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There is a research �eld in mathematics called 

Algebraic Geometry. In algebraic geometry, we study 

the geometric objects (called algebraic varieties) 

de�ned as the solution spaces of polynomial 

equations. For instance, lines, circles, and parabolas 

(Figure 1) are algebraic varieties. Since the algebraic 

varieties are geometric objects, we can study them 

via geometric intuitions. On the other hand, since 

they are de�ned by polynomials, it is also possible 

to study them via algebraic methods. Also, algebraic 

geometry is related to several other research �elds 

such as number theory and string theory. For instance, 
an algebraic variety called an elliptic curve plays an 

important role in the proof of Fermat’s last theorem 

in number theory, and the three-dimensional Calabi-

Yau manifold appears as an extra dimension in string 

theory. In Japan, the classi�cation theory of algebraic 

varieties is a central theme in algebraic geometry. The 

Fields medalists in Japan (Kunihiko Kodaira, Heisuke 

Hironaka, Shigefumi Mori) all contributed much to the 

classi�cation theory of algebraic varieties. 
The idea of the classi�cation theory of algebraic 

varieties is, roughly speaking, as follows. First let us 

consider the simplest case: the one-dimensional case. 
Although we say one dimensional, the solution spaces 

of the polynomials are extended to the complex 

numbers in algebraic geometry, so the real pictures 

are two-dimensional surfaces (Figure 2). For instance, 
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if we extend the solution spaces to complex numbers, 
the lines, circles, parabolas become two-dimensional 

spheres with some punctures. By �lling these 

punctures, (this process is called compacti�cation,) the 

lines, circles, parabolas all become a two-dimensional 

sphere. This sphere is called a rational curve, which 

is the most fundamental one-dimensional algebraic 

variety. Also an elliptic curve, which is de�ned by a 

cubic polynomial, becomes a two-dimensional torus. 
It is known that all the one-dimensional algebraic 

varieties are surfaces with some doughnut type holes. 
The number of the doughnut type holes is called 

the genus, and the complexity of a one-dimensional 

algebraic variety depends on its genus: genus zero 

(sphere), one (elliptic curve), more than one (general 

type). The idea of the classi�cation theory of one 

dimensional algebraic varieties is to study their 

geometric structures once we determine which of the 

above three types they belong. 

 In a higher (more than or equal to two) dimensional 

case, algebraic varieties are not classi�ed in terms of 

the numbers of doughnut type holes as in the one-

dimensional case. Instead, higher dimensional algebraic 

varieties are classi�ed in terms of Kodaira dimension, 
which is different from the usual dimension. The 

complexity of a higher dimensional algebraic variety 

depends on its Kodaira dimension, so knowing it 
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is a key step toward the classi�cation. The global 

geometric structures of higher dimensional algebraic 

varieties are complicated, however, and they are not 

classi�ed as simple as in the one-dimensional case, 
even if we knew their Kodaira dimension. The reason 

behind this complexity is that there are extra rational 

curves on the algebraic varieties that behave badly, so 

we try to contract an extra rational curve and obtain 

a new algebraic variety. If we can repeat this process 

and �nally obtain an algebraic variety without such 

an extra rational curve (called minimal model), then 

we may try to study its global geometric structure. 
This is the idea of the higher dimensional classi�cation 

theory. The above process �nding the minimal model, 
on which there is no extra rational curve, is called the 

Minimal Model Program (MMP for short). 
The MMP for two-dimensional algebraic varieties 

was completed by an Italian school at the beginning 

of the 20th century. In this case, there is a further 

classi�cation of minimal models. For instance, minimal 

models of the Kodaira dimension zero are classi�ed 

into four types: K3 surfaces, Enriques surfaces, Abelian 

surfaces and elliptic surfaces. In each case, there is 

an interesting geometry behind it. In particular, K3 

surfaces are two-dimensional analogue of elliptic 

curves and three-dimensional Calabi-Yau manifolds, 
and their geometry is closely related to the lattice 

theory. Also, since the mirror symmetry of K3 surfaces 

is described in terms of the lattice, it is actively studied 

now as a toy model of mirror symmetry. 

 As we mentioned above, the two-dimensional 

minimal model theory was completed in a beautiful 

way. If we try to construct a similar theory for three-

dimensional algebraic varieties, however, we �nd a 

serious problem which was not found in the two 

dimensional case. That is, if we contract an extra 

rational curve that behaves badly, then the resulting 

variety may have a singularity. Here we say that an 

algebraic variety has a singularity if we are not able 

to �nd a local coordinate. For instance, we are able 

to �nd a (real) two-dimensional coordinate on a one-

dimensional algebraic variety since it is a surface with 

doughnut type holes. Such a coordinate system is 

not always found in the higher dimensional case. For 

instance, there is an algebraic variety that looks like a 

cone, and we cannot �nd a coordinate system at the 

vertex. It is dif�cult to study the geometry of algebraic 

varieties with singularities, and the three dimensional 

minimal model theory was not developed for a while. 
The above problem was excluded in the 1980’s, 

and the three dimensional minimal model theory 

was substantially developed. Through the efforts 

of Shigefumi Mori, Yujiro Kawamata, Vyacheslav 

Shokurov, and others, a class of singularities (called 

terminal singularities), which are rather mild and 

should make the three dimensional MMP work, was 

introduced and investigated. It is possible that we 

can contract extra rational curves for varieties with 

Minimal Model Theory for Three-
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terminal singularities. If the resulting varieties also have 

at worst terminal singularities, then we can continue 

the program. Unfortunately, this is not true, since a 

very bad curve called a �ipping curve is contracted to 

a non-terminal singularity. In this case, the program 

was shown to continue if we replace the �ipping 

curve to another rational curve. This process is called 

a �ip. The existence of �ips was a serious problem, 
but shown by Shigefumi Mori in 1998, and the three-

dimensional minimal model theory was completed. 
One of the features of three dimensional minimal 

model theory is that the resulting minimal models 

are not unique, but any two of them are connected 

by a sequence of �ops. A �op is very similar to a �ip, 
which replaces a �opping curve that is not so bad as a 

�ipping curve by another rational curve. It was known 

that �ops preserve much geometric information. In the 

1990’s the ultimate of such a phenomena was found, 
that is the derived categories of coherent sheaves are 

equivalent under �ops. This was �rst proved by Alexei 

Bondal and Dmitri Orlov for particular �ops, and 

later proved by Tom Bridgeland for arbitrary three-

dimensional �ops. 

The notion of derived categories of coherent 

sheaves on algebraic varieties was introduced by 

Alexander Grothendieck in the 1960’s. In order 

to explain this notion, we �rst explain coherent 

sheaves roughly. The notion of coherent sheaves is a 

generalization of functions on algebraic varieties. For 

instance, the set of functions on an algebraic variety, 
which locally written as polynomials, gives a coherent 

sheaf called a structure sheaf. This is not a unique 

choice of a coherent sheaf, as structure sheaves on 

sub algebraic varieties also give more examples of 

coherent sheaves. There are many coherent sheaves on 

an algebraic variety, and if we consider each coherent 

sheaf as an “object” and introduce “morphisms” 
which relate pairs of coherent sheaves, then we 

obtain a mathematical system on the set of coherent 

sheaves. You can imagine this system by considering 

each coherent sheaf as a point, and a morphism as an 

arrow between two points corresponding to coherent 

sheaves. Such a mathematical system, with the notion 

of objects and morphisms, is called a category. 
The category of coherent sheaves is de�ned as 

above, but it does not have a good property in 

some senses. Suppose, for instance, that there is a 

map between two algebraic varieties and consider 

the problem associating a coherent sheaf on one 

of them to one on another variety. There is a 

naive way of doing this, but it sometimes loses the 

information of a coherent sheaf. In order to solve 

this issue, Grothendieck considered complexes of 

coherent sheaves. Let us explain the complexes of 

coherent sheaves by comparing them with points 

and arrows as above. We �rst put the numbers 1, 
2, 3, … on a �nite number of points, and then draw 

Derived Categories of Coherent 
Sheaves
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arrows between consecutive numbers from smaller 

numbers to bigger numbers. We associate coherent 

sheaves with the numbered points, and morphisms 

with arrows between consecutive numbers. Such 

a diagram satisfying a certain property is called a 

complex of coherent sheaves. The derived category of 

coherent sheaves is de�ned to be the category whose 

objects consist of complexes of coherent sheaves. 
The morphisms in this category are rather dif�cult, so 

we omit the explanation. If we consider the derived 

category of coherent sheaves, then we can solve the 

above issue associating a coherent sheaf on a variety 

to one on another variety. That is, if we associate an 

object in the derived category of coherent sheaves 

instead of a coherent sheaf, then we don’t lose 

information. 
So far, we have discussed a technical aspect of 

derived categories. The originally derived category was 

introduced in order to solve a technical problem, so it 

was not considered to be related to the geometry of 

algebraic varieties at the begging of its introduction. 
Such an idea drastically changed in 1994. 

In 1994, at the International Congress of 

Mathematics held at Zurich, Maxim Kontsevich 

proposed homological mirror symmetry conjecture. 
This conjecture predicts equivalence between the 

derived category of coherent sheaves on an algebraic 

variety and a certain category (called Fukaya category) 

determined by a symplectic manifold mirror to it. The 

idea behind this conjecture is to realize symmetry 

in string theory by regarding objects in derived 

categories of coherent sheaves, and Fukaya categories, 
as D-branes of different types. It was surprising that 

the derived category of coherent sheaves, which is 

a rather technical and abstract mathematical notion, 
was related to string theory. It was also surprising 

that algebraic geometry and symplectic geometry 

are predicted to be equivalent, as they seemed to be 

different geometric theories. 
Since the proposal of homological mirror symmetry 

conjecture, it has been recognized that the derived 

category of coherent sheaves is an essential 

mathematical object that realizes symmetry among 

algebraic varieties. Also through mirror symmetry, 
several equivalences of derived categories of coherent 

sheaves on different varieties have been predicted. 
The derived equivalence under �ops is one of them. 
This is proved for three-dimensional �ops, but it is still 

an open problem in higher-dimensional cases, and a 

new idea is required.
As a development of the idea of the derived 

equivalence under �ops, it is a natural direction of 

research to study how derived categories of coherent 

sheaves behave under steps of MMP. At a special 

step of MMP, it is observed that the derived category 

gets smaller by Bondal-Orlov and Yujiro Kawamata. 
So we expect that the MMP is a program that makes 

the derived category smaller, and even if the minimal 

models are not unique, they are equivalent at the level 

of the derived category. It is a very dif�cult problem to 

show this in full generality since we have to deal with 

singular varieties. If the above idea is realized, however, 
then it not only provides a new viewpoint of MMP but 

also several applications are expected. 
Now, by a slightly different viewpoint, I am trying to 

understand each step of MMP as a space of objects 

(called moduli space) in the derived category on the 

starting algebraic variety. The keyword is the notion of 

stability conditions on derived categories introduced 

by Bridgeland in 2002 inspired by the work of string 

theory. The results are not satisfactory at this moment, 
but once this idea is realized, I expect applications 

to several directions such as quantum invariants and 

mirror symmetry. In this way, although the minimal 

model theory was developed in order to classify 

algebraic varieties, it is now connected with several 

research �elds through string theory and derived 

categories, and we see a new development of this 

theory. 

Mirror Symmetry and the Minimal 
Model Theory


