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　Geometry and physics have been developed with 

a strong influence on each other. It is well known 

that the differential geometry developed by Gauss 

and Riemann from the middle of the 19th century 

became the basis of Einstein’s general relativity. 
The classical mechanics founded by Newton, 
through to the formulation of analytic mechanics by 

Lagrange and Hamilton, yields an important area of 

contemporary geometry called symplectic geometry. 
As we see in these examples the interactions 

between geometry and physics occur sometimes in 

an unexpected way. One of the most remarkable 

features of  the new developments in the last few 

decades is that the quantum field theory ties up 

with the deep properties of topology. In this article 

we shall take a glance at recent trends in these 

research areas, focusing on the theory of braids and 

3-dimensional geometry.

　A braid is represented by a diagram with a bunch 

of vertical strands linked to each other as shown in 

Figure 1 (a). It is essential to distinguish over crossings 

and under crossings. We define the product of two 

braids by composing them in the vertical way. The 

braids shown in Figure 1 (b) are obtained one from 

the other by moving strands fixing the endpoints. 
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In general we shall identify braids obtained by such 

a continuous deformation of strands. Figure 1 (b) 

shows the most fundamental relation among braids.  
The notion of braids was defined by Artin in the 

middle of 1920’s.
   The beginning of the 20th century was the era of 

the establishment of quantum mechanics as well. 
Dirac was a physicist who noticed the importance of 

the notion of braids in an early stage. He effectively 

exploited braids for explaining the notion of spinors 

in quantum mechanics. The spinor is a multi-valued 

quantity so that it changes the sign by the rotation 

of 360 degrees and becomes identical by the 

rotation of 720 degrees. Let us perform a simple 

experiment using a belt as shown in Figure 2. We fix 

one end point and make two full twists by rotating 

the other end  by 720 degrees. Then we move the 

end we have twisted as shown in Figure 2 and 

finally obtain a belt without twists. One full twist 

cannot be resolved in this way. This shows in terms 

of braids that a braid for the rotation of 360 degrees 

on the sphere cannot be trivialized by a continuous 

deformation, while a braid for the rotation  of 720 

degree can be trivialized, which is related to the 

existence of the spinor.

　On the other hand, braids play an important role 

in topology. By closing braids we obtain knots or 

links. A knot is an embedded closed curve in the 

3-dimensional space and a link is a disjoint union 

of embedded closed curves. For example, closing 

the braid shown in Figure 1 (a) we obtain the knot 

in Figure 1 (c). Knots are remarkably complicated 

objects and, even with all the sophisticated 

techniques of contemporary topology, they have 

resisted a definitive treatment. We could say that 

difficulty in 3-dimensional topology is concentrated 

on the complexity of knots.
　In the middle of 1980’s, Jones invented a 

significantly novel technique in knot theory. This was 

the discovery of the Jones polynomial derived from 

the theory of operator algebras. Representing braids 

by linear operators Jones extracted new topological 

invariants for knots and links. This invariant was 

completely different from known invariants based 

on classical techniques in topology such as the 

Alexander polynomial. 
　A few year later Witten proposed a formulation 

of the Jones polynomial by means of the quantum 

field theory. He defined it as the partition function 

of the 3-dimensional Chern-Simons gauge theory. 
This is given as a certain average of infinitely many 

quantities and its topological invariance manifests in 

its form as far as it is mathematically well defined. 
Here the topological invariance means that the 

defined quantity does not depend on information 

derived from metrics such as length and angle etc., 
and is invariant under continuous deformation.
　The Jones polynomial can also be interpreted as 

From braids to 
infinite-dimensional geometry

Figure 2　Belt trick
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the partition function in statistical mechanics. The 

braid relation shown in Figure 1 (b) is written as 

ABA=BAB and is called the Yang-Baxter equation. It 
is an integrability condition in statistical mechanics 

and the algebraic structure behind it was formulated 

as the notion of quantum groups by Drinfel’d and 

Jimbo.  Moreover, the theory of Witten formulated 

as 2+1 dimensional topological quantum field 

theory reveals a relationship with the 2-dimensional 

conformal field theory. The conformal field theory 

was initiated by physicists Belavin, Polyakov and 

Zamolodchikov as the theory for infinite dimensional 

symmetries in critical phenomena in statistical 

mechanics. Later on Tsuchiya and his collaborators 

established its mathematical foundation based 

on the notion of infinite dimensional Lie algebras. 
Chern-Simons theory, conformal field theory and 

quantum groups are intricately related with the 

key word of  the Jones polynomial. Researchers in 

mathematics at IPMU have made a considerable 

contribution to the development of these areas.

　Given a local geometric structure of a space, 
determining its possible global geometric structure 

is an important problem. This research area has 

been developed as one of the principal trends in 

geometry since the 20th century. For example, 
a closed oriented surface with a metric so that 

it is locally isometric to the Euclidean plane is 

known to be a torus. Closed oriented surfaces 

are topologically classified into a sphere, a torus 

and surfaces of genus greater than 1, which are 

obtained as connected sum of tori. The number of 

tori appearing in the connected sum is called the 

genus. We shall say that a torus has a geometric 

structure modeled on the Euclidean plane. A surface 

of genus greater than 1 has a geometric structure 

modeled on the hyperbolic plane as shown in Figure 

3. Figure 3 shows a tessellation of the hyperbolic 

plane by regular triangles. We consider the metric 

inside the disc so that all the triangles are isometric 

to each other. This model of hyperbolic geometry 

is called the Poincaré disc. In this way we see that 

there are 3 kinds of geometric structures for closed 

surfaces, spherical geometry, Euclidean geometry 

and hyperbolic geometry. The curvature is a positive 

constant for spherical geometry, is zero for Euclidean 

geometry and is a negative constant for hyperbolic 

geometry. The angle sum of a triangle is more than 

180 degrees in the spherical case and is less than 

180 degrees in the hyperbolic case.
　The next issue is to investigate possible geometric 

structures for 3-dimensional spaces.  This is the 

problem of geometrization of spaces. As in the 

2-dimensional case there are 3 kinds of models of 

constant curvature, 3-dimensional spheres (positive 

constant curvature), Euclidean space (zero curvature) 

and 3-dimensional hyperbolic space (negative 

constant curvature).  There are miscellaneous models 

constructed from 1-dimensional and 2-dimensional 

geometric structures and in total we have 8 kinds of 

models for 3-dimensional geometric structures. We 

Geometrization of spaces

Figure 3

Tessellation of the hyperbolic plane
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show in Figure 4 tessellations by regular polyhedra of 

the 3 kinds of model spaces of constant curvature. 
An approach to 3-dimensional topology by means of 

these geometric structures was initiated by Thurston 

in the 1980’s with a huge impact on the research in 

topology.
　It is known that the complement of the figure 

8 knot shown in Figure 1 (c) is equipped with 

a complete hyperbolic metric. It was shown 

by Thurston that with finitely many families of 

exceptions the complements of allmost all knots 

have such hyperbolic structures. This led to 

important progress in the theory of knots and 

braids. The geometrization for general 3-dimensional 

spaces was conjectured by Thurston and settled 

by Perelman a few years ago. Perelman’s method 

exploits the asymptotic behavior of the solutions of 

the differential equation for the metrics called the 

Ricci flow. In this approach techniques derived from 

physics such as renormalization play an essential 

role in controlling divergent solutions. This is a new 

interaction between geometry and physics.

(a) Flat space

Figure 4　These picture are drawn by the software [3] developed by Weeks.

(b) Positively curved space (c) Negatively curved space


