

#### Neutrino-less double beta decay --<sup>48</sup>Ca and CANDLES--

T. Kishimoto Osaka Univ.

### Contents



- Double beta decay and Majorana Mass
  - Matter dominated universe and anti-particle
  - v Majorana mass and double beta decay
- Double beta decay experiments –Methods and nuclei; study of <sup>48</sup>Ca
- CANDLES detector system -CANDLES I, II, III, VI, Prospects
- Enrichment of <sup>48</sup>Ca
  - -Methods of enrichment
  - -Crown ether resin



#### Relativity + uncertainty →anti-particle



 no information is faster than speed of light interact with any spacetime  $\rightarrow$ particle that travels backward in time  $\rightarrow$ antiparticle Carries inverse quantity distance (charge, spin(chirality)) **Dirac equation** Feynman Charge: conserved Chirality: violated by mass antiparticle particle Majorana particle









#### Neutrino mass

- Neutrino oscillation is established
  - $-\Delta m_{12}^2, \Delta m_{23}^2, \theta_{12}, \theta_{23}, (\theta_{13})$
  - SK, GALLEX-SAGE, SNO, KamLAND
  - T2K, Nova, Double Chooze, Dya Bay, ...
- Neutrinos have mass
  - Absolute mass?
  - Majorana particle?

∆m ~ 50meV ∆m ~ 7meV







#### Direct measurement of $m_{\nu}$

KATRIN =>  $m_v \sim 0.2 \text{ eV}$ 

- <sup>3</sup>H  $\beta$  decay (Q<sub> $\beta$ </sub>: 18.7keV)
- $0\nu\beta\beta$  decay
- CMBR
  - WMAP + SDSS + ...





Figure: Pre-Spectrometer and Main Spectrometer



#### KATRIN Exp.



ЭS

tritium ß-decay and the neutrino rest mass

 $^{3}\text{H} \rightarrow ^{3}\text{He} + e^{-} + \bar{\nu}_{e}$ 

superallowed

*half life* :  $t_{1/2} = 12.32 \text{ a}$ *B* end point energy :  $E_0 = 18.57 \text{ keV}$ 



7

#### KATRIN Exp.





MAC-E filter Magnetic Adiabatic Collimation (MAC) Solid angle  $2\pi$ 



#### Neutrino type





#### v has to be a Majorana particles

• Mass term (Dirac)

$$\mathcal{L}_D = -m_D \overline{\nu_R^0} \nu_L^0 + \text{ h. c.}$$

- Mass term (Majorana)
  - Only Left (right) handed mass term can be made
  - Left and right can have different mass
  - We know only left-handed neutrino
  - Heavy right-handed v
     see-saw: (Yanagida, Gell-Mann...)
  - Violates lepton number

$$\mathcal{L}_{m_L} = -\frac{m_L}{2} \overline{(\nu_L^0)^c} \nu_L^0 + \text{ h. c.}$$

Chirality flip (relativity)

Left handed  $\rightarrow$  right handed (anti-particle)





#### If $0v2\beta$ decay is observed



Lepton number conservation is violated

–Particle ⇔ anti-particle

- Neutrinos are Majorana particles
  - -Only neutrinos can be Majorana particles
    - Others (quarks and charged leptons): Charge Dirac particles
  - -Neutrino mass can be given
- Leptogenesis: Fukugita, Yanagida '86
  - Generates baryon number in our universe

### Double beta decay nuclei



- Nuclei
  - <sup>48</sup>Ca, <sup>76</sup>Ge, <sup>82</sup>Se, <sup>100</sup>Mo,
  - <sup>128</sup>Te, <sup>130</sup>Te, <sup>136</sup>Xe, <sup>150</sup>Nd
  - Positron emitter
- Ultra rare process
  - $-\,10^{20\sim25}\,yr$
- Huge natural background sources
  - High sensitive detector
  - Low background circumstance Underground lab.



<sup>A</sup>Z+2<sup>N-2</sup>







#### Detector type





#### **NEMO3 : Neutrino Ettore Majorana Observatory**

Candles

France, United-States, England, Japan, Tcheck Rep., Russia Started taking data : Feb. 2003, duration : 5 years, Laboratoire Souterrain de Modane (4800 m.w.e)

**Tracking detector** (6180 Geiger cells in He+alcohol): Vertex  $\sigma_t = 5 \text{ mm}$ ,  $\sigma_z = 1 \text{ cm}$ Calorimeter (1940 plastic scintillators – PMTs low radioactivity) FWHM=14% (1 MeV) Bkg: gamma + neutrons shield, magnetic field, materials low radioactivity



ββ EVENT OBSERVED BY NEMO-3...











#### . . . . . . . . . . . . .

| Name                                         | Nucleus         | Mass*      | Method        | Location  | Time line         |  |  |  |  |
|----------------------------------------------|-----------------|------------|---------------|-----------|-------------------|--|--|--|--|
| Operational & recently completed experiments |                 |            |               |           |                   |  |  |  |  |
| CUORICINO                                    | Te-130          | 11 kg      | bolometric    | LNGS      | 2003-2008         |  |  |  |  |
| NEMO-3                                       | Mo-100/Se-82    | 6.9/0.9 kg | tracko-calo   | LSM       | until 2010        |  |  |  |  |
| Construction funding                         |                 |            |               |           |                   |  |  |  |  |
| CUORE                                        | Te-130          | 200 kg     | bolometric    | LNGS      | 2012              |  |  |  |  |
| EXO-200                                      | Xe-136          | 160 kg     | liquid TPC    | WIPP      | 2009 (comiss.)    |  |  |  |  |
| GERDA I/II                                   | Ge-76           | 35 kg      | ionization    | LNGS      | 2009 (comiss.)    |  |  |  |  |
| SNO+                                         | Nd-150          | 56 kg      | scintillation | SNOlab    | 2011              |  |  |  |  |
| Substantial R&D funding / prototyping        |                 |            |               |           |                   |  |  |  |  |
| CANDLES                                      | Ca-48           | 0.35 kg    | scintillation | Kamioka   | 2009              |  |  |  |  |
| Majorana                                     | Ge-76           | 26 kg      | ionization    | SUSL      | 2012              |  |  |  |  |
| NEXT                                         | Xe-136          | 80 kg      | gas TPC       | Canfranc  | 2013              |  |  |  |  |
| SuperNEMO                                    | Se-82 or Nd-150 | 100 kg     | tracko-calo   | LSM       | 2012 (first mod.) |  |  |  |  |
| R&D and/or conceptual design                 |                 |            |               |           |                   |  |  |  |  |
| CARVEL                                       | Ca-48           | tbd        | scintillation | Solotvina |                   |  |  |  |  |
| COBRA                                        | Cd-116, Te-130  | tbd        | ionization    | LNGS      |                   |  |  |  |  |
| DCBA                                         | Nd-150          | tbd        | drift chamber | Kamioka   |                   |  |  |  |  |
| EXO gas                                      | Xe-136          | tbd        | gas TPC       | SNOlab    |                   |  |  |  |  |
| MOON                                         | Mo-100          | tbd        | tracking      | Oto       |                   |  |  |  |  |
| Other decay modes                            |                 |            |               |           |                   |  |  |  |  |
| TGV                                          | Cd-106          |            | ionization    | LSM       | operational       |  |  |  |  |

\*: mass of DBD-isotopes; detector & analysis inefficiencies NOT included! Range: 18% to ~90%

S. Schönert, TAUP 2009

21



#### KamLAND with <sup>136</sup>Xe



KamLAND-ZEN

#### Merit of using Xe

- isotopic enrichment, purification established
- soluble to LS more than 3 wt%, easily extracted
- slow  $2\nu 2\beta$  (T<sub>1/2</sub>>10<sup>22</sup> years) requires modest energy resolution

Merit of using KamLAND

• ultra low radioactivity environment based on ultra pure LS and 9m radius active shield

U: <3.5x10<sup>-18</sup> g/g Th: <5.2x10<sup>-17</sup> g/g

- no modification to the detector is necessary to accommodate DBD nuclei
- high sensitivity with low cost (1st phase budget secured, 190 kg in hand, 230kg purchase going on)
- reactor and geo- antineutrino observations continue
- high scalability capable to contain 10 ton of <sup>136</sup>Xe

#### Studies at Osaka Univ.



- ELEGANTS III <sup>76</sup>Ge (source = det.)
  - Solid state detector
- ELEGANTS V <sup>100</sup>Mo (source  $\neq$  det.)
  - Plastic scint. + chamber
  - MOON
- ELEGANTS VI <sup>48</sup>Ca (source = det.)
   CaF<sub>2</sub>(Eu) scintillator
- CANDLES <sup>48</sup>Ca (CaF<sub>2</sub> in Liquid scintillator)

### Why <sup>48</sup>Ca



- Highest Q value (4.27 MeV, <sup>150</sup>Nd: 3.3 MeV)<sup>andles</sup>
  - Large PV, Little BG( $\gamma$ : 2.6 MeV,  $\beta$ : 3.3 MeV)
- Small natural abundance: 0.187%
  - Isotope separation  $\rightarrow$  expensive (no Gas)
- Next generation
  - $-m_v \sim T^{-1/2} \sim (Det. Mass)^{-2} (no BG)$ 
    - ~ (Det. Mass)<sup>-4</sup> (BG limited)
  - <sup>48</sup>Ca (no BG so far)



- Nuclear matrix element  $< m_v >$
- If we want to sense normal hierarchy region, only <sup>48</sup>Ca + enrichment have a chance.



#### Nuclear matrix element





 $CaF_{2}(Eu)$ 



 $\begin{array}{l} CaF_2(pure) \mbox{ active shield for PMT side} \\ CaF_2(Eu) \mbox{ is not transparent for U.V. light} \end{array}$ 



Mini Workshop on Neutrino IPMU



#### **Roll-off ratio**



$$R = \frac{V_L - V_R}{V_L + V_R}$$

#### <sup>48</sup>Ca double beta decay by ELEGANT VI PRC78 058501('08) Candles





#### **Radioactive Backgrounds**



## How to sense $m_v = 1 \sim 10^{-2} eV$

- Big detector
  - Huge amount of materials
- Low radioactive background
  - Active shield
  - Passive shield
  - Low background material
  - BG rejection by signal processing
- High resolution
  - Backgrounds from  $2\nu\beta\beta$  decay
- CANDLES is our solution

### CANDLES



<u>CA</u>lcium fluoride for studies of <u>N</u>eutrino and <u>D</u>ark matrices by <u>L</u>ow <u>Energy</u> <u>S</u>pectrometer



#### Big detector



- CaF<sub>2</sub> crystal
  - Best optical lens
  - Long attenuation length
    - 10m (catalog value for visible light)
    - >1m (our measurement for scintillation light)
- Large volume detector
  - 10x10x10 cm<sup>3</sup> x 600 (2t) (CANDLES IV)
  - Increase the number of nuclei (<sup>48</sup>Ca)
    - 6.4 g (ELE VI) ~2.5(kg)
  - Enrichment: further increase



#### Background @ Q value region 🕥

- No natural BG @4.3 MeV
  - Maximum energy
    - $\gamma$ ~ 2.6 MeV,  $\beta$ ~3.3 MeV,  $\alpha$ (max)~2.5 MeV(quench)
  - Successive decay of  $\alpha \beta \gamma$ 
    - ~1µsec decay time



 $2\nu\beta\beta$ 

 $\beta\beta$  Window

Candles











#### **Radioactive impurities**



Mini Workshop on Neutrino IPMU

#### High resolution CaF<sub>2</sub> crystal Candles

- Resolution  $\Delta E \sim \frac{1}{\sqrt{N_p}}$  Scintillation light
- - $-\sim 1/3$  of CaF<sub>2</sub>(Eu) (quart window PMT)
  - peak emission U.V. (285 nm)
- Increase # of photons

– Wavelength shifter

- UV  $\implies$  visible light

#### **Two Phase System**





43





#### CANDLES III



- Construction almost completed @ Osaka Univ.
- CaF<sub>2</sub>(pure)
  - 60 × 10<sup>3</sup> cm<sup>3</sup> ; 191 kg
- Liquid scintillator
- Purification system
- H<sub>2</sub>O Buffer: passive shield
  - $^{\phi}2800 \times {}^{h}2600$
  - safety regulation
- PMTs
  - 15" PMT (×8) : R2018
  - 13" PMT (×32) : R8055



#### CANDLES III







#### CANDLES III@Osaka



Candles PMT: 13" × 32 15" × 8



#### Tank: ${}^{\phi}2.8 \times {}^{h}2.6 m$



CaF<sub>2</sub>: 191 kg  $10^3$  cm<sup>3</sup> × 60

### Rejection of LS Events



Rejection by using Pulse shape information

 Typical Pulse Shapes



Charge Ratio = 
$$\frac{charge in partial gate}{charge in full gate}$$

#### CANDLES III(UG)





#### CANDLES III(UG)



#### CANDLES III (UG)

62 PMT's
 96 CaF<sub>2</sub>(305 kg) crystals:

Almost completed

#### (CaF<sub>2</sub> crystals)



### CANDLES IV





10 × 10 × 10 cm<sup>3</sup> CaF<sub>2</sub> (600 cubes) 2 t liquid scintillator Vessel (<sup>48</sup>Ca) 2.5 kg enrichment

1. BG

- 1. BG free CaF<sub>2</sub> crystal
- 2. Energy resolution
  - 1. More PMT & gain control

# Characteristic of CANDLES

Target

<sup>48</sup>Ca

<sup>76</sup>Ge

<sup>130</sup>Te

<sup>136</sup>Xe

- BG rate (events/weight)
  - So far the best
    - 2~3 orders
- Scale up:
  - CANDESL IV, V
- Enrichment
  - increase  $\beta\beta$  nuclei
  - BG reduction

| Project     | Abund.<br>(%) | (counts/kg/year)                                           |
|-------------|---------------|------------------------------------------------------------|
| ELEGANT VI  | 0.187         | 0 (measured)<br>0.075 (expected)                           |
| CANDLES III | 0.187         | 5x10 <sup>-4</sup>                                         |
| CANDLES IV  | 0.187         | 5x10 <sup>-5</sup>                                         |
| HDM         | ~86           | 0.61                                                       |
| CUORICINO   | 33.9          | 2.4                                                        |
| CUORE       | 33.9          | 0.8 (CUORE-0)<br>10 <sup>-2</sup> ~10 <sup>-3</sup> (Goal) |
| EXO-200     | ~80           | 0.1                                                        |
|             |               |                                                            |



#### Mile stone



- ELEGANTS VI
  - Best <sup>48</sup>Ca  $0\nu\beta\beta$  limit
- CANDLES I, II
- CANDLES III+ III(U.G.)
  - $-100 \text{ x}10 \text{cm}^3 \text{ CaF}_2 (\sim 30 \mu \text{Bq/kg}) \sim 0.5 \text{ eV}$
  - Start running in Nov.-Dec.

- achieved

- CANDLES IV
  - 600 x10cm<sup>3</sup> <sup>48</sup>Ca 2.5kg ~0.2 eV
  - Enrichment 0.2 2% <sup>48</sup>Ca (90meV 50meV)
  - further enrichment ~10meV

### Enrichment of <sup>48</sup>Ca



- Issues in a new detector
  - Increase DBD nuclei
  - Reduce BG
- Enrichment
  - Increase DBD = Reduce BG
    - Only established method
  - Most effective <sup>48</sup>Ca:0.19%
    - Up to 500 times improvement
- How?

| Nucleus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | abunc             | lance(%) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|
| <sup>48</sup> Ca→ <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <sup>48</sup> Ti  | 0.19     |
| $^{76}\text{Ge}\rightarrow^{76}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>76</sup> Se  | 7.8      |
| <sup>82</sup> Se→ <sup>8</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <sup>2</sup> Kr   | 9.2      |
| $^{96}$ Zr $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <sup>5</sup> Mo   | 2.8      |
| $^{100}Mo \rightarrow ^{100}Mo $ | <sup>100</sup> Ru | 9.6      |
| $^{116}Cd \rightarrow ^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>16</sup> Sn  | 7.5      |
| $^{128}\text{Te}\rightarrow^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>28</sup> Xe  | 31.7     |
| $^{130}\text{Te}\rightarrow^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>30</sup> Xe  | 34.5     |
| $^{136}Xe \rightarrow ^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>36</sup> Ba  | 8.9      |
| $^{150}\text{Nd} \rightarrow ^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>50</sup> Sm  | 5.6      |

### Methods of Enrichment



- Centrifuge
  - Gas: UF<sub>6</sub>, but no gas for Ca and Nd
- Mass spectrometer 0.00187 - Sure but Electricity  $\frac{1.9 \times 10^{-19} \times 6.02 \times 10^{23}}{1.9 \times 10^{-19} \times 6.02 \times 10^{23}} = 1.9 \times 10^{-8} \text{ mol/sec}$ 
  - - 10kVx1A=10kW; \$0.1/1kWh
       15MWh/mol
      - ~1.5M\$/mol (48g): ~10g/1M\$ (0.6mol/year)
  - Ionize, accelerate, bend (magnet), ...
- Laser: selective ionization
  - Less acceleration
- Other cost effective methods?



- Crown ether
  - Cyclic chemical compounds that consist of a ring containing several ether groups.
  - Absorbs Ca ion at the center
  - absorbs lighter Ca ions more
  - Separation coefficient
    - ε~ (3.5~6)x10<sup>-3</sup> for 18C6



### Physics of Enrichment by CE

- Chemistry: Phenomenological
  - Mechanism of the enrichment?
  - How much can we expect?
- Energy levels
  - Why CE absorbs lighter isotope?
    - Harmonic oscillator
  - Water: (pH: 10<sup>-14</sup> mol/ℓ)
    - H<sub>2</sub>O: polar molecule: HO pot.
  - Energy difference ( $\Delta E$ ) between water and CE
  - Partition function



Candles

#### Partition function



 Sum up all states in CE and H<sub>2</sub>O with Exp(-E/kT): <sup>40</sup>Ca

$$Z^{40} = \left(\sum_{i=0}^{\infty} Exp\left(-\frac{\hbar\omega_{CE}^{40}(i+1/2)}{kT}\right)\right)^3 + \frac{\alpha}{n_W}\left(\sum_{i=0}^{\infty} Exp\left(-\frac{\hbar\omega_W^{40}(i+1/2) + \Delta E}{kT}\right)\right)^3$$

- States in H<sub>2</sub>O are normalized by  $\alpha/n$ , where  $\alpha$  is arbitrary constant and n is concentration.
- Concentration  $\rho_{CE}^{48} = \left(1 + \frac{\alpha}{n_W} Exp\left(-\frac{3\hbar(\omega_{CE}^{48} - \omega_W^{48})}{2kT}\right)\right)^{-1} = \frac{n_W}{n_W + A}$

- agrees with exp.

### Harmonic oscillator parameter

• Potential depth: U= $\alpha$  344 eV,  $\alpha$ : reduction factor

• 
$$\hbar\omega = \frac{U}{2} \left(\frac{\delta r}{R}\right)^2 = \frac{1}{2} M (\omega \delta r)^2 \qquad \hbar\omega = \alpha 0.19 eV$$

• 
$$\Delta\hbar\omega$$
  
 $\Delta\hbar\omega_{mass} = \hbar\omega \frac{\sqrt{k/M_{40}} - \sqrt{k/M_{48}}}{\sqrt{k/M_{40}}} = \hbar\omega \times 0.087$   
 $\Delta\hbar\omega_{tot} = \Delta\hbar\omega_{mass} \left(\frac{R_W - R_{CE}}{R_W}\right)$ 

- Radius 4.7(H<sub>2</sub>O), 5(15C5), 6(18C6), 7(21C7)
  - 1.1meV, 4.6meV, 8.1meV
- α~0.011 ε 0.00075, 0.0031, 0.0055

#### Experiment by CE resin





#### Enrichment for long migration



### Enrichment by CE



- Separation coefficient
  - ε=0.003~0.006 (18C6)
  - CE size dependence
    - 15C5: ε=0.00075, 18C6 ε=0.003~0.006
    - 21C7: ε: ~ 0.01 (need exp.)
- Current condition: scalable
  - 1m, 3m, 20m, 200m km
  - - 2%(10x0.19%) and 100 kg:1 year migration
- Further improvement: more enrichment

#### Other methods



- Laser enrichment
  - Plant was once built for U but terminated.
  - Efficiency of laser was improved substantially.
  - Ca is easier then U in principle.
  - KAERI had agreement with NEMO group
    - enrichment of kg order 48Ca.
- Electro-migration
  - Essentially easy method.
  - Increase of electric field without increase of power loss.



#### CANLDES



- CANDLES IV
  - 2t: 2.5 kg <sup>48</sup>Ca
- Enrichment (CE resin)

- Current parameter
- $2\% 100 kg(CaF_2)/year$  1.3(<sup>48</sup>Ca)kg /year
- Further study of parameters
  - Enrichment of 5% or more
- Other methods (Laser, electro-migration) (2 years)
- $< m_v > ~90 \text{meV}$ , 50 meV(improvement),
- 10 meV (energy resolution: bolometer) but CaF<sub>2</sub> is necessary