

Robert Quimby (Kavli IPMU) December 12, 2012

Absolute Magnitude Distribution of Supernovae

Data from LOSS (Li et al. 2011)

SLSN Spectra

Pair-Instability SNe

- First Proposed it the 1960's (Rakavy et al. 1967; Barkat et al. 1967)
- Massive stars are supported by radiation pressure
- At high temperatures, photons are created with E > e+e-
- Losses to pair production soften the EOS, and lead to instability
- Expected fate of the first (low metal, high mass) stars

Shell Scenario

- outer shell at
 ~10¹⁵ cm
 (expanding at a few 1000 km/s?)
- energy injected from with in

Interaction Power

Ejecta run into surrounding material (progenitor wind, shells, etc.)

Smith et al. 2008

Magnetar Power

$$E_{\rm p} = \frac{I_{\rm ns}\Omega_{\rm i}^2}{2} = 2 \times 10^{50} P_{10}^{-2} \text{ ergs},$$

$$t_{\rm p} = \frac{6I_{\rm ns}c^3}{B^2R_{\rm ns}^6\Omega_{\rm i}^2} = 1.3B_{14}^{-2}P_{10}^2 \text{ yr},$$

$$L_{\rm peak} \sim \frac{E_{\rm p} t_{\rm p}}{t_{\rm d}^2} \sim 5 \times 10^{43} B_{14}^{-2} \kappa_{\rm es}^{-1} M_5^{-3/2} E_{51}^{1/2} {\rm erg \ s}^{-1}$$

Kasen & Bildsten 2010; see also Woosley 2010

What ever they are, SLSNe are potential useful probes!

SN 2005ap z=0.238

PSI-11bam z=1.566

Berger et al. (2012)

What ever they are, SLSNe are potential useful probes!

$$R_{\rm SN}(z) = \dot{\rho}_*(z) \frac{\int_{M_{\rm min}}^{M_{\rm max}} \psi(M) dM}{\int_{0.1}^{100} M \psi(M) dM}$$

see Masaomi Tanaka et al. (2012)

PTF Spectroscopic Sample (all types)

1821 1052 Spectroscopically Confirmed PTF Transients To Date

SNe From ROTSE-IIIb

TSS/RSVP

- 0.45-m ROTSE-IIIb telescope
- 1.85 X 1.85 degree FoV
- Began in Fall '04
- 1-3 day cadence, M_{lim} ~ 18
- Target selection without (intentional) host bias
- High quality spectra of all transients
- >90 SNe to date including 7-8 LSNe
- Only spectroscopically complete Transient Survey

pseudo-Absolute Magnitude Distributions (pAMDs)

SLSN Light Curves

SLSNe pAMDs

ROTSE-IIIb Survey Efficiency

Local SLSN Rates

(based on ROTSE-IIIb sample)

Compare to CCSN: ~10⁵ events/Gpc³/yr and SNIa: ~3x10⁴ SN/Gpc³/yr

SED-MACHINE

Designed for efficient classification of optical transients

Imaging Channel four ~6'x6' areas

Spectroscopic Channel IFU (~26"x26", 0.75" spaxels) R~100, 3700-9200λ

Fully Funded, glass in hand Commissioning early Spring 2013

SED-MACHINE

Integral Field Spectra

Photometry of Surrounding Field

