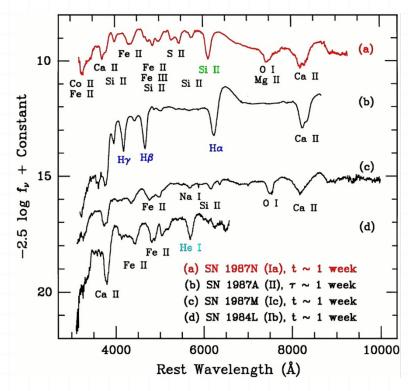

Yasuomi Kamiya
(Univ. of Tokyo)
Kavli IPMU)

Type Ia SN Light Curves:

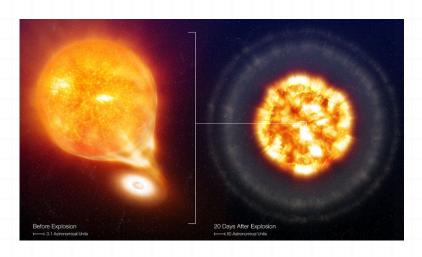
Slow Decliners, Super-Ch Candidates, and Super-Ch-Mass Models

Type Ia Supernovae (SNe Ia)


- Observations
 - light curves (LCs)
 - o rising time ≈ 20 days
 - $OM_{V,peak} \approx -19.3 \text{ mag}$

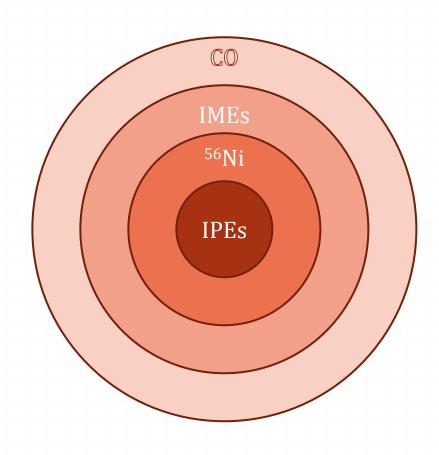
(Filippenko '97, ARAA, 35, 309)

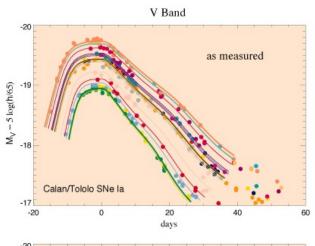
Type Ia Supernovae (SNe Ia)

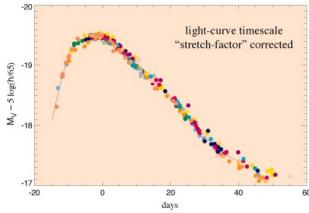

- Observations
 - (early-time) spectra
 - o absence of H & He
 - opresence of strong Si

(Filippenko '97, ARAA, 35, 309)

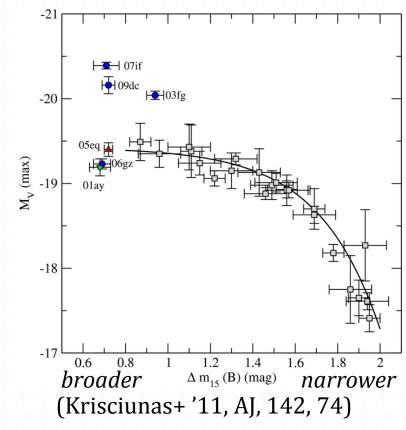
SNe Ia


- O Theory
 - explosion
 - thermonuclear
 - $oldsymbol{o} E_{\rm kin} \approx 10^{51} \, {\rm erg}$
 - progenitor
 - CO white dwarf (WD)
 - in a close binary system
 - \circ $M \approx$ Chandrasekhar mass $(M_{\rm Ch} \approx 1.4 M_{\rm Sun})$


(http://www.eso.org/public/news/eso0731/)

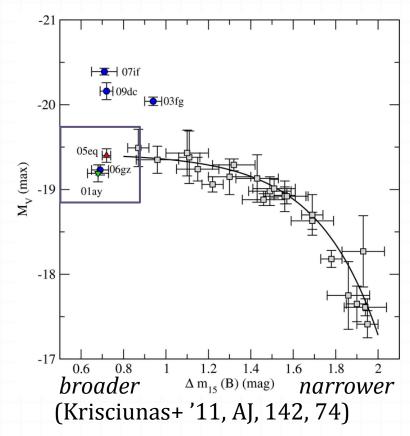

SNe Ia

- O Theory
 - nucleosynthesis
 - Fe-peak elements (IPEs)
 - 0 56Ni
 - heating source
 - \circ $\approx 0.6 M_{\rm Sun}$
 - Intermediate mass elements (IMEs)
 - o unburnt CO

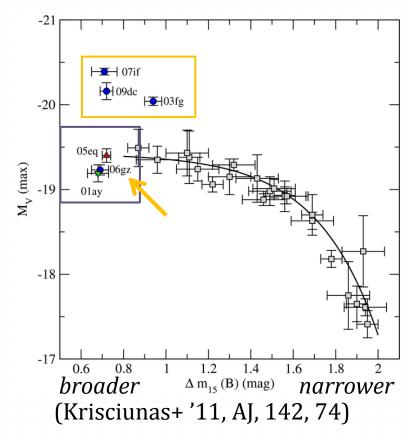

- Inhomogeneous LCs
 - renormalization
 - → cosmological use
 - correlation between peak magnitudes & LC shapes
 - o e.g., Pskovskii ('77), Phillips ('93)
 - o empirical

(Perlmutter+'98, arXiv:astro-ph/9812473)

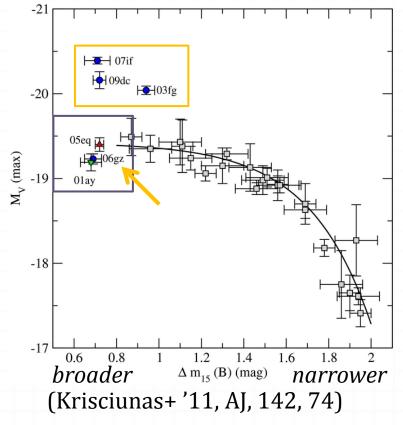
$$OM(X)_{\text{peak}}$$
 vs. $\Delta m_{15}(X')$
 $O\Delta m_{15}(X') \equiv$
 $m(X')_{\text{peak}+15\text{days}} - m(X')_{\text{peak}}$

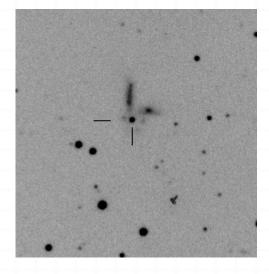


o $M(X)_{\text{peak}}$ vs. $\Delta m_{15}(X')$

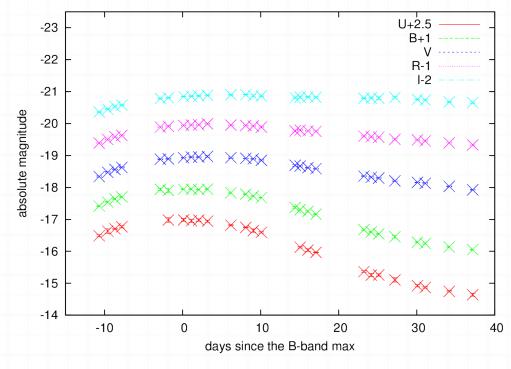

$$\Delta m_{15}(X') \equiv m(X')_{\text{peak}+15\text{days}} - m(X')_{\text{peak}}$$

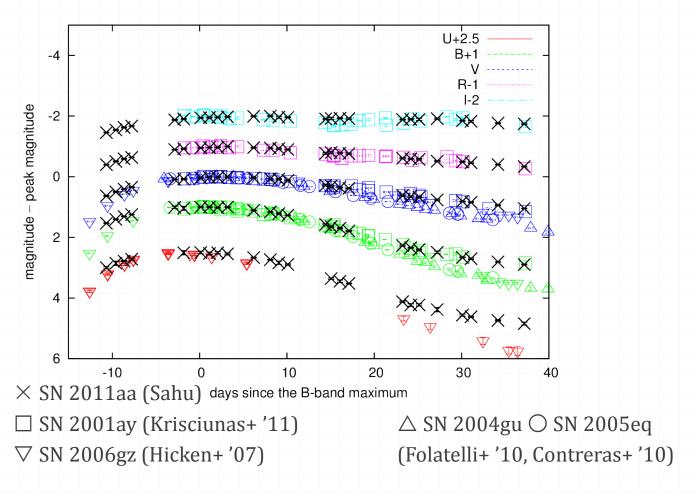
o "slow decliners"


O SNe '01ay, '05eq, '06gz, ...


- o $M(X)_{\text{peak}}$ vs. $\Delta m_{15}(X')$
 - $\Delta m_{15}(X') \equiv$ $m(X')_{\text{peak}+15\text{days}} - m(X')_{\text{peak}}$
 - "slow decliners"
 - O SNe '01ay, '05eq, '06gz, ...
 - super-Chandrasekhar (super-Ch) candidates
 - SNe '03fg, '06gz, '07if, '09dc

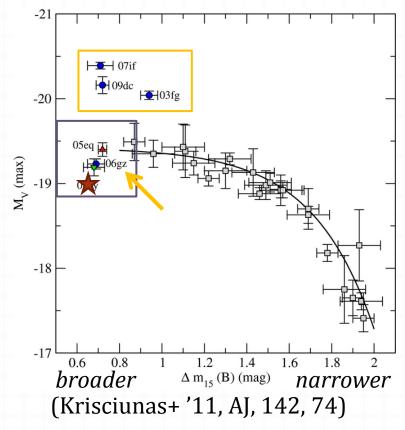

```
o M(X)_{\text{peak}} vs. \Delta m_{15}(X')
   oderightarrow \Delta m_{15}(X') \equiv
          m(X')_{\text{peak+15days}} - m(X')_{\text{peak}}
    "slow decliners"
       O SNe '01ay, '05eq, '06gz, ...
   o super-Chandrasekhar
      (super-Ch) candidates
       SNe '03fg, '06gz, '07if, '09dc
             Related?
```



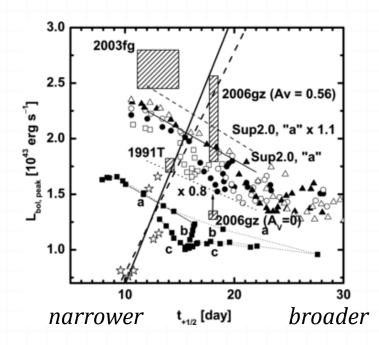

- OSN 2011aa
 - O Type Ia
 - discovered on Feb. 6 (CBET 2653)
 - host galaxy = UGC 3906
 - pair of PGC 021381& PGC 021386 (cf. ATEL 3164)
 - $\rho \mu = 33.56 \text{ mag}$ ($d_L = 51.4 \text{ Mpc; NED}$)

(http://www.rochesterastronomy.org/sn2011/sn2011aa.html)

- O SN 2011aa
 - o phot. data
 - Sahu (pers. comm.)
 - $_{\rm peak}$ = 14.7 mag
 - $o \Delta m_{15}(B) = 0.65 \text{ mag}$
 - extinction
 - Galactic
 - $E(B V)_{Gal} = 0.029 \text{ mag}$ (NED)
 - o $R_{V.Gal} = 3.1$
 - host = unknown
 - $\rightarrow M_{V,peak} \le -19.0 \text{ mag}$

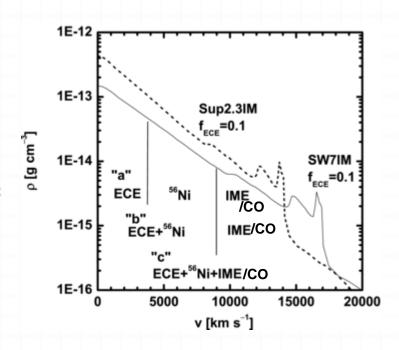

OSN 2011aa

o another "slow decliner"

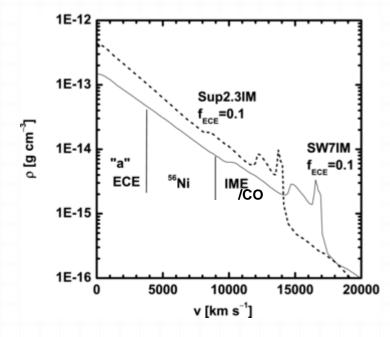

$$OM_{V,peak} \leq -19.0 \text{ mag}$$

$$o \Delta m_{15}(B) = 0.65 \text{ mag}$$

- O SN 2001ay-like?
 - pulsational delayed detonation?(Baron+'12)
- related to SN 2006gz?
 - o super-Ch!


Maeda & Iwamoto ('09)

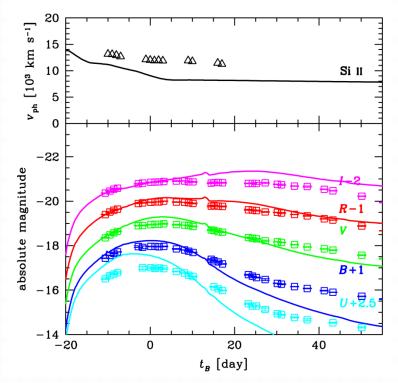
(Maeda & Iwamoto '09, MNRAS, 294, 239)


- Maeda & Iwamoto ('09)

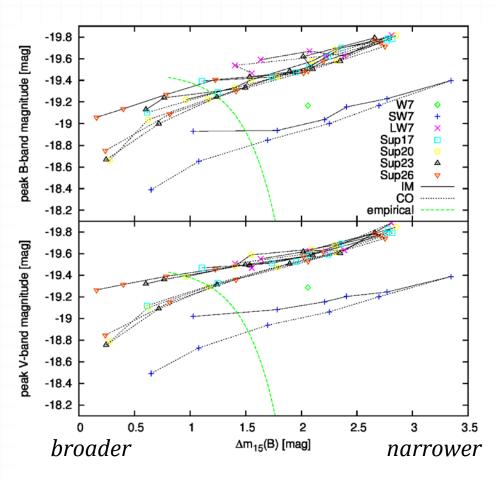
 - O 1D models of exploding WDs
 - parameters
 - {WD, IPE, ⁵⁶Ni, IME, CO} mass
 - **o** WD: 1.38, 1.7, 2.0, ..., 2.6 M_{Sun}
 - o ⁵⁶Ni: 0.6("SW7")/1.0 *M*_{Sun}
 - o no IME/CO assumed
 - mixing

(Maeda & Iwamoto '09, MNRAS, 294, 239)

- Maeda & Iwamoto ('09)
 - *O* SN 2006gz = super-Ch
 - O 1D models of exploding WDs
 - parameters
 - ⟨WD, IPE, ⁵⁶Ni, IME, CO⟩ mass
 - **o** WD: 1.38, 1.7, 2.0, ..., 2.6 M_{Sun}
 - o ⁵⁶Ni: 0.6("SW7")/1.0 *M*_{Sun}
 - o no IME/CO assumed
 - mixing
 - → stratified (onion-like) only for this talk



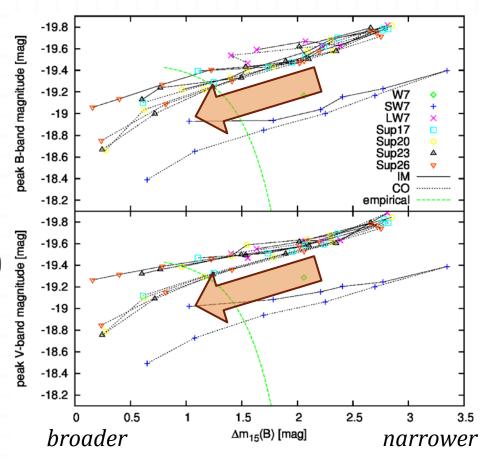
(Maeda & Iwamoto '09, MNRAS, 294, 239)


Model sequence	WD mass [M _{Sun}]	⁵⁶ Ni mass [M _{Sun}]	IPE mass [WD mass]	Assumption
SW7IM	1.38	0.6	0, 0.1,, 0.5, 0.57	no CO, no mixing
LW7IM	1.38	1.0	0, 0.1, 0.2, 0.28	no CO, no mixing
Sup17IM	1.7	1.0	0, 0.1,, 0.4, 0.41	no CO, no mixing
Sup20IM	2.0	1.0	0, 0.1,, 0.5	no CO, no mixing
Sup23IM	2.3	1.0	0, 0.1,, 0.5, 0.57	no CO, no mixing
Sup26IM	2.6	1.0	0, 0.1,, 0.6, 0.62	no CO, no mixing
SW7CO	1.38	0.6	0, 0.1,, 0.5, 0.57	no IME, no mixing
LW7CO	1.38	1.0	0, 0.1, 0.2, 0.28	no IME, no mixing
Sup17CO	1.7	1.0	0, 0.1,, 0.4, 0.41	no IME, no mixing
Sup20CO	2.0	1.0	0, 0.1,, 0.5	no IME, no mixing
Sup23CO	2.3	1.0	0.1, 0.2,, 0.5, 0.57	no IME, no mixing
Sup26CO	2.6	1.0	0.2, 0.3,, 0.6, 0.62	no IME, no mixing

LC Calculations

- O This work
 - STELLA code
 - oe.g., Blinnikov+ ('06)
 - o bolometric & UBVRI

(one of the stratified 2 M_{Sun} WD models)


O Trends

o for the same WD mass

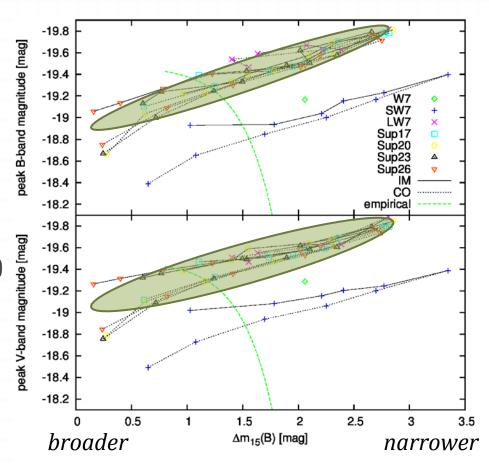
o more IMEs/CO (less IPEs)

→ broader & fainter

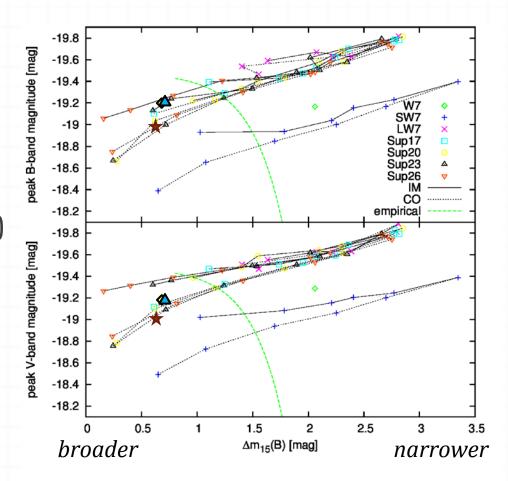
 $\sigma \tau_{\rm LC} \propto \kappa^{1/2} M_{\rm WD}^{3/4} E_{\rm kin}^{-1/4}$ (Arnett '82)

O Trends

of for the same WD mass


o more IMEs/CO (less IPEs)

→ broader & fainter


 $_{\rm LC}$ $\propto \kappa^{1/2} M_{\rm WD}^{3/4} E_{\rm kin}^{-1/4}$ (Arnett '82)

o for the same ⁵⁶Ni mass

o somewhat degenerate

- Comparison to the obs.
 - ★ SN 2011aa
 - ♦ SN 2001ay
 - △ SN 2006gz (super-Ch)
 - O Ch-mass models ("SW7")
 - lying relatively away from "slow decliners"
 - o cf. SN 2001ay
 - PDD model (Ch-mass)
 - O $M_{\rm Ni} \approx 0.5 M_{\rm Sun}$

Summary

- "Slow decliners"
 - o at the tip of Pskovskii-Phillips relation
 - related to (one of) the super-Ch candidates?
- LC calculations for (super-)Ch-mass models
- What about ...?
 - mixing (→ broader)
 - more detailed obs. data (host-galaxy extinction)

Thank you very much for your attention.