Seminar, 2012 November 21, IPMU, Kashiwa

Detected or undetected ? -- The progenitors of SNe Ia based on the SD model

Hachisu, Kato, Saio, & Nomoto, 2012, ApJ, 744, 69 Hachisu, Kato, & Nomoto, 2012, ApJ, 756, L4

Binary Evolution Models -- SD vs. DD Binary Evolution Models -- SD vs. DD

Single Degenerate (SD)

A White Dwarf (WD) gets mass from its normal star companion

White Dwarf

- \rightarrow The WD mass reaches 1.38 Mo
- \rightarrow carbon ignites at the center/the WD explodes as an SN Ia

O Double Degenerate (DD)

Two WDs merge due to orbital angular momentum loss \rightarrow If the total mass exceeds 1.38 Mo, it explodes as an SN Ia

Serious Problems against SD model

Serious Problems against SD model

1 - Unseen companions in some SNe Ia

- Red Giant (RG) companions are rejected
- Main-sequence (MS) companions are rejected
- undetected circumstellar matter

2 - Super-Chandarasekhar mass SNe Ia

• Very bright SNe Ia (~ 2 Mo or more massive WDs) \rightarrow origin of diversity in brightness

3 - Delay Time Distribution (DTD)

• Standard SD models do not reproduce t^{-1} distribution

Unseen Companion Stars

Unseen Companion Stars

O Strong constraints on SN 2011fe in M101

not brighter than ~ 3.5 Mo MS before explosion (Li + 2011) less massive than ~ 1 Mo MS from no-shocking feature (Brown + 2012) undetected circumstellar matter (Patat + 2011)

Spin-up/spin-down of rotating WDs Spin-up/spin-down of rotating WDs

(de Stefano + 2011)
WD was once spun up/not exploded, even if M > 1.38 Mo, until it spins down → delayed (1 Gyr or so)
O not detected at explosion

 \rightarrow the companion star evolved to a He WD

Serious Problems against SD model

Serious Problems against SD model

1 - Unseen companions in some SNe Ia

- Red Giant (RG) companions are rejected
- Main-sequence (MS) companions are rejected
- undetected circumstellar matter

2 - Super-Chandarasekhar mass SNe Ia

• Very bright SNe Ia (~ 2 Mo or more massive WDs) \rightarrow origin of diversity in brightness

3 - Delay Time Distribution (DTD)

• Standard SD models do not reproduce t^{-1} distribution

Very Massive Ni56 and Ejecta Mass Very Massive Ni56 and Ejecta Mass

○ Ni mass as massive as 1.4 Mo or more Ejecta more massive than 2.0 Mo

 \rightarrow super-Chandrasekhar mass SNe Ia

object	⁵⁶ Ni mass	ejecta mass	ref.
SN 2003fg	$1.29\pm0.07~M_{\odot}$	$\sim 2.1~M_{\odot}$	Howell et $a1.(2006)$
SN 2006gz	$\sim 1.2~M_{\odot}$		Hicken et al. (2007)
SN 2007if	$1.6\pm0.1~M_{\odot}$	$2.4\pm0.2~M_{\odot}$	Scalzo et al. (2010)
SN 2009dc	$1.4 - 1.7 \ M_{\odot}$	$> 2.0 \ M_{\odot}$	Silverman et $al.(2011)$
	$\sim 1.8~M_{\odot}$	$\sim 2.8~M_{\odot}$	Taubenberger et al. (20)

Differentially Rotating WDs

[®] **Differentially Rotating WDs**

○ differential rotation supports WDs → super-Chandrasekhar mass e.g., Yoon & Langer (2005)

Serious Problems against SD model

Serious Problems against SD model

1 - Unseen companions in some SNe Ia

- Red Giant (RG) companions are rejected
- Main-sequence (MS) companions are rejected
- undetected circumstellar matter

2 - Super-Chandarasekhar mass SNe Ia

• Very bright SNe Ia (~ 2 Mo or more massive WDs) \rightarrow origin of diversity in brightness

3 - Delay Time Distribution (DTD)

• Standard SD models do not reproduce t^{-1} distribution

Delay Time Distribution

Maoz + 2012

Meng & Yang 2012

Basic Assumptions of our new Model

Basic Assumptions of our new Model

Our SD model includes three effects in binary evolutions

WD winds (accretion winds)
 mass stripping of companion
 differentially rotating WD

Accretion Wind Evolution (1)

1. WDs blow strong winds when the mass accretion rate exceeds a critical rate $\dot{M}_{\rm acc} > \dot{M}_{\rm cr} = 6.68 \times 10^{-7} \left(\frac{M_{\rm WD}}{M_{\odot}} - 0.445 \right) M_{\odot} \ {\rm yr}^{-1}$ (Hachisu, Kato, & Nomoto 1996, ApJ, 470, L97)

Differentially Rotating WDs (3) Differentially Rotating WDs (3)

3. Mass-accretion timescale is shorter than timescale of angular momentum transfer \rightarrow differential rotation \rightarrow super-Ch mass **Yoon & Langer (2005)** $M_{\rm acc} > 1 \times 10^{-7} M_{\odot} \ {\rm yr}^{-1}$ $M_{\rm WD} > 2.0 M_{\odot}$ 2.5 $ho_{
m c}$ =2•10⁹g/cm³ AAe37: M=2.03M⊙ 2.0 T/W = 0.11cm] 1.5 [108 1.0 Ν 0.5 0.0 2 3 5 0 1 4

08

(1) Final Mwd > 2.4 Mo

(1) Final Mwd > 2.4 Mo

O Case a: WD explodes immediately after reaching Mwd=2.4 Mo

(2) Final 1.5 < Mwd < 2.4 Mo (2) Final 1.5 < Mwd < 2.4 Mo \bigcirc Case b,c,d: differential rotation 10^8--10^9 yr to explode as an SN Ia T/W = 0.14SN la 2.5 $0^8 - 10^9$ yr b differential rotatión a supported M_{WD} (M_©) 2 (''prompt'<mark>',</mark> component) С d e 1.5 $\dot{M}_1 = 3 \times 10^{-7} M_{\odot} \text{ yr}^{-1}$ rigid rotation supported ("tardy component) 1 3/6.5 9.5 8 11 \mathbf{O} 2

log t (yr)

time (10^6 yr)

(3) Final 1.38 < Mwd < 1.5 Mo

(3) Final 1.38 < Mwd < 1.5 Mo

\bigcirc Case e,f: rigid rotation

> 10^9 yr to explode as an SN Ia

(e.g., Justham 2011, Di Stefano et al. 2011, Ilkov & Soker 2011)

Growth of WD Mass (initial 1.1 Mo) Growth of WD Mass (initial 1.1 Mo) Growth of WD Mass (initial 1.1 Mo)

Growth of WD Mass (initial 1.0 Mo) Growth of WD Mass (initial 1.0 Mo)

Growth of WD Mass (initial 0.9 Mo) Growth of WD Mass (initial 0.9 Mo)

Growth of WD Mass (initial 0.8 Mo) Growth of WD Mass (initial 0.8 Mo)

Delay Time Distribution

Delay Time Distribution

Mass Distribution of WDs (MS)

Mass Distribution of WDs (MS)

Mass Distribution of WDs (RG)

Mass Distribution of WDs (RG)

Mass Distribution of WDs

Mass Distribution of WDs

e.g., Scalzo + 2012

Luminosity Distribution of SNe Ia

Luminosity Distribution of SNe Ia

Iable 2WD Mass versus Maximum Luminosity Distribution

WD Mass (M_{\odot})	Ratio (%)	$\Delta m_{15}(B)$ (mag)	Ratio ^a (%)
1.38–1.6	62.7	1.1–2.1	67.4
1.6–1.8	23.6	1.0 - 1.1	17.3
1.8–2.0	10.5	0.9–1.0	10.2
2.0–2.3	3.2	0.7–0.9	5.1

Note.^a Taken from Blondin et al. (2012).

Summary

Summary

- 1 Unseen companion
 - \rightarrow Companion becomes a He WD during spin-down

time

- 2 Brightness distribution \rightarrow Mass distribution of WDs at explosion
- 3 Delay Time Distribution (DTD) \rightarrow Both WD+MS and WD+RG contribute t^{-1}