# Supernovae Interacting with Dense CSM

Takashi José Moriya Sierra (Kavli IPMU)

S. I. Blinnikov, N. Tominaga, K. Maeda, J. Sollerman, F. Taddia, D. Kasen, N. Yoshida, M. Tanaka, K. Nomoto

#### Many interacting SNe

Type IInType IbnType Ian



Smith et al. (2010)

## 'dense' CSM

dense CSM

A narrow lines from a dense shell how dense CSM should be? more than ~ 1e-5 - 1e-4 Msun/yr SN ejecta temperature can get high but.. X-ray/radio absorbed by dense CSM if it is very dense, temperature gets low  $aT^4 \simeq \frac{1}{2}\rho v_s^2 \rightarrow T \sim 10^4 \text{ K}$ 

#### Motivation for SNe IIn study

What are they?

SN ejecta-CSM really works?

What are SN properties and CSM properties?

What were they?

Progenitors: which stars can have such CSM?

Mass-loss mechanisms: how to have very high mass-loss rates?

SNe IIn tell us about the mass loss just before SN explosions

#### contents

Type IIn Supernovae

Non-superluminous

Superluminous

# Non-Superluminous SNe IIn

## LCs of Interacting SNe

Iuminosity source = ejecta kinetic energy

$$dE = 4\pi r^2 \frac{1}{2} \rho_{CSM} v_s^2 dr \to L = \xi \frac{dE}{dt} = 4\pi \xi r^2 \frac{1}{2} \rho_{CSM} v_s^3$$

$$\begin{array}{c} \begin{array}{c} & \rho_{SN} \propto r^{-n} \ \rho_{CSM} \propto r^{-s} \\ & \downarrow \ \text{self-similar solution} \\ & r \propto t^{\frac{n-3}{n-s}} \ v_s \propto t^{\frac{s-3}{n-s}} \\ & \downarrow \\ & L \propto t^{\alpha} \quad \alpha = \frac{n(2-s)+6s-15}{n-s} \end{array} \end{array}$$

# $L \propto t^{\alpha}$



n=12: RSG n=10: IIb/Ib/Ic n=7 : compact

 $ho_{\rm CSM} \propto r^{-s}$ 

## Type IIn SN 2010jl



#### Type IIn SN 2010jl

s=2 luminosity evolution ~ Ni-Co decay up to ~ 100 days since the explosion



## SN 2005ip & SN 2006jd (IIn)



#### Mass-Loss Rates

#### comparison to s=2 models



#### Progenitors of Type IIn SNe

Many SNe IIn is consistent with steady mass loss model up to ~ 300 days

steady mass loss ~ 10 years before explosions

Are they really LBVs?

mass-loss rate in 'quiet' phase: <~1e-3 Msun/yr

• 0.1 Msun/yr from LBV is from short 'eruptive' (non-steady) event



#### non-SL SNe Type IIn

#### SN 2010jl

- steady mass-loss with ~ 1e-1 Msun/yr
- difficult for LBV?
- SN 2005ip
  - steady mass-loss with ~ 1e-3 Msun/yr
    - consistent with LBV
- SN 2006jd
  - non-steady mass loss? CSM density flatter than the above two

# Superluminous SNe IIn

## Superluminous SNe

#### Interaction + diffusion in CSM



#### Shock Breakout in Dense CSM

#### Shock breakout

 $\star$  CSM optical depth:  $\tau_w \rightarrow$  photon velocity:  $c/\tau_w$ \* Typical SN shock velocity:  $v_s \simeq 10,000 \text{ km s}^{-1}$  $\star v_s$  wins if  $au_w \gtrsim 30$  $\wedge$  CSM becomes  $\tau_w \gtrsim 30$  to get the huge luminosity dense  $v_s > c/\tau_w$ : no photon emission CSM  $v_s \simeq c/\tau_w$ : shock breakout  $v_s < c/\tau_w$ : photon release

e.g., Chevalier & Irwin (2011)

# Expected CSM Properties from Observations

#### From the shock breakout



## Expected CSM Properties from Observations

two timescales estimated from shock breakout
 diffusion timescale in CSM after shock breakout
 = rising time of LC

$$t_{d} = \begin{cases} \frac{R_{o}}{v_{s}} \left[ \left( \frac{c/v_{s} + x^{1-w}}{c/v_{s} + 1} \right)^{\frac{1}{1-w}} - x \right] & (w \neq 1), \\ \frac{R_{o}}{v_{s}} \left( x^{\frac{1}{1+c/v_{s}}} - x \right) & (w = 1). \end{cases}$$

Timescale for forward shock to go through CSM  $t_s = \frac{R_o - xR_o}{v_s}$ . for a given *w* and *v<sub>s</sub>*, we can get CSM properties Expected CSM Properties from Observations

# $ightarrow { m SN~2006gy}~(~v_s=10,000~{ m km~s^{-1}}) \ t_d\simeq 70~{ m days}~t_s\simeq 193~{ m days}~{ m (Smith~et~al.~2010)}$



Moriya et al. (2012)

#### Numerical LCs



No 'adjustment by hand'

simply from what is expected from shock breakout model
 SN ejecta parameters (Mej & Ekin) are chosen

Moriya et al. (2012)

#### Steady Wind Does Not Work

Shock breakouts in steady winds (w = 2) fail



Superluminous SNe Interaction model works to explain LCs shock breakout in CSM SN ejecta (1e52 erg, 20 Msun) ~ 20 Msun CSM (0.5 Msun/yr) steady mass-loss does not work from eruptive mass-loss of the progenitor LBVs? SN 2010jl has a similar mass-loss rate but from steady mass loss

## Multi-Dimensions



Moriya & Kasen

#### Multi-Dimensions

# FLASH rad. hydro. works well so far 1D calculations from FLASH and STELLA



#### Summary

#### non-SL SNe IIn

interaction model works well up to ~ 300 days
 many of them consistent with steady mass loss
 some require ~ 1e-1 Msun/yr

SLSNe IIn

shock breakout in CSM

from non-steady ~ 1e-1 Msun/yr mass loss?