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“Cannot see the forest for the trees.” This is 

a proverb that we will miss the whole picture if 

focusing only on details. But, is that true? If we 

observe trees (local properties) in a very clever way 

(like a detective!) then we might be able to see 

“something” about the forest (global properties).
In classical mathematics, mainly people studied 

local phenomena or those objects that are described 

by local coordinates. In modern mathematics, 
people’s interests have expanded to global objects, 
and to understand such objects, various ideas and 

methods have been introduced. Nevertheless, it is in 

general dif�cult to understand global properties.
In the study of geometry, the question, 

“How does local geometric structure affect the 

global shape?” is a prototype of the following motif:

local structure  global nature.

This motif has been a main stream especially in 

Riemannian geometry since the twentieth century. 
On the other hand, surprisingly, very little was 

known about the local-global theory in geometry 

beyond the Riemannian setting.
Although we just say “local to global,” 

approaches may dramatically change to the 
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From “Local” to “Global” 
̶Beyond the Riemannian Geometry̶

types of the local properties. For example, “locally 

homogeneous” properties are closely related to the 

theory of Lie groups and number theory. In the case 

discrete algebraic structure called discontinuous 
groups plays a primary role to control the global 

structure. In Riemannian geometry, by epoch-

making works of Selberg, Weil, Borel, Mostow, 
Margulis,1 among others, the study of discrete 

groups, which ranges from the theory of Lie groups 

and number theory to differential geometry and 

topology, developed extensively.
From around the mid-1980s, I began to 

envisage the possibility of creating the theory of 

discontinuous groups in the world of pseudo-

Riemannian manifolds. Since there is no “natural 

distance” in such geometries, one has to invent new 

methods themselves. Although the starting point 

was solitary, whatever I did was a new development. 
Since 1990s, a number of mathematicians with 

different backgrounds have gotten into this theme, 
and this has brought us to unexpected interactions 

to other �elds of mathematics, such as the (non-

commutative) ergodic theory, theory of unitary 

representations, and differential geometry. In the 

World Mathematical Year 2000, there was an 

From “Local” to “Global”

1 A. Selberg was awarded the Fields Medal in 1950, A. Weil was awarded the 
Kyoto Prize in 1994, A. Borel was awarded the Balzan Prize in 1992, 

 G. Mostow was awarded the Wolf Prize in 2013, and G. Margulis was 
awarded the Fields Medal and the Wolf Prize in 1978 and 2005, respectively.
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Differential Geometry with Inde�nite 
Signature

Is a Wayfarer Coming Back?

occasion that the theme “locally homogeneous 

spaces (for non-Riemannian geometry)” was 

highlighted as one of the new challenging problems 

in mathematics for the twenty-�rst century ([1]). The 

study keeps on �ourishing even further.
In this article, I would like to deliver the 

“�avor” of the study of global geometry of locally 

homogeneous spaces beyond the Riemannian 

setting and the study of the spectral analysis (global 

analysis) that we have recently initiated. To do so 

I try to minimize mathematical terminologies as 

much as possible; the price to pay is that I may loose 

certain accuracy of statements.

Pseudo-Riemannian geometry is a generalization 

of Riemannian geometry and Lorentzian geometry, 
which describes the spacetime of the theory of 

general relativity. On the p+q dimensional Euclidean 

space, the region de�ned by the inequality

| x1
2 + … + xp

2 − x2
p+1 − … − x2

p+q | ≤ r 2

is called a pseudosphere. The �gures on the 

top of the right column illustrate a sphere ((p,q) = 
(2,0)) of the Euclidean space and a pseudosphere 

((p,q) = (1,1)) of the Minkowski space for the two-

dimensional case. For more general situations, by 

using a non-degenerate quadratic form Q(x) with 

signature (p,q), we call the region de�ned by the 

inequality | Q(x) | ≤ r 2 a pseudosphere. 
In pseudo-Riemannian geometry we deal with 

the spaces (pseudo-Riemannian manifolds), 

which take pseudospheres as scales at local 

coordinates (more precisely, at in�nitesimal level for 

each point). When q = 0 and q = 1, these spaces are 

called Riemanninan manifolds and Lorentzian 
manifolds, respectively. 

To general pseudo-Riemannian manifolds, one 

can de�ne certain concepts such as the gradient 

(grad), divergence (div), Laplacian (Δ=div º grad), 
and curvature. Moreover, in the case of Riemannian 

manifolds, that is when q = 0, since the quadratic 

form Q(x) is positive-de�nite, one can also de�ne 

the distance between two points by integrating 

(in�nitesimal) scales. On the other hand, 
in the case of pseudo-Riemannian manifolds with 

inde�nite signature p,q ≥ 1, there is no reasonable 

way to de�ne the distance: the “intrinsic distance”
does not exist.

The Earth is round. A wayfarer traveling towards 

the west would eventually come back from the 

east. By the way, if the wayfarer does not know any 

global facts on the Earth, such as the shape or size, 
then is there any way for them to know whether 

they will come back to the starting point?
In mathematics we describe by the quantity 

different backgrounds have gotten into this 
theme, and this has brought us to unexpected 
interactions to other fields of mathematics, 
such as the (non-commutative) ergodic theory, 
theory of unitary representations, and 
differential geometry. In the World 
Mathematical Year 2000, there was an occasion 
that the theme “locally homogenous spaces (for 
non-Riemannian geometry)" was highlighted as 
one of the new challenging problems in 
mathematics for the twenty-first century ([1]). 
The study keeps on flourishing even further.  
  In this article, I would like to deliver the 
“flavor" of the study of global geometry of 
locally homogenous spaces beyond the 
Riemannian setting and the study of the 
spectral analysis (global analysis) that I have 
recently initiated. To do so I try to minimize 
mathematical terminologies as much as 
possible; the price to pay is that I may loose 
certain accuracy of statements. 
 
Differential geometry with indefinite 
signature  
  Pseudo-Riemannian geometry is a 
generalization of Riemannian geometry and 
Lorentzian geometry, which describes the 
spacetime of the theory of general relativity. On 
the � � � dimensional Euclidean space, the 
region defined by the inequality 

|��� � �� ��� � ����� � �� ����� | � �� 
is called a pseudosphere. The figures below 
illustrate a sphere ((�, �) = (2,0)) of the 
Euclidean space and a pseudosphere  
((�, �) = (1,1)) of the Minkowski space for the 
two-dimensional case. For more general 
situations, by using a non-degenerate bilinear 

form	�(�) with signature (�, �), we call the 
region defined by the inequality |�(�)| � ��  
a pseudosphere, too. 

In pseudo-Riemannian geometry we deal with 
spaces (pseudo-Riemannian manifolds), which 
take pseudospheres as scales at local 
coordinates (more precisely, at infinitesimal 
level for each point). When � = 0 and � = 1, 
these spaces are called Riemanninan manifolds 
and Lorentzian manifolds, respectively.  
  To general pseudo-Riemannian manifolds, 
one can define certain concepts such as the 
gradient (grad), divergence (div), Laplacian 
(Δ = div	 ∘ grad), and curvature. Moreover, in 
the case of Riemannian manifolds, that is when 
� = 0, since the quadratic form �(�) is 
positive-definite, one can also define the 
distance between two points by integrating  
(infinitesimal) scales. On the other hand,  
in the case of pseudo-Riemannian manifolds 
with indefinite signature �, � � 1, there does 
not exist the “intrinsic distance.” 
 
Is a wayfarer coming back?  
  The Earth is round. A wayfarer traveling 
towards the west would eventually come back 
from the east. By the way, if the wayfarer does 
not know any global facts on the Earth, such as 
the shape or size, then is there any way for 
them to know whether they will come back to 
the starting point? 
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called curvature how spaces are curved at the 

in�nitesimal level. The concept of curvature traces 

back to Carl Friedrich Gauss in the nineteenth 

century, who also contributed to geodesy during 

his long profession as the director of Göttingen 

Observatory. For two-dimensional curved surfaces 

there are the following visible relationship between 

the curvature and local shapes:
positive curvature

 ⇔ locally concave up or concave down,
negative curvature 

 ⇔ locally saddle-shaped.
In higher dimensional spaces there are three 

kinds of curvature, namely, sectional curvature, Ricci 

curvature, and scalar curvature, where sectional 

(resp. scalar) curvature contains the most (resp. least) 

information. 
How does curvature (local geometric structure) 

affect the global shape? The classical Myers 

theorem states: “If the Ricci curvature is greater than 

1 then the distance between any two points is less 

than π (for any dimension).” This is a local-global 

theory. So, from the curvature of the surface of the 

Earth (local information), one can obtain global 

information, namely, the diameter of the Earth. The 

claim of the theorem, “If a surface is locally convex 

everywhere then as a whole space it is closed like 

a sphere,” agrees with our experience in our daily 

life. However, when the curvature is negative or in 

pseudo-Riemannian geometry, can a wayfarer who 

is going forward in a uniformly curved space come 

back to the starting point? From the next section 

we shall enter some strange world that cannot be 

understood by our “daily life.”

Pseudo-Riemannian manifolds of constant 

curvature are called space forms, and play 

an important role in differential geometry. The 

constant-curvature property is one of the special 

examples of local homogeneity. Due to their high 

symmetry, space forms are interacted with various 

�elds of mathematics.
In Riemannian geometry, the sphere, Euclidean 

space, and hyperbolic space are the space forms of 

positive, zero, and negative curvature, respectively. 
The hyperbolic space is also known as to have 

played a historical role in the early nineteenth 

century on a discovery of geometry that does not 

hold the parallel postulate on Euclidean geometry. In 

the three-dimensional case the theory of hyperbolic 

manifolds, which are Riemannian manifolds of 

sectional curvature –1, is in fact equivalent to that of 

the Kleinian group. Hyperbolic geometry is an active 

research �eld.
In Lorentzian geometry, which is the simplest 

Uniformly Curved Geometry

 
  In mathematics we describe by the quantity 
called curvature how spaces are curved at the 
infinitesimal level. The concept of curvature 
traces back to Carl Friedrich Gauss in the 
nineteenth century, who also made a huge 
contribution to geodesy as the director of 
Göttingen Observatory. For two-dimensional 
curved surfaces there are the following clear 
relationship between the curvature and local 
shapes:  

positive curvature 
 ⟺ locally concave up or concave down, 
negative curvature  
 ⟺ locally saddle-shaped. 

  In higher dimensional spaces there are three 
kinds of curvature, namely, sectional curvature, 
Ricci curvature, and scalar curvature, where 
sectional (resp. scalar) curvature contains the 
most (resp. least) information. How does 
curvature (local geometric structure) affect the 
global shape? The classical Myers theorem 
states: “If the Ricci curvature is greater than or 
equal to 1 then the distance between any two 
points is less than � (for any dimension).” This 
is a local-global theory. So, from the curve of the 
Earth's surface (local information), one can 
obtain global information, namely, the diameter 
of the Earth. The claim of the theorem, “If a 

surface is locally convex everywhere then as a 
whole space it is closed like a sphere,” agrees 
with our experience of our daily life. However, 
when the curvature is negative or in 
pseudo-Riemannian geometry, can a wayfarer 
who is going forward in a uniformly curved 
space come back to the starting point? From the 
next section we shall enter some strange world 
that cannot be understood by our “daily life.” 
 
Uniformly curved geometry 
  Pseudo-Riemannian manifolds of constant 
curvature are called space forms, and play an 
important role in differential geometry. The 
constant-curvature property is one of the 
special examples of local homogeneity. Due to 
their high symmetry, space forms are 
interacted with various fields of mathematics. 
  In Riemannian geometry, the sphere, 
Euclidean space, and hyperbolic space are the 
space forms of positive, zero, and negative 
curvature, respectively. The hyperbolic space is 
also known as to have played a historic role in 
the early nineteenth century on a discovery of 
geometry that does not hold the parallel 
postulate on Euclidean geometry. In the 
three-dimensional case the theory of hyperbolic 
manifolds, which are Riemannian manifolds of 
sectional curvature −1, is in fact equivalent to 
that of the Kleinian group. Hyperbolic 
manifolds is an active research field. 
  In Lorentzian geometry, which is the simplest 
geometry beyond the Riemannian setting, the 
de Sitter manifold, Minkowski space, and 
anti-de Sitter manifold are space forms of 
positive, zero, and negative curvature, 
respectively. 
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geometry beyond the Riemannian setting, the 

de Sitter manifold, Minkowski space, and anti-
de Sitter manifold are space forms of positive, 
zero, and negative curvature, respectively.

Does there exist any space that curves locally the 

same everywhere and also that is closed globally?2

In space forms of positive curvature, which 

generalizes the concept of “being concave up,” the 

following theorem holds.

Theorem 1. Space forms of positive curvature are

(1) always closed (Riemannian geometry).
(2) never closed (Lorentzian geometry).

Theorem 1 (2) is called the Calabi–Markus 
phenomenon, named after the two 

mathematicians E. Calabi and L. Markus, who 

discovered this surprising fact ([2]). 
On the other hand, the standard model of space 

forms of negative curvature expands in�nitely and 

so it is never closed. For next, in order to �nd a 

closed “universe” having the same local geometric 

structure, I would like to illustrate an idea to “fold” 
the open “universe” by one-dimensional and two-

dimensional Euclidean spaces as elementary as 

possible.
The real line is obviously not closed, while a clock 

dial, on which the long hand goes around in every 

sixty minute (period), is closed. No matter which 

ones we use, we record the same time locally. As 

in this example, it is possible that two spaces are 

locally the same but different globally.

Let us observe a similar process for the two-

dimensional Euclidean space 2. If there is a period 

both in the vertical direction and in the horizontal 

direction then one can tile the plane by rectangles, 
which represent the period. Moreover, if identifying 

the edges of the rectangles with one period then, 
by gluing the edges, one can obtain a closed shape 

called a torus (a surface of a doughnut). 

The important principles behind these elementary 

examples may be formalised as 

A. the algebraic structure that represent the 

period (discontinuous group 2）,
B. tiling (by rectangles).

Once �nding the principles like A or B, with 

keeping local structures, one may expect to produce 

spaces of different global shapes; nontheless, it is in 

general far more dif�cult than the above examples, 

Is the “Universe” Closed?

2 In mathematics, it is stated as, “Does there exist a compact pseudo-
Riemannian manifold of constant curvature?” 
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as some non-commutative structure emerges.

On the existence problem of closed space forms 

of negative curvature, it is known that the following 

theorem holds.

Theorem 2. Closed space forms of negative 

curvature exist

(1)  for all dimensions (Riemannian geometry).
(2)  only for odd dimensions (Lorentzian   

  geometry).

A proof for Theorem 2 is in fact given by the 

algebraic idea of A to use matrices with integral 

entries (arithmetic lattice). Moreover, in the case 

of Theorem 2 (1), Mostow, Vinberg, Gromov, 

and Piateski-Shapiro gave another construction 

method by a use of the geometric idea of B (non-

arithmetic lattice) for space forms of negative 

curvature (hyperbolic manifolds). On the other hand, 
in Lorentzian geometry, as Theorem 2 (2) exhibits, 
there is a difference between the odd dimensional 

case and even dimensional case. This difference can 

be explained by a topological method, with which 

one can give a mathematical proof for the theorem, 
“There always exists the whorl of hair on our head.”

Theorems 1 and 2 both claim that there exists 

a signi�cant difference between Riemannian 

geometry and Lorentzian geometry on the motif, 
“local structure  global nature.” What about 

pseudo-Riemannian geometry with more general 

signature (p,q)  (p ≥ q ≥ 2)? In the case of positive 

 
  On the existence problem of closed space 
forms of negative curvature, it is known that 
the following theorem holds. 
 
Theorem 2. Closed space forms of negative 
curvature exist 
(1) for all dimensions (Riemannian geometry). 
(2) only for odd dimensions (Lorentzian    
  geometry). 
 
  A proof for Theorem 2 is in fact given by the 
algebraic idea of A to use matrices with integral                                                          
entries (arithmetic lattice). Moreover, in the  
 

case of Theorem (1), Mostow, Vinberg, Gromov,  
and Piateski-Shapiro gave another construction 
method by a use of the geometric idea of B 
(non-arithmetic lattice) for space forms of 
negative curvature (hyperbolic manifolds). On 
the other hand, in Lorentzian geometry, as 
Theorem 2 (2) exhibits, there is a difference 
between the odd dimensional case and even 
dimensional case. This difference can be 
explained by a powerful topological method, 
with which one can give a mathematical proof 
for the theorem, “There always exists the whorl 
of hair on our head.” 
  Theorems 1 and 2 both claim that there 
exists a significant difference between 
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curvature it is known that closed space forms do 

not exist (a generalization of the Calabi–Markus 

phenomenon). On the other hand, in the case of 

negative curvature, the existence problem, namely, 
for which integers p,q closed space forms exist, has 

not been completely solved. As partial results, it has 

been proved that there exists a closed space form of 

negative curvature in the case of dimension 7 with 

signature (4,3) and dimension 15 with signature 

(8,7), for instance.
The table in the previous page illustrates the 

current states of the arts on the existence problem 

of closed space forms, by taking dimensions to be 3, 
4, and 15 as examples ([4]).

A rigidity theorem represents a property that 

the same type of local geometric structure can 

be equipped uniquely in a given global geometric 

structure. Conversely, if there is some freedom for 

the local structure to be equipped then the freedom 

itself will become a subject of study (deformation 
theory).

In Riemannian geometry rigidity theorem 

has been found in various formulations. As an 

exceptional example, it is known that there are 

continuously many distinct hyperbolic structures 

(Riemannian structures of curvature –1) on a closed 

two-dimensional surface. The parameter space (up 

to certain equivalence) is called the Teichmüller 
space, which is connected with different disciplines 

of mathematics from complex analysis and 

hyperbolic geometry to string theory in theoretical 

Rigidity and Deformation

physics. In the two-dimensional hyperbolic geometry 

since the discontinuous groups that control the 

global shapes are discrete subgroups of SL(2, ) 
(Fuchsian groups), the Teichmüller space can 

be thought of as the deformation space of the 

Fuchsian groups.
In pseudo-Riemannian geometry with inde�nite 

signature, we �nd that the geometric structure 

tends to be less rigid and more “�exible.” I believe 

that the deformation theory of discontinuous 

groups in the pseudo-Riemannian setting has a 

good potential to yield fruitful theories in future 

([1]).

One of outstanding perspectives in modern 

mathematics is that the study of geometry (“shapes”)
is equivalent to studying the functions (“residents”) 
on the geometry. This point of view has brought 

us a great success in algebraic geometry and some 

other �elds of mathematics.
As we mentioned above, there are some strange 

geometries, which are locally the same but which 

may be globally different. Now let us apply the 

above perspective to the strange geometries and 

consider the “residents” on them in the pseudo-

Riemannian setting.
For a string with constant tension, the longer 

the string becomes, the lower the pitch the string 

makes is. As an elementary model, we consider 

the eigenfunctions for the Laplacian with period 

L on the real line. We then see that the larger the 

Shorter Strings Produce a Higher Pitch 
than Longer Strings
̶Spectral Geometry̶
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period becomes, the smaller the eigenvalues are. For 

example, trigonometric function f (x) = sin (2πx/L) 
has period L and satis�es the differential equation

−        f (x) =         f (x).

Therefore, if the period L is getting larger then the 

eigenvalue 4π2/L2 is becoming smaller. 
In Riemannian geometry a similar phenomenon 

holds. Suppose that we list all the eigenvalues 

for the Laplacian on a two-dimensional closed 

hyperbolic surface in increasing order:

0 = λ0 < λ1 ≤ λ2 ≤ …

In this case it is known that if we continuously 

deform the Riemannian metric with keeping the 

hyperbolic structure, then all the eigenvalues 

λk (k = 1,2,…) will vary ([5]). In other words, when 

eigenvalues are regarded as functions on the 

Teichmüller space, they cannot be constant. 
Functions on the closed hyperbolic surface are 

identi�ed with periodic functions on the upper-half 

plane, where the period is given by the Fuchsian 

group (disconnected group). Therefore the above 

example illustrates how eigenvalues vary according 

to the deformation of the Fuchsian group.

Beyond Riemannian geometry, the global analysis 

on locally homogeneous spaces is still veiled in 

mystery and is an unexplored area. It is the study 

of “residents” on geometries. As a �rst step of its 

exploration, we have discovered the following a bit 

surprising phenomenon.

Theorem 3. On any three-dimensional closed anti-

de Sitter manifold, there exist in�nitely many stable 

eigenvalues for the Laplacian.

This theorem captures the phenomenon 

which contradicts our “common sense” for music 

instruments: “The longer the string becomes, the 

lower the pitch the string makes is.” On the other 

hand, as in the two-dimensional closed hyperbolic 

surface described in the previous section, there still 

exist in�nitely many eigenvalues of the Laplacian 

which vary according to the period in the “standard” 
three-dimensional closed anti-de Sitter manifold.

If we consider anti-de Sitter manifolds as music 

instruments then they will be such instruments 

which have in�nitely many “universal sounds” 
no matter how long or short the strings become, 
their pitch do not vary. At the same time the music 

instruments also have in�nitely many sounds that 

DO vary (as usual)!
The new phenomenon that was discovered by 

Theorem 3 occurs in higher dimensional cases and 

also in some locally symmetric spaces with inde�nite 

Kähler metric. The proof of the general theory is 

given in our recent article of 140 pages ([6]). The 

main tools are

・partial differential equations,
・integral geometry,
・non-commutative harmonic analysis, and

Universal Sounds Exist 
for “Music Instruments” in the 
Anti-de Sitter Universe

d 2              4π2

dx2                        L2 

;
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・quantitative estimates of proper actions. 

In a subsequent paper we plan to make a bridge 

between in�nite-dimensional representation theory 

and the global analysis of locally homogeneous 

spaces, by applying to

・the theory of branching laws for breaking 

symmetries of in�nite dimensional spaces.

Over the half-century the global analysis on 

the locally homogeneous space Γ \ G / H has been 

deeply developed as an important branch of 

mathematics in the following special cases.

・The case that H is compact (G / H is a   

Riemannian symmetric space): the theory of 

automorphic forms in number theory (Γ   

is an arithmetic subgroup.)

・The case that Γ is a �nite group consisting 

only of the identity element: 
non-commutative harmonic analysis, 
developed by I.M. Gelfand, Harish-Chandra, and 

T. Oshima, among others.

In contrast to the cases given above, the geometry 

of pseudo-Riemannian locally homogeneous 

spaces that we have discussed in this article is 

more general, i.e. the local geometric structure is 

no more Riemannian (that is, H is not compact) and 

global geometric structure is given by an in�nite 

discontinuous group Γ. This generalization has 

opened the door of a new area of geometry beyond 

the Riemannian setting. What mysteries are in the 

spectral analysis for such a geometry, which studies 

the “residents” in the strange universe? I believe 

that there is an interesting future of the study, 
which we seem to start glimpsing in distance.
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