Resolving the mid-infrared cores of local Seyfert galaxies 高空間分解赤外線観測で分かる近 傍セイファート銀河中心の物理

Poshak **Gandhi (ガンディ** ポシャク) JAXA 究員

D. Asmus, W.J. Duschl, S. F. Hönig, H. Horst, A. Smette A. Comastri, R. Gilli, C. Vignali

A&A 502, 457–472 (2009) DOI: 10.1051/0004-6361/200811368 © ESO 2009

Resolving the mid-infrared cores of local Seyferts*

P. Gandhi¹, H. Horst^{2,3,4}, A. Smette⁵, S. Hönig⁴, A. Comastri⁶, R. Gilli⁶, C. Vignali⁷, and W. Duschl²

- ¹ RIKEN Cosmic Radiation Lab, 2-1 Hirosawa, Wakoshi, Saitama 351-0198, Japan e-mail: pg@crab.riken.jp
- ² Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstr. 15, 24098 Kiel, Germany
- ³ Zentrum für Astronomie, ITA, Universität Heidelberg, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany
- ⁴ Max Planck Institut f
 ür Radioastronomie, Auf dem H
 ügel 69, 53121 Bonn, Germany
- ⁵ European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Santiago, Chile
- ⁶ Istituto Nazionale di Astrofisica (INAF) Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy
- ⁷ Dipartimento di Astronomia, Università degli Studi di Bologna, via Ranzani 1, 40127 Bologna, Italy

Received 17 November 2008 / Accepted 6 February 2009

ABSTRACT

We present new photometry of 16 local Seyferts including 6 Compton-thick sources in *N*-band filters around 12- μ m, obtained with the VISIR instrument on the 8 m Very Large Telescope. The near diffraction limited imaging provides the least contaminated core fluxes for these sources to date. Augmenting these with our previous observations and with published intrinsic X-ray fluxes, we form a total sample of 42 sources for which we find a strong mid-infrared:X-ray (12.3 μ m:2–10 keV) luminosity correlation. Performing a physically-motivated subselection of sources in which the Seyfert torus is likely to be best-resolved results in the correlation $L_{MIR} \propto$

Unified AGN schematic picture AGN 統一モデル

Dusty torus clouds absorb and thermalize intrinsic AGN emission => Observed Infrared \propto Intrinsic emission (e.g. X-rays)

ISO/ Spitzer/Akari have studied this,

But significant contamination from unresolved starformation

Large ground telescopes 地上巨大望遠鏡

Very Large Telescope (VLT) 8.2 m diameter mirror

VLT is diffraction limited (~0".3 at 10 μm)

VLT Imager & Spectrograph for the mid IR (VISIR)

- MIR imaging/spectrograph 8-13 and 17-24 µm
- FOV: 19"x19" or 32"x32"
- Diffraction-limited imaging.
- Spectral resolutions of ~350, 3200 and 25000

VISIR under the Cassegrain Focus of the 8.2-m VLT Melipal Telescope

VISIR imaging sensitivity

Imaging Filter	central wavelength [µm]	half-band width [µm]	median sensitivity (SF) [mJy 10σ/h]
PAH1	8.59	0.42	5
ArIII	8.99	0.14	6
SIV_1	9.82	0.18	30
SIV	10.49	0.16	8
SIV_2	10.77	0.19	9
PAH2	11.26	0.59	6
SiC	11.85	2.34	7
PAH2_2	11.88	0.37	7
Nell_1	12.27	0.18	12
Nell	12.80	0.21	12
Nell_2	13.03	0.22	15
Q1	17.65	0.83	50
Q2	18.72	0.88	50
Q3	19.50	0.40	100

Local Seyfert survey 近傍セイファート銀河サーベイ

(Collaboration: D. Asmus, W.J. Duschl, P. Gandhi, S. F. Hönig, H. Horst, A. Smette)

VISIR/VLT: Gandhi+2009, Horst+09+08+06

RA offset NGC 5135 (13 micron)

VISIR/VLT: Gandhi+09, Horst+2008

Results:

• $L_{\rm IR} \propto L_{\rm X}$

(as expected in Unification)

VISIR/VLT: Gandhi+09, Horst+2008

- Small dispersion in L_X/L_{IR} relation
- Type 1 and Type 2 follow same relation

VISIR/VLT: Gandhi+09, Horst+2008

- Small dispersion in L_X/L_{IR} relation
- Type 1 and Type 2 follow same relation

VISIR/VLT: Gandhi+09, Horst+2008

- Small dispersion in L_X/L_{IR} relation
- Type 1 and Type 2 follow same relation

Picture from : Ibar & Lira (2006)

VISIR/VLT: Gandhi+09, Horst+2008

- Small dispersion in L_X/L_{IR} relation
- Type 1 and Type 2 follow same relation

Using SPICA to probe clumpy tori

Space Infrared Telescope for Cosmology and Astrophysics

Far-infrared AGN spectra

J. FISCHER ET AL.

Summary (まとめ)

 X-ray + high resolution Mid-IR observations => Seyfert tori may be highly clumpy

• SPICA can directly measure physical properties of tori in the nearby Universe to constrain clumpiness.