action to make s=1 Lifshitz!

Finally, let us examine the difference of the graviton 1-loop correction to the speed of
propagation for different species, found for the two examples shown above. The final answer
is rather simple and is given by

(δc2)photon−(δc2)scalar = −
2

3
L−

1

3
〈σ2 + 2στ〉 · L′ −

2

3
Q

=−
Λ2

HL

36π2M2
pl

log
Λ2

UV

Λ2
HL

−
3λ+ 1

3(3λ− 1)

Λ′2
HL

24π2M2
pl

log
Λ2

UV

Λ′2
HL

−
Λ2

UV

24π2M2
pl

.
(68)

It is this quantity that measures the actual violation of the Lorentz symmetry, which can not
be simply scaled away by field and coordinate redefinitions. As promised, the final result
appears largely independent of the parameters in the model of Hořava type gravity, except
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tributions are re-summed, without fine-tuning, the full answer most naturally violates the
Lorentz symmetry.

In the case of simple Lifshitz Abelian gauge theory, a very similar quadratic divergence
arises, but since there one can work with the full theory without expanding the action into

17

30 

Proposal to modify Horava action 

We need to make s=1 sector “Lifshitz”.  Otherwise we have !
One way to do it is to add some term(s) that are formally of higher 

dimension:!
!
!
In components this will lead to !
!
!
!
and excise !UV

2 divergence in any regularization scheme. !
!
!
!
Making ! ~ !HL solves the problem (but we do not know if it adds more 

problems for gravity itself)!
  
 

Substituting in the explicit forms for the propagators given in Appendix A, we reach our
final result in the current version of Hořava-Lifshitz gravity:

(δc2)photon − (δc2)scalar = −
Λ2

HL

12π2M2
pl

log
Λ2

UV

Λ2
HL

−
3λ+ 1

(3λ− 1)

Λ′2
HL

24π2M2
pl

log
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Λ′2
HL

−
Λ2

UV

24π2M2
pl

. (55)

Here Λ′
HL is the model-dependent Lifshitz energy scale defined in Eq. (64).

Very similar results are found in the case of simple Lifshitz Abelian gauge theory, which
we demonstrate in Appendix C.

We will discuss the implications of this result and propose ways to improve the model in
order to eliminate all the quadratic divergence in the next section.

5 An improved model and the absence of fine-tuning

Our calculations in the previous section show that Hořava-Lifshitz gravity and its extensions
discussed in the literature thus far induce Lorentz violation effects in the Standard Model
sector with quadratic sensitivity to the cutoff. This poses serious problem since the model
has essentially no natural protection against large Lorentz violation in the matter sector, and
therefore tremendous amount of fine-tunning is required to keep the model consistent with
observations. This quadratic divergence in δc2photon − δc2scalar means that our proposal based
on a large scale separation ΛHL/Mpl " 1 to protect the Lorentz symmetry in the Standard
Model does not work, and we must modify the theory in order to remove such remaining
divergence.

Given our formula (54), the problematic piece is easy to spot. It is the vector-graviton
contribution, identical to those in GR, that leads to the problem because

〈

v
T

i v
Ti
〉

= −
2
$k2

, (56)

and does not go to zero at large |$k| the same way the Lifshitz propagators do. This part of
the calculation entirely parallels its counterpart in the Einstein’s theory and therefore it is
not at all surprising that it remains quadratically divergent.

There are ways to modify the theory to remove the quadratic divergence. Naturally, one
thinks of including in the theory a term that contains v

T

i ∆
2v

Ti so that at large momenta
the propagator receives Lifshitz scaling, v

T

i v
Ti ∼ 1/$k4, sufficient to suppress the relevant

loop integral and make it logarithmic. In the three-dimensional covariant notation, such
terms may originate either from Kij∆Kij or ∇iKij∇kKkj. Both possibilities are usually not
considered since their Lifshitz dimensions are higher than 6 in the naive counting method.
Note, however, such counting is questionable in theories with mixed Lifshitz and non-Lifshitz
behavior considered in this paper.

The consequences of Kij∆Kij or ∇iKij∇kKkj terms in the action are not explored. One
potential worry is the modification to the ordinary kinetic term for the spin-2 gravitons
by Kij∆Kij term, and to avoid this we shall consider the addition to the Hořava-Lifshitz
Lagrangian given by

L′ =
2

Λ2
∇iKij∇kKkj, (57)

14so that at the linearized level it only modifies the spin-1 and spin-0 graviton actions, and
produces terms

L′ =
1

2Λ2
v

T

i ∆
2v

Ti −
2

Λ2
χ∆χ . (58)

We can easily repeat our calculation in this new model when such terms are included. The
propagators are given in Appendix A, and using them we find

(δc2)photon − (δc2)scalar = −
Λ2

HL

12π2M2
pl

(

1 +

√

(1− 2λ)α−1

2(2λ− 1)

)

log
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UV

Λ2
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−
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12π2M2
pl

log
Λ2

UV

Λ2
.

(59)
This expression contains logarithmically divergent pieces only, and we note that each of the
spin-2, spin-1, and spin-0 sector contributes one term.

In the new theory with the additional term (57) included in the Lagrangian, the mecha-
nism we proposed in the introduction is fully at work. One can safely put both ΛHL and Λ
well below the Planck scale, and the entire framework, consisting of both a Lifshitz type grav-
ity and a nearly Lorentz invariant Standard Model sector, would stay completely consistent
with observations.

6 Discussion

In this paper we argue that large amount of Lorentz violation in the irrelevantly coupled
sectors (axions, gravity etc) can co-exist with the Lorentz-symmetric phenomenology of SM
particles and fields, provided that quantum corrections are stabilized by a Lifshitz-type
behavior above ΛHL, a scale that can be adjusted. This idea is of particular interest if the
LV sector is gravity and is described by a Hořava-type theory. The key to this proposal is the
“self-regulating” behavior of Lifshitz-type propagators that participate in the loops. Given
that one could entertain a possibility of very large energy scale separation, ΛHL " Mpl, the
induced differences in the speed of propagation for different SM species can be under control
by the ratio (ΛHL/Mpl)2 and no fine-tuned choice of bare parameters to maintain Lorentz
symmetry will be needed.

Our explicit calculations for a generalized Hořava type gravity coupled with conventional
matter fields have confirmed this expectation in the following sense: those fields in the grav-
itational sector that fully acquire the anisotropic scaling, such as the truly dynamical trans-
verse and traceless gravitons, induce Lorentz violation controlled by (ΛHL/Mpl)2 logΛUV.
The quadratic divergence of graviton loop is explicitly softened to the logarithmic one above
the Hořava-Lifshitz scale. However, our result, Eq. (55), shows that in the conventional
extensions of Hořava-Lifshitz gravity, loop-induced Lorentz violating effects do contain a
residual quadratic divergence. This divergence is generated by the non-Lifhsitz parts of the
gravitational action for the vector-gravitons. Therefore, for the choice of ΛUV ∼ Mpl our
idea of putting dimension 4 LV operators under control of a small ratio of two dimensionful
parameters does not quite work there: LV from the Hořava gravity sector will be efficiently
transmitted to the SM sector with the quadratic sensitivity to the cutoff, (ΛUV/Mpl)2. (In
some sense, the situation is reminiscent of non-commutative field theories, where certain
divergences are self-regulated while others remain.)
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Comments	  on	  Dim=6	  LV	  operators	  

•  Unmodified, original proposal: Quadratic divergence can be 
either 1. tuned away or 2. removed by DR. But the momentum 
dependence will survive, and the new O(p2/MPl

2) terms in the 
dispersion relation of matter are generated.	


	

•  If quadratic divergencies are removed by the new physical term in 

the Lagrangian that makes s=1 sector Lifshitz, then dim=6 
operators will acquire formfactor: momentum growth p2/MPl

2 will 
be stabilized at p2> LambdaHL

2	


Considered recently on pheno grounds by Liberati, Maccioni, 
Sotiriou	

	




Unintended	  consequence	  of	  wide	  scale	  
separa:on	  	  

•  The evolution of the gravitational terms above ΛHL is really 
really slow. 	


•  Effective coupling constants αeff ~ (ΛHL/Mp)2/4π. This means 
that marginal terms in the Horava action evolve by O(1) at the 
UV scale such that    (αeff/4π)  Log(ΛUV/ΛHL) ~ 1   or 	


ΛUV    ~   ΛHL ×  exp(4π/αeff)   ~   1010 GeV ×  exp(1020)	

	

So, effectively gravity freezes above ΛHL…..	




What	  about	  graviton	  velocity?	  
•  We do not have any symmetry reason why cgravity = cmatter	


•  Corrections to IR-relevant terms in the gravitational action, such as   
sqrt(g)R ~ hij Δ hij are not going to be small at all! This terms 
determine the propagation speed of gravitational wave, that we cannot 
have arbitrary relative to c of matter. 	


•  It looks entirely possible to have   cgravity - cmatter ~ ΛUV
4 / MPl

2 ΛHL
2  

which may pose another huge tuning problem for HL gravity. 
Technical reason is that new Horava terms contribute not only to 
propagators (like in matter-gravity loops), but to vertices (triple 
graviton vertex) as well. 	


	


•  May be additional protection mechanisms can be invoked (m-a-a-y be	

	
SUSY again, but I do not know how to implement it yet). 	




How	  well	  should	  cgraviton	  match	  cmaCer	  anyways?	  	  	  
•  The bounds on the difference of matter/gravity propagation speed is 

highly asymmetric   	

	
 	
 	
-10-15 < cgraviton - cmatter < 0.01	


	

(Moore, Nelson, 2000). The asymmetry comes from the Cerenkov 
radiation of gravitons.  dE/dt ~ GN ωmax

4 (n-1)2,as long as n>1.	

	


Where n = c_matter/c_gravity ~ 1/(1-ε), and the conclusion is that ε has 
to be tiny, as ωmax~ Emax~ 1011 GeV.	

	

In HL gravity n is modified differently, 	

n ~ 1/(1—ε+ω2/ΛΗL

2), and n<1 at  ω <ΛΗL. Therefore, if ΛΗL < Emax all 
bounds are weakened by (ΛΗL/Emax )4, and strong constraints disappear, if 
say, ΛΗL~10-4Emax ~ 107 GeV,         - 0.01 < cgraviton - cmatter < 0.01	

	




Part	  II:	  1-‐loop	  effec:ve	  ac:on	  for	  aether	  
•  Why does it matter? N. Afshordi (talks in 2012, this meeting) argues 

that cosmology in some sense impose stronger constraints on LV than 
anything else. 	


If dφ/dt ≠ 0, and dφ/dt ~ (ρcosm)1/2 then gigantic anisotropic contribution 
may develop. 	

	


On the other hand, if the “norm” of is fixed, then there is no problem, 
and also dφ/dt can be larger than  (ρcosm)1/2 	

	

	

Lets’ formulate everything in terms of 	

which has symmetry φ à c φ symmetry, and see if 1-loop develops 
problems…. This is a sub-space of EA theories. 	


1 Introduction

In the last decade there has been some significant amount of interest to theories with broken

Lorentz symmetry. Both laboratory experiments and astrophysics/cosmology provide ample

source of constraints on such theories, as no observational signatures of the breakdown are

found thus far.

On the theoretical side, the interest to Lorentz violation (LV) came from various direc-

tions. Most recently it has been discussed in connection with some hopes of taming the UV

divergences in the gravitational theories with Lifshitz-type scaling.

The
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How	  reparametriza:on	  invariance	  can	  be	  
preserved	  at	  one	  loop	  level	  

•  Absorb some background 	

fields into fast degrees of freedom, and then quantize (similar to back. g)	

	

	

Bilinear terms in the new fast field is only uslow dependent  	

	

	

This way the rescaling φ s  à φ s C  is preserved. So, in this [admittedly 
restricted] analysis I do not see any “drama” for aether developing	

One can avoid “background gauge”, and integrate out φf directly. Then	

one should remember “the measure” that Niayesh introduced in FI, and	

   	

So, I find that the loss of reparam. invariance does not have to happen	
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Part III: “LV” and transient effects 
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Suppose we are immensely ambitious and want not just “set limits on” 
LV, but have a decent shot at discovering something like LV, if it really 
exists… 	

You would need two things: 1. Some very sensitive [preferably lab-
based] experiments. 2. Extreme cooperation from Mother Nature. 	

	

Most advanced in terms of the reach to LV parameters Lab experiments 
on LV typically test for the breakdown of rotational invariance. This was 
pioneered by Drever, Hughes (1980s).   You look for 	

Heff = bLV Spin*direction, and best experiments probe bLV < 10-24 eV, 
which is still ~ 9 orders of magnitude short of Hubble scale. 	

	

Recent experimental developments come hand-in-hand with the increase 
in accuracy of atomic magnetometers that can surpass 1 fT/(Hz)1/2. Are 
we using these experimental capabilities to the fullest? 	

	




The idea of “transient LV” 
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Typical “LV” experiment looks for 	

that one can generalize as interaction os a spin i to with the gradient of 
the scalar field a, 	

	

	

a-profile 	
 	
 	
 The Earth	

	

	

	

What about “short duration	

LV” from a much steeper a?         There are no static configurations, 	


	
 	
 	
 	
 	
so this kink moves, hence transient	

	

The Universe is filled with some substances DE, DM, and such field 
configurations may contribute. “LV” experiments can search for 
macroscopic size domain wall, strings, monopoles etc. 	
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scalar field, it is easy to find that the potential V (φ) is
minimized for the the following values of S and a,

S = S0; a = S0×
�
0; 2π × 1

N
; 2π × 2

N
; ... 2π × N − 1

N

�
,

(2)
Freezing the Higgs mode to its minimum, S = S0, pro-
duces the effective Lagrangian for the a field,

La =
1

2
(∂µa)

2 − V0 sin
2

�
Na

2S0

�
, (3)

with V0 = 4λS4
0 . This reduction will happen dynam-

ically if the potential V (φ) is augmented by the addi-
tion of U(1)-symmetric piece, Vh = λh(2φ∗φ−S2

0)
2, with

λh � λ. The spatial field configuration a(r) interpolat-
ing between two adjacent minima represents a domain-
wall solution. A network of intersecting domain walls is
possible for N ≥ 3. The solution for a domain wall along
xy plane that interpolates between a = 0 and 2πS0/N
neighboring vacua with the center of the wall at z = 0
takes the following form,

a(z) =
4S0

N
× arctan [exp(maz)] ;

da

dz
=

2S0ma

N cosh(maz)
.

(4)
The characteristic thickness of the wall d is determined
by the mass ma of a (small) excitation of a around
any minimum, d ∼ 2/ma. The mass ma can be ex-
pressed in terms of the original parameters of the po-
tential, ma = NS−1

0 (V0/2)1/2 = (2λ)1/2NS0. Owing to
the fact that V (φ) can have many different realizations
other than (1), we shall use solution (4) as an example,
rather than a generic domain-wall profile for N ≥ 3. For-
tunately, the exact functional form of this profile is not
crucial for the subsequent discussion. The important pa-
rameters are S0/N and ma.

Gravitational and astrophysical constraints. From the
macroscopic view at distance scales much larger than d,
the wall can be characterized by its mass per area, refered
to as tension,

σ =
Mass

Area
=

�
dz

����
da

dz

����
2

=
8S2

0ma

N2
. (5)

The network of domain walls will have an additional
distance-scale parameter L, an average distance between
walls, or a characteristic size of a domain. This param-
eter is impossible to calculate without making further
assumptions about the mechanisms of wall formation
and evolution. We treat it as a free variable, and con-
strain the maximum energy density of the domain walls,
ρDW ∼ σ/L in the neighborhood of the Solar System by
the dark-matter energy density, ρDM � 0.4 GeV/cm3,

ρDW ≤ ρDM =⇒ S0

N
≤ 0.4 TeV ×

�
L

10−2 ly
× neV

ma

�1/2
.

(6)

This constraint implies some flexible evolution of the do-
main wall network and the possibility for them to ef-
ficiently build up their mass inside galaxies. We con-
sider such constraint as the most conservative, i.e. giv-
ing the most relaxed bound on ρDW. If the network
of domain walls is “stiff” and its density inside galax-
ies is not enhanced relative to an average cosmological
value, then a stronger constraint can be derived by re-
quiring that domain walls provide a (sub)dominant con-
tribution to the dark-energy density, ρDW ≤ ρDE, where
ρDE � 0.4×10−5GeV/cm3. In that case the constraint on
S0/N is strengthened by ∼ 300. A more realistic scenario
is when the network of domain walls is initially isotropic
over the cosmological scales and then dynamically ac-
creted inside the halo. Assuming that in the process of
accretion the distance between domain walls scales the
same way as distance between dark matter particles, one
arrives at the following constraint ρDW ≤ (ρDMρ2DE)

1/3,
and the constraint on the amplitude of a is strength-
ened by ∼ 50 relative to (6). If the constraint (6)
is saturated, and L = 10−2 ly, then the wall tension
σ ∼ 10−12 GeV3, which is comparable to constraints
derived elsewhere in the literature [12]. A domain-wall-
crossing event leads to a change in the local gravitational
acceleration, ∆g = 4πGNσ, where GN is the gravita-
tional constant. For the fiducial choice of parameters,
this change does not exceed 10−15 m/s2, which is ex-
ceedingly difficult to detect.
Our choice of the normalization for L and ma in (6)

is suggested by the requirement of having a frequency
of wall-crossing within 10 yr with relative velocity of
v = 10−3c typical for galactic objects, and having the
signal duration in excess of a millisecond. This choice can
be examined for self-consistency in the context of the cos-
mological scenario for the formation of the domain wall
network from randomly distributed ain. Formation will
occur in the early Universe when the Hubble expansion
rate drops below Hin ∼ ma, at which time the initial
values for L are typically on the order of or just below
the horizon size Lin ∝ (10−2 − 1)/Hin. Subsequent ex-
pansion leads to the stretching of L with redshift z as
L(z) = Linzin/(1 + z). It is easy to see that ma ∼ neV
leads to the formation of domain walls during the elec-
troweak epoch, Hin ∼ H(T ∼ 100GeV), and subsequent
cosmological stretching can easily account for the growth
of L from O(100 m) to a fraction of ly. We conclude that
our fiducial choice, ma ∼ neV and L ∼ 10−2 ly, fits well
with the cosmological scenario of wall formation.

The pseudoscalar coupling of the field a with standard
model fermions, fi

−1∂µaψ̄iγµγ5ψi, leads to the interac-
tion of spins of atomic constituents to the gradient of the
scalar field,

Hint =
�

i=e,n,p

2f−1
i ∇a · si, (7)

where fi are free parameters of the model with dimension
of energy. For light scalars of interest, the astrophysical
bounds apply and limit fn,p,e > 109 GeV [13].

Naturalness problem

We assumed dimension 5 operators without checking whether
dimension 3 exist. They do! See e.g. papers by A. Kostelecky.
Again, for QED,

L(3)
QED = −bµψ̄γµγ5ψ − 1

2
Hµνψ̄σµνψ − kµε

µναβAν
∂

∂xα
Aβ,

Dimension three coefficients can be induced from dimension 5
via quantum loops with a predictable outcome,

bµ ∼ (loop factor) × ξ
Λ2

UV

MPl
.

It is a disaster unless either fine-tuning happens, or Λ2
UV -

divergence is absent, or the cutoff scale is moderate to low.

Another example, in NC QED,

Leff = (two loop factor) × Λ2
UV θµνmeψ̄σµνψ

Very large dimension 3 operator will be induced if Λ2θ ∼ O(1).
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MP, Pustelny, Ledbetter, Jackson-Kimball, Gawlik, Budker, PRL 2013 	

•  Many models of “New Physics” predict stable topological defects 

(domain walls, strings, monopoles). Physicists tend to discuss small 
size of these objects, e.g. 1/MGUT across. But the spatial extent could 
be much larger, if a theory admits light excitations. 	


•  If such objects are “scattered” in our galaxy, their velocity in the 
Solar system rest frame ~ 10-3 c, and the overall energy density must 
satisfy, ρDomain walls  <  ρDark Matter, Dark energy	


•  Crucially, if such a defect passes through the Earth, how would you 
know?	


You need a time-synchronized network of sensitive probes that can 
detect the event in different locations. Domain walls will be an especially 
suitable “target”. 	




Signal of axion-like domain wall 
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Consider a very light complex scalar field with Z_N symmetry: 	


	

Theory admits several distinct vacua, 	

	

	

Reducing to the one variable, we have the Lagrangian	

	

	

that admits domain wall solutions	

	

	

	

	

If on top of that a-field has the axion-type couplings, there will be a 
magnetic-type force on the spin inside the wall, 	
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Stable domain walls of light (pseudo)scalar fields permeating the entire Universe and persisting

to the present epoch is a generic consequence in many extensions of the Standard Model. Currently

the combination of gravitational and cosmological constraints provides the best limits on such a

possibility. We show that if domain walls are generated by an axion-like field with a coupling to

the spins of the standard model particles, and the galactic environment contains a network of such

walls, terrestrial experiments aimed at detection of wall-crossing events are realistic. In particular, a

geographically separated but time-synchronized network of sensitive, O(pT/
√
Hz), magnetometers

can detect a wall crossing and probe a range of model parameters currently unconstrained by

astrophysics/gravitational experiments.

PACS numbers: 14.80.Va, 98.80.Cq

Introduction. Very weak interactions of axion particles
with ordinary matter have long been a focus of theo-
retical attention and experimental searches [1]. While
QCD-type axions are well-motivated, in recent years the
scope of this research has been broadened to axion-like
particles [2]: light pseudoscalar particles derivatively cou-
pled to matter but without a tight mass-coupling rela-
tion imposed on the QCD axions. The shift symmetry
of pseudoscalar intereaction protects the mass, whatever
its value is, from large radiative corrections coming from
matter loops ensuring technical naturalness of axion-like
models.

Cosmological effects of such pseudoscalar particles can
vary considerably, depending on their mass. It is well-
known that O(µeV) mass-range axions may comprise a
significant fraction of cold dark matter in the Universe by
storing energy in coherent oscillations of the field [3]. In
the keV-range axion-like particles can form super-WIMP
dark matter (see, for example, Ref. [4]). Scalar fields
that are extremely light, are often invoked as candidates
for qunitessence (see, for example, Ref. [5]), in which
case the combination of pseudoscalar couplings and the
scalar-field potential creates parity-odd effects on the cos-
mological scales [6], and/or leads to local coupling of the
scalar-field gradient to spins [7]. Finally, there is a mul-
titude of axion-like fields predicted by string theory [8],
with nontrivial effects for inflation and strong gravity [9].

In this letter we explore the observational consequences
of stable domain-wall solutions for axion-like particles. It
is well-known that scalar field potentials with some de-
gree of discrete symmetries admit domain wall-type solu-
tions interpolating between domains of different energy-
degenerate vacua. In these models, initial random dis-
tribution of the scalar field in the early Universe leads
to the formation of domain-wall networks as the Uni-
verse expands and cools. For QCD-type axions, if stable,

such domain walls could lead to disastrous consequences
in cosmology by storing too much energy [10]. For an
arbitrary scalar field where parameters of the potential
are chosen by hand, the “disaster” can be turned into
an advantage. Indeed, over the years there were several
suggestions how a network of domain walls could be can-
didate for dark matter or dark energy [11, 12].
Herein, we revisit a subset of these ideas from a prag-

matic point of view. We would like to address the follow-
ing questions: (1) if a network of domain walls formed
from axion-like fields exists in our galaxy, what are the
chances for the Solar System - domain-wall encounter,
and (2) how to experimentally determine the event of
a domain wall crossing the Earth. Given gravitational
constraints on the average energy density of such walls
and the especially strong constraint on the coupling of
axion-like fields to matter, it is far from obvious that the
allowed-parameter range would enable a realistic chance
for detection. Yet we show in this letter that there is a re-
alistic chance for the detection of the domain walls, even
when the gravitational and astrophysical constraints are
taken into account. This goal can be achieved with cor-
related measurements from a network of optical magne-
tometers with sensitivities exceeding 1 (pT/

√
Hz), placed

in geographically distinct locations and synchronized via
the global positioning system (GPS).
2. Spin signal during wall crossing. We start by con-

sidering the Lagrangian of a complex scalar field φ, in-
variant under ZN -symmetry, φ → exp(i2πk/N)φ, where
k is an integer. We choose the potential in such a way
that it has N distinct minima

Lφ = |∂µφ|2 − V (φ); V (φ) =
λ

S2N−4
0

���2N/2φN − SN
0

���
2
,(1)

where S0 has dimension of energy and λ is dimensionless.
Choosing φ = 2−1/2S exp(ia/S0) to parameterize the

2

scalar field, it is easy to find that the potential V (φ) is
minimized for the the following values of S and a,

S = S0; a = S0×
�
0; 2π × 1

N
; 2π × 2

N
; ... 2π × N − 1

N

�
,

(2)
Freezing the Higgs mode to its minimum, S = S0, pro-
duces the effective Lagrangian for the a field,

La =
1

2
(∂µa)

2 − V0 sin
2

�
Na

2S0

�
, (3)

with V0 = 4λS4
0 . This reduction will happen dynam-

ically if the potential V (φ) is augmented by the addi-
tion of U(1)-symmetric piece, Vh = λh(2φ∗φ−S2

0)
2, with

λh � λ. The spatial field configuration a(r) interpolat-
ing between two adjacent minima represents a domain-
wall solution. A network of intersecting domain walls is
possible for N ≥ 3. The solution for a domain wall along
xy plane that interpolates between a = 0 and 2πS0/N
neighboring vacua with the center of the wall at z = 0
takes the following form,

a(z) =
4S0

N
× arctan [exp(maz)] ;

da

dz
=

2S0ma

N cosh(maz)
.

(4)
The characteristic thickness of the wall d is determined
by the mass ma of a (small) excitation of a around
any minimum, d ∼ 2/ma. The mass ma can be ex-
pressed in terms of the original parameters of the po-
tential, ma = NS−1

0 (V0/2)1/2 = (2λ)1/2NS0. Owing to
the fact that V (φ) can have many different realizations
other than (1), we shall use solution (4) as an example,
rather than a generic domain-wall profile for N ≥ 3. For-
tunately, the exact functional form of this profile is not
crucial for the subsequent discussion. The important pa-
rameters are S0/N and ma.

Gravitational and astrophysical constraints. From the
macroscopic view at distance scales much larger than d,
the wall can be characterized by its mass per area, refered
to as tension,

σ =
Mass

Area
=

�
dz

����
da

dz

����
2

=
8S2

0ma

N2
. (5)

The network of domain walls will have an additional
distance-scale parameter L, an average distance between
walls, or a characteristic size of a domain. This param-
eter is impossible to calculate without making further
assumptions about the mechanisms of wall formation
and evolution. We treat it as a free variable, and con-
strain the maximum energy density of the domain walls,
ρDW ∼ σ/L in the neighborhood of the Solar System by
the dark-matter energy density, ρDM � 0.4 GeV/cm3,

ρDW ≤ ρDM =⇒ S0

N
≤ 0.4 TeV ×

�
L

10−2 ly
× neV

ma

�1/2
.

(6)

This constraint implies some flexible evolution of the do-
main wall network and the possibility for them to ef-
ficiently build up their mass inside galaxies. We con-
sider such constraint as the most conservative, i.e. giv-
ing the most relaxed bound on ρDW. If the network
of domain walls is “stiff” and its density inside galax-
ies is not enhanced relative to an average cosmological
value, then a stronger constraint can be derived by re-
quiring that domain walls provide a (sub)dominant con-
tribution to the dark-energy density, ρDW ≤ ρDE, where
ρDE � 0.4×10−5GeV/cm3. In that case the constraint on
S0/N is strengthened by ∼ 300. A more realistic scenario
is when the network of domain walls is initially isotropic
over the cosmological scales and then dynamically ac-
creted inside the halo. Assuming that in the process of
accretion the distance between domain walls scales the
same way as distance between dark matter particles, one
arrives at the following constraint ρDW ≤ (ρDMρ2DE)

1/3,
and the constraint on the amplitude of a is strength-
ened by ∼ 50 relative to (6). If the constraint (6)
is saturated, and L = 10−2 ly, then the wall tension
σ ∼ 10−12 GeV3, which is comparable to constraints
derived elsewhere in the literature [12]. A domain-wall-
crossing event leads to a change in the local gravitational
acceleration, ∆g = 4πGNσ, where GN is the gravita-
tional constant. For the fiducial choice of parameters,
this change does not exceed 10−15 m/s2, which is ex-
ceedingly difficult to detect.
Our choice of the normalization for L and ma in (6)

is suggested by the requirement of having a frequency
of wall-crossing within 10 yr with relative velocity of
v = 10−3c typical for galactic objects, and having the
signal duration in excess of a millisecond. This choice can
be examined for self-consistency in the context of the cos-
mological scenario for the formation of the domain wall
network from randomly distributed ain. Formation will
occur in the early Universe when the Hubble expansion
rate drops below Hin ∼ ma, at which time the initial
values for L are typically on the order of or just below
the horizon size Lin ∝ (10−2 − 1)/Hin. Subsequent ex-
pansion leads to the stretching of L with redshift z as
L(z) = Linzin/(1 + z). It is easy to see that ma ∼ neV
leads to the formation of domain walls during the elec-
troweak epoch, Hin ∼ H(T ∼ 100GeV), and subsequent
cosmological stretching can easily account for the growth
of L from O(100 m) to a fraction of ly. We conclude that
our fiducial choice, ma ∼ neV and L ∼ 10−2 ly, fits well
with the cosmological scenario of wall formation.

The pseudoscalar coupling of the field a with standard
model fermions, fi

−1∂µaψ̄iγµγ5ψi, leads to the interac-
tion of spins of atomic constituents to the gradient of the
scalar field,

Hint =
�

i=e,n,p

2f−1
i ∇a · si, (7)

where fi are free parameters of the model with dimension
of energy. For light scalars of interest, the astrophysical
bounds apply and limit fn,p,e > 109 GeV [13].
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main wall network and the possibility for them to ef-
ficiently build up their mass inside galaxies. We con-
sider such constraint as the most conservative, i.e. giv-
ing the most relaxed bound on ρDW. If the network
of domain walls is “stiff” and its density inside galax-
ies is not enhanced relative to an average cosmological
value, then a stronger constraint can be derived by re-
quiring that domain walls provide a (sub)dominant con-
tribution to the dark-energy density, ρDW ≤ ρDE, where
ρDE � 0.4×10−5GeV/cm3. In that case the constraint on
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arrives at the following constraint ρDW ≤ (ρDMρ2DE)
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and the constraint on the amplitude of a is strength-
ened by ∼ 50 relative to (6). If the constraint (6)
is saturated, and L = 10−2 ly, then the wall tension
σ ∼ 10−12 GeV3, which is comparable to constraints
derived elsewhere in the literature [12]. A domain-wall-
crossing event leads to a change in the local gravitational
acceleration, ∆g = 4πGNσ, where GN is the gravita-
tional constant. For the fiducial choice of parameters,
this change does not exceed 10−15 m/s2, which is ex-
ceedingly difficult to detect.
Our choice of the normalization for L and ma in (6)

is suggested by the requirement of having a frequency
of wall-crossing within 10 yr with relative velocity of
v = 10−3c typical for galactic objects, and having the
signal duration in excess of a millisecond. This choice can
be examined for self-consistency in the context of the cos-
mological scenario for the formation of the domain wall
network from randomly distributed ain. Formation will
occur in the early Universe when the Hubble expansion
rate drops below Hin ∼ ma, at which time the initial
values for L are typically on the order of or just below
the horizon size Lin ∝ (10−2 − 1)/Hin. Subsequent ex-
pansion leads to the stretching of L with redshift z as
L(z) = Linzin/(1 + z). It is easy to see that ma ∼ neV
leads to the formation of domain walls during the elec-
troweak epoch, Hin ∼ H(T ∼ 100GeV), and subsequent
cosmological stretching can easily account for the growth
of L from O(100 m) to a fraction of ly. We conclude that
our fiducial choice, ma ∼ neV and L ∼ 10−2 ly, fits well
with the cosmological scenario of wall formation.

The pseudoscalar coupling of the field a with standard
model fermions, fi

−1∂µaψ̄iγµγ5ψi, leads to the interac-
tion of spins of atomic constituents to the gradient of the
scalar field,

Hint =
�

i=e,n,p

2f−1
i ∇a · si, (7)

where fi are free parameters of the model with dimension
of energy. For light scalars of interest, the astrophysical
bounds apply and limit fn,p,e > 109 GeV [13].
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scalar field, it is easy to find that the potential V (φ) is
minimized for the the following values of S and a,
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Freezing the Higgs mode to its minimum, S = S0, pro-
duces the effective Lagrangian for the a field,

La =
1

2
(∂µa)

2 − V0 sin
2

�
Na

2S0

�
, (3)

with V0 = 4λS4
0 . This reduction will happen dynam-

ically if the potential V (φ) is augmented by the addi-
tion of U(1)-symmetric piece, Vh = λh(2φ∗φ−S2

0)
2, with

λh � λ. The spatial field configuration a(r) interpolat-
ing between two adjacent minima represents a domain-
wall solution. A network of intersecting domain walls is
possible for N ≥ 3. The solution for a domain wall along
xy plane that interpolates between a = 0 and 2πS0/N
neighboring vacua with the center of the wall at z = 0
takes the following form,

a(z) =
4S0

N
× arctan [exp(maz)] ;

da

dz
=

2S0ma

N cosh(maz)
.

(4)
The characteristic thickness of the wall d is determined
by the mass ma of a (small) excitation of a around
any minimum, d ∼ 2/ma. The mass ma can be ex-
pressed in terms of the original parameters of the po-
tential, ma = NS−1

0 (V0/2)1/2 = (2λ)1/2NS0. Owing to
the fact that V (φ) can have many different realizations
other than (1), we shall use solution (4) as an example,
rather than a generic domain-wall profile for N ≥ 3. For-
tunately, the exact functional form of this profile is not
crucial for the subsequent discussion. The important pa-
rameters are S0/N and ma.

Gravitational and astrophysical constraints. From the
macroscopic view at distance scales much larger than d,
the wall can be characterized by its mass per area, refered
to as tension,

σ =
Mass

Area
=
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����
da

dz

����
2

=
8S2

0ma

N2
. (5)

The network of domain walls will have an additional
distance-scale parameter L, an average distance between
walls, or a characteristic size of a domain. This param-
eter is impossible to calculate without making further
assumptions about the mechanisms of wall formation
and evolution. We treat it as a free variable, and con-
strain the maximum energy density of the domain walls,
ρDW ∼ σ/L in the neighborhood of the Solar System by
the dark-matter energy density, ρDM � 0.4 GeV/cm3,

ρDW ≤ ρDM =⇒ S0

N
≤ 0.4 TeV ×

�
L

10−2 ly
× neV

ma

�1/2
.

(6)

This constraint implies some flexible evolution of the do-
main wall network and the possibility for them to ef-
ficiently build up their mass inside galaxies. We con-
sider such constraint as the most conservative, i.e. giv-
ing the most relaxed bound on ρDW. If the network
of domain walls is “stiff” and its density inside galax-
ies is not enhanced relative to an average cosmological
value, then a stronger constraint can be derived by re-
quiring that domain walls provide a (sub)dominant con-
tribution to the dark-energy density, ρDW ≤ ρDE, where
ρDE � 0.4×10−5GeV/cm3. In that case the constraint on
S0/N is strengthened by ∼ 300. A more realistic scenario
is when the network of domain walls is initially isotropic
over the cosmological scales and then dynamically ac-
creted inside the halo. Assuming that in the process of
accretion the distance between domain walls scales the
same way as distance between dark matter particles, one
arrives at the following constraint ρDW ≤ (ρDMρ2DE)

1/3,
and the constraint on the amplitude of a is strength-
ened by ∼ 50 relative to (6). If the constraint (6)
is saturated, and L = 10−2 ly, then the wall tension
σ ∼ 10−12 GeV3, which is comparable to constraints
derived elsewhere in the literature [12]. A domain-wall-
crossing event leads to a change in the local gravitational
acceleration, ∆g = 4πGNσ, where GN is the gravita-
tional constant. For the fiducial choice of parameters,
this change does not exceed 10−15 m/s2, which is ex-
ceedingly difficult to detect.
Our choice of the normalization for L and ma in (6)

is suggested by the requirement of having a frequency
of wall-crossing within 10 yr with relative velocity of
v = 10−3c typical for galactic objects, and having the
signal duration in excess of a millisecond. This choice can
be examined for self-consistency in the context of the cos-
mological scenario for the formation of the domain wall
network from randomly distributed ain. Formation will
occur in the early Universe when the Hubble expansion
rate drops below Hin ∼ ma, at which time the initial
values for L are typically on the order of or just below
the horizon size Lin ∝ (10−2 − 1)/Hin. Subsequent ex-
pansion leads to the stretching of L with redshift z as
L(z) = Linzin/(1 + z). It is easy to see that ma ∼ neV
leads to the formation of domain walls during the elec-
troweak epoch, Hin ∼ H(T ∼ 100GeV), and subsequent
cosmological stretching can easily account for the growth
of L from O(100 m) to a fraction of ly. We conclude that
our fiducial choice, ma ∼ neV and L ∼ 10−2 ly, fits well
with the cosmological scenario of wall formation.

The pseudoscalar coupling of the field a with standard
model fermions, fi

−1∂µaψ̄iγµγ5ψi, leads to the interac-
tion of spins of atomic constituents to the gradient of the
scalar field,
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where fi are free parameters of the model with dimension
of energy. For light scalars of interest, the astrophysical
bounds apply and limit fn,p,e > 109 GeV [13].
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distance-scale parameter L, an average distance between
walls, or a characteristic size of a domain. This param-
eter is impossible to calculate without making further
assumptions about the mechanisms of wall formation
and evolution. We treat it as a free variable, and con-
strain the maximum energy density of the domain walls,
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This constraint implies some flexible evolution of the do-
main wall network and the possibility for them to ef-
ficiently build up their mass inside galaxies. We con-
sider such constraint as the most conservative, i.e. giv-
ing the most relaxed bound on ρDW. If the network
of domain walls is “stiff” and its density inside galax-
ies is not enhanced relative to an average cosmological
value, then a stronger constraint can be derived by re-
quiring that domain walls provide a (sub)dominant con-
tribution to the dark-energy density, ρDW ≤ ρDE, where
ρDE � 0.4×10−5GeV/cm3. In that case the constraint on
S0/N is strengthened by ∼ 300. A more realistic scenario
is when the network of domain walls is initially isotropic
over the cosmological scales and then dynamically ac-
creted inside the halo. Assuming that in the process of
accretion the distance between domain walls scales the
same way as distance between dark matter particles, one
arrives at the following constraint ρDW ≤ (ρDMρ2DE)

1/3,
and the constraint on the amplitude of a is strength-
ened by ∼ 50 relative to (6). If the constraint (6)
is saturated, and L = 10−2 ly, then the wall tension
σ ∼ 10−12 GeV3, which is comparable to constraints
derived elsewhere in the literature [12]. A domain-wall-
crossing event leads to a change in the local gravitational
acceleration, ∆g = 4πGNσ, where GN is the gravita-
tional constant. For the fiducial choice of parameters,
this change does not exceed 10−15 m/s2, which is ex-
ceedingly difficult to detect.
Our choice of the normalization for L and ma in (6)

is suggested by the requirement of having a frequency
of wall-crossing within 10 yr with relative velocity of
v = 10−3c typical for galactic objects, and having the
signal duration in excess of a millisecond. This choice can
be examined for self-consistency in the context of the cos-
mological scenario for the formation of the domain wall
network from randomly distributed ain. Formation will
occur in the early Universe when the Hubble expansion
rate drops below Hin ∼ ma, at which time the initial
values for L are typically on the order of or just below
the horizon size Lin ∝ (10−2 − 1)/Hin. Subsequent ex-
pansion leads to the stretching of L with redshift z as
L(z) = Linzin/(1 + z). It is easy to see that ma ∼ neV
leads to the formation of domain walls during the elec-
troweak epoch, Hin ∼ H(T ∼ 100GeV), and subsequent
cosmological stretching can easily account for the growth
of L from O(100 m) to a fraction of ly. We conclude that
our fiducial choice, ma ∼ neV and L ∼ 10−2 ly, fits well
with the cosmological scenario of wall formation.

The pseudoscalar coupling of the field a with standard
model fermions, fi

−1∂µaψ̄iγµγ5ψi, leads to the interac-
tion of spins of atomic constituents to the gradient of the
scalar field,
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where fi are free parameters of the model with dimension
of energy. For light scalars of interest, the astrophysical
bounds apply and limit fn,p,e > 109 GeV [13].
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Stable domain walls of light (pseudo)scalar fields permeating the entire Universe and persisting
to the present epoch is a generic consequence of many extensions to the Standard Model. Currently
the combination of gravitational and cosmological constraints provides the best limits on such a
possibility. We show that if domain walls are generated by an axion-like field with a coupling to the
spins of standard-model particles, and the galactic environment contains a network of such walls,
terrestrial experiments aimed at detection of wall-crossing events are realistic. In particular, a geo-
graphically separated but time-synchronized network of sensitive atomic magnetometers can detect
a wall crossing and probe a range of model parameters currently unconstrained by astrophysical
observations and gravitational experiments.

PACS numbers: 14.80.Va, 98.80.Cq

Introduction. Very weak interactions of axion particles

with ordinary matter have long been a focus of theoreti-

cal attention and experimental searches [1]. While QCD-

type axions are well-motivated, in recent years the scope

of this research has been broadened to axion-like par-

ticles [2, 3], i.e., light pseudoscalar particles derivatively

coupled to matter but without a tight mass-coupling rela-

tion imposed on the QCD axions. The shift symmetry of

the pseudoscalar interaction protects the mass, whatever

its value is, from large radiative corrections coming from

matter loop, ensuring technical naturalness of axion-like

models.

Cosmological effects of such pseudoscalar particles can

vary considerably, depending on their mass. Axions with

masses on the order of µeV may comprise a significant

fraction of cold dark matter in the Universe by storing

energy in coherent oscillations of the field [4]. Axion-like

particles in the keV-range can form super-WIMP dark

matter (see, for example, Ref. [5]). Extremely light scalar

fields are often invoked as candidates for quintessence
(see, for example, Ref. [6]), in which case the combina-

tion of pseudoscalar couplings and the scalar-field poten-

tial creates parity-odd effects on cosmological scales [7]

and/or leads to local coupling of the scalar-field gradient

to spins [8]. Finally, there is a multitude of axion-like

fields predicted by string theory [9] with nontrivial ef-

fects for inflation and strong gravity [10].

In this Letter we explore the phenomenological con-

sequences of stable domain-wall solutions for axion-like

particles. Scalar-field potentials with some degree of dis-

crete symmetries admit domain-wall-type solutions inter-

polating between domains of different energy-degenerate

vacua [11]. In these models, initial random distribution

of the scalar field in the early Universe leads to the for-

mation of domain-wall networks as the Universe expands

and cools. For QCD-type axions, if stable, such domain

walls could lead to disastrous consequences in cosmol-

ogy by storing too much energy [11]. For an arbitrary

scalar field, where parameters of the potential are chosen

by hand, the “disaster” can be turned into an advantage.

Indeed, over the years there were several suggestions how

a network of domain walls could be a viable candidate for

dark matter or dark energy [12, 13].

Herein, we revisit a subset of these ideas from a prag-

matic point of view. We would like to address the follow-

ing questions: (1) if a network of domain walls formed

from axion-like fields exists in our galaxy, what are the

chances for an encounter between the Solar system and a

pseudoscalar domain wall? and (2) how could the event

of a domain-wall crossing the Earth be experimentally

determined? Given gravitational constraints on the av-

erage energy density of such walls and constraints on the

coupling of axion-like fields to matter [14–17], it is not

obvious that the allowed parameter range would enable

a chance for detection. Yet we show in this Letter that

there is a realistic chance for the detection of the domain

walls, even when the gravitational and astrophysical con-

straints are taken into account. This goal can be achieved

with correlated measurements from a network of optical

magnetometers with sensitivities exceeding 1 pT/
√
Hz,

placed in geographically distinct locations and synchro-

nized using the global positioning system (GPS).

Physics of light pseudoscalar domain walls. We start

by considering the Lagrangian of a complex scalar field

φ, invariant under ZN -symmetry, φ → exp(i2πk/N)φ,
where k is an integer. We choose the potential in such a

way that it has N distinct minima

Lφ = |∂µφ|2 − V (φ); V (φ) =
λ

S2N−4
0

���2N/2φN − SN
0

���
2
,(1)

where S0 has dimension of energy and λ is dimensionless.

Choosing φ = 2
−1/2S exp(ia/S0) to parameterize the
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Choosing φ = 2−1/2
S exp(ia/S0) to parameterize the

scalar field, we find that the potential V (φ) is minimized
for the following values of S and a,

S = S0; a = S0 ×
�
0;

2π

N
;
4π

N
; ...

2π(N − 1)

N

�
. (2)

Freezing the Higgs mode to its minimum, S = S0, pro-
duces the effective Lagrangian for the a field,

La =
1

2
(∂µa)

2 − V0 sin
2

�
Na

2S0

�
, (3)

with V0 = 4λS4
0 . The spatial field configuration a(r)

interpolating between two adjacent minima represents a
domain-wall solution. A network of intersecting domain
walls is possible for N ≥ 3. The solution for a domain
wall along the xy-plane that interpolates between a = 0
and 2πS0/N neighboring vacua with the center of the
wall at z = 0 takes the following form,

a(z) =
4S0

N
× arctan [exp(maz)] ;

da

dz
=

2S0ma

N cosh(maz)
.

(4)
The characteristic thickness of the wall d is determined
by the mass ma of a small excitation of a around any
minimum, d ∼ 2/ma. The mass ma can be expressed
in terms of the original parameters of the potential,
ma = NS

−1
0 (V0/2)1/2 = (2λ)1/2NS0. Owing to the fact

that V (φ) can have many different realizations other than
(1), we shall use solution (4) as an example, rather than
a generic domain-wall profile for N ≥ 3. The important
parameters are the gradient of the field inside the wall,
maS0/N , and ma, which determines the wall thickness.

Gravitational and astrophysical constraints. From the
macroscopic point of view at distance scales much larger
than d, the wall can be characterized by its mass per
area, referred to as tension,

σ =
Mass

Area
=

�
dz

����
da

dz

����
2

=
8S2

0ma

N2
. (5)

The network of domain walls will have an additional
distance-scale parameter L, an average distance between
walls, or a characteristic size of a domain. This param-
eter is impossible to calculate without making further
assumptions about the mechanisms of wall formation
and evolution. We treat it as a free variable and con-
strain the maximum energy density of the domain walls,
ρDW ∼ σ/L in the neighborhood of the Solar System by
the dark-matter energy density, ρDM � 0.4 GeV/cm3,

ρDW ≤ ρDM =⇒ S0

N
≤ 0.4 TeV ×

�
L

10−2 ly
× neV

ma

�1/2
.

(6)
This constraint implies some flexible evolution of the
domain-wall network and the possibility for them to build
up their mass inside galaxies. We consider such the con-
straint as the most conservative, i.e. giving the most

relaxed bound on ρDW. If the network of domain walls
is “stiff” and its density inside galaxies is not enhanced
relative to an average cosmological value, then a stronger
constraint can be derived by requiring that domain walls
provide a (sub)dominant contribution to the dark-energy
density, ρDW ≤ ρDE, where ρDE � 0.4 × 10−5 GeV/cm3

[9]. In that case the constraint on S0/N is strength-
ened by ∼ 300. Our choice of the normalization for L

and ma in (6) is suggested by the requirement of hav-
ing wall crossings within ∼10 yr with relative velocity of
v = 10−3

c typical for galactic objects, and having the
signal duration in excess of 1 ms. This choice can be
self-consistent within the cosmological scenario for the
formation of the domain-wall network from randomly dis-
tributed initial ain, assuming that the network is “frus-
trated”, and exhibits ρDW ∼ R

−1 scaling, where R is the
cosmological scale factor. As a word of caution, we add
that the numerical simulations of domain walls in some
scalar field theories have shown much faster redshifting of
ρDW, and never achieved the frustrated state [7]. In light
of this, some unorthodox cosmological/astrophysical sce-
narios for the formation of domain walls may be required.
We consider two types of pseudoscalar coupling of the

field a with the axial-vector current of a standard-model
fermion, Jµ = ψ̄γµγ5ψ,

Llin = J
µ × iφ

←→
∂ µφ

∗ × 1

S0fa
−→ J

µ × ∂µa

fa
(7)

Lquad = J
µ × ∂µV (φ)× 4S2

0

(f �
aN)2V0

−→ J
µ × ∂µa

2

(f �
a)

2
(8)

where the arrows show the reduction of these Lagrangians
at the minima of V (a), and fi, f

�
i are free parameters of

the model with dimension of energy. The normalization
is chosen in a way to make connection with axion litera-
ture. The derivative nature of these interactions softens
problems with “radiative destabilization” of ma. It is
also important that the effective energy parameters nor-
malizing all higher dimensional interactions in (7) and
(8) are assumed to be above the weak scale. Both Llin

and Lquad lead to the interaction of spins si of atomic
constituents and the gradient of the scalar field,

Hint =
�

i=e,n,p

2si · [f−1
i ∇a+ (f �

i)
−2∇a

2], (9)

For light scalars of interest, the astrophysical bounds
limit |fn,p,e| > 109 GeV [6], while bounds on quadratic
∂µa

2 interactions are significantly weaker, f �
i > 10 TeV

[8]. In what follows we will derive the signal from fi in
(9), and then generalize it to the f

�
i case.

Spin signal during the wall crossing. The principles
of sensitive atomic magnetometry are, for example, de-
scribed in Ref. [10]. A typical device would use param-
agnetic atomic species such as K, Cs, or Rb by them-
selves or in combination with diamagnetic atoms whose
magnetic moments are generated by nuclear spin (e.g.,
the spin-exchange-relaxation-free [SERF] 3He-K magne-
tometer described in Ref. [11]). Specializing (9) for the
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of energy. For light scalars of interest, the astrophysical

bounds apply and limit |fn,p,e| > 10
9
GeV [17].

The principles of sensitive atomic magnetometry are,

for example, described in Ref. [19]. A typical device

would use paramagnetic atomic species such as K, Cs,

or Rb by themselves or in combination with diamagnetic

atoms whose magnetic moments are generated by nuclear

spin (e.g., the spin-exchange-relaxation-free [SERF]
3
He-

K magnetometer described in Ref. [20]). Specializing (7)

for the case of two atomic species,
133

Cs in the F = 4

state and
3
He in the F = 1/2 state, we calculate the en-

ergy difference ∆E between the Fz = F and Fz = −F

states in the middle of the wall,

Hint =
F ·∇a

Ffeff
; f

−1
eff (Cs) =

1

fe
− 7

9fp
; f

−1
eff (He) =

1

fn
;

∆E =
4S0ma

Nfeff
� 10

−15
eV× ma

neV
× 10

9
GeV

feff
× S0/N

0.4TeV
,(8)

In these formulae we assumed that the nuclear spin is

mostly due to unpaired neutron (
3
He) or g7/2 valence

proton (
133

Cs), and one can readily observe complemen-

tary sensitivity to fi in two cases. We can express these

results in terms of the equivalent “magnetic field” inside

the wall using µBeffF/F = ∇aF/(Ffeff) identification,

where µ is the nuclear magnetic moment. The magnitude

of Beff (direction is impossible to predict) is given by

B
max
eff � ma

neV
× 10

9
GeV

feff
× S0/N

0.4TeV
×

�
10

−11
T (Cs)

−10
−8

T (He)
,(9)

and the larger equivalent field strength for
3
He originates

from its smaller magnetic moment. The couplings and

wall parameters in Eq. (9) are normalized to the maxi-

mum allowed values from Eq. (6). The duration of the

signal is given by the ratio of wall thickness to the trans-

verse component of the relative Earth-wall velocity,

∆t � d

v⊥
=

2

mav⊥
= 1.3ms× neV

ma
× 10

−3

v⊥/c
. (10)

Such crossing time can easily be in excess of the Cs mag-

netometer response time tr, and we can combine the

B
max
eff and ∆t into a signal factor S = B

max
eff (∆t)

1/2
to

be directly compared to experimental sensitivity,

S � 0.4 pT√
Hz

× 10
9
GeV

feff
× S0/N

0.4TeV
×

�
ma

neV

10
−3

v⊥/c

�1/2

≤ 0.4 pT√
Hz

× 10
9
GeV

feff
×

�
L

10−2 ly

10
−3

v⊥/c

�1/2
, (11)

where in the inequality we used the gravitational con-

straint from Eq. (6). The maximally allowed value for the

signal (∼ pT/
√
Hz), after taking into account the gravi-

tational and astrophysical constraints, exceeds capabili-

ties of modern magnetometers that can deliver fT/
√
Hz

sensitivity [19]. For the
3
He-K SERF magnetometer, the

more appropriate figure of merit would be the tipping

angle of the helium spin after the wall crossing, assum-

ing that the typical crossing time is below the dynamical

response time. Taking the spins to be oriented parallel

to the wall, we calculate this angle to be

∆θ =
4πS0

v⊥Nfeff
� 5×10

−3
rad×10

9
GeV

feff
×10

−3

v⊥/c
× S0/N

0.4TeV
.

(12)

This could be far in excess of 10-nrad tipping angles that

can be experimentally detected [21]. Thus, both types of

magnetometers offer ample opportunities for a realistic

detection of the wall-crossing events.

So far we have used the galactic constraints (6),

ρDW ≤ ρDM. It is noteworthy that even if the energy

density of walls in the galaxy does not exceed cosmolog-

ical dark-energy density, i.e. ρDW ≤ ρDE, the expected

signal can reach ∆θ ∼ 10
−5

rad and S ∼ fT
√
Hz, which

is still a realistic signal for detection with the best mag-

netometers. It is remarkable that a possible domain-wall

component of dark energy can, in principle, be detected

in the laboratory.

Network of synchronized magnetometers. While a sin-

gle magnetometer is sensitive enough to detect a domain-

wall crossing, due to the rarity of such events it would

be exceedingly difficult to confidently distinguish a signal

from false positives induced by occasional abrupt changes

of magnetometer-operation conditions, e.g., magnetic-

field spikes, laser-light-mode jumps, etc. A global net-

work of synchronized optical magnetometers is an attrac-

tive tool to search for galactic/cosmological domain walls,

as it would allow for efficient vetoes of false domain-

wall crossing events. We also note that comagnetome-

ter schemes involving either a second spin species or

SQUID magnetometers could yield additional suppres-

sion of false-positive events arising from local field fluc-

tuations or changes in operating conditions. As schemat-

FIG. 1: Schematic figure of the domain-wall crossing. The cross-
ings recorded in four distinct locations (mark with stars) at ti allow
to determine the normal velocity v⊥ and predicting the timing of
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of energy. For light scalars of interest, the astrophysical

bounds apply and limit |fn,p,e| > 10
9
GeV [17].

The principles of sensitive atomic magnetometry are,

for example, described in Ref. [19]. A typical device

would use paramagnetic atomic species such as K, Cs,

or Rb by themselves or in combination with diamagnetic

atoms whose magnetic moments are generated by nuclear

spin (e.g., the spin-exchange-relaxation-free [SERF]
3
He-

K magnetometer described in Ref. [20]). Specializing (7)

for the case of two atomic species,
133

Cs in the F = 4

state and
3
He in the F = 1/2 state, we calculate the en-

ergy difference ∆E between the Fz = F and Fz = −F
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133
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and the larger equivalent field strength for
3
He originates

from its smaller magnetic moment. The couplings and

wall parameters in Eq. (9) are normalized to the maxi-

mum allowed values from Eq. (6). The duration of the
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ties of modern magnetometers that can deliver fT/
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Hz

sensitivity [19]. For the
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He-K SERF magnetometer, the

more appropriate figure of merit would be the tipping
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This could be far in excess of 10-nrad tipping angles that

can be experimentally detected [21]. Thus, both types of

magnetometers offer ample opportunities for a realistic

detection of the wall-crossing events.
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ρDW ≤ ρDM. It is noteworthy that even if the energy

density of walls in the galaxy does not exceed cosmolog-

ical dark-energy density, i.e. ρDW ≤ ρDE, the expected

signal can reach ∆θ ∼ 10
−5

rad and S ∼ fT
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Hz, which

is still a realistic signal for detection with the best mag-

netometers. It is remarkable that a possible domain-wall

component of dark energy can, in principle, be detected

in the laboratory.
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field spikes, laser-light-mode jumps, etc. A global net-
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tive tool to search for galactic/cosmological domain walls,

as it would allow for efficient vetoes of false domain-

wall crossing events. We also note that comagnetome-
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Hz, which
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FIG. 1: Schematic figure of the domain-wall crossing. The cross-
ings recorded in four distinct locations (mark with stars) at ti allow
to determine the normal velocity v⊥ and predicting the timing of
the 5th event.
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•  Generalization to other types of defects, i.e. strings and monopoles. 	

	

•  Working out a plausible theoretical framework that creates enough 

topological defects around us. 	

	

•  Generalization to other types of interaction. Going from spin to 

frequency, means switching from magnetometers to atomic clocks.	


•   Involve networks of gravitational wave detectors. E.g. LIGO can be 
used because a transient event will create strain – detectable signal. 
Morphology of the signal is different – more work required. 	


•  Experimental developments: GNOME proposal (Global Network of 
Magnetometers for studies of Exotic physics).	
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Conclusion 

	  

1.  Wide separation of MPlanck and ΛHL looks to me as the most promising 
and generic way of “sheltering” LV in the gravitational sector. This 
idea goes beyond HL gravity and can be applied to other models. 
Two naturalness problems remain in HL gravity: A. Vector modes are 
non-Lifshits – they furnish sensitivity to scales beyond, and we 
proposed how to “tame” them. B. Problem of cgraviton = cmatetr remains  

2.  Radiative corrections in the aether sector is important to analyze, in 
order to see whether the reparametrisation invariance can be 
preserved at loop level. I see the way how 1-loop corrections can be 
made to respect φ à const φ. 

3.  Transient effects (due to possible cosmological presence of 
macroscopic size topological defects) can be searched for with a 
slight “re-profiling” of the current LV experiments. [Modulo funding] 
a network of synchronized magnetomers is going to be created. 

 


