Concern on "ground state" of spacetimes with/without black holes_ ~ rigidity of spacetime ~

Tetsuya Shiromizu

Department of Physics, Kyoto University

Shiromizu and Ohashi, PRD87, 087501(2013) Shiromizu and Tanabe, arXiv:1303.6056

Content

- 1. Simple question
- 2. **GR**
- 3. Einstein-Gauss-Bonnet
- 4. Dynamical Chern-Simons gravity

1. Simple question

Questions here

In massive gravity or so,

Strictly stationary and vacuum spacetime is Minkowski?

In BH spacetimes, staticity(stationarity) implies spherical (axi) symmetry?

At first glance, not...because of the mass

GR

When total mass vanishes

Minkowski spacetime

What is equilibrium state with/without BH

equilibrium state ~ stationary or static

static(stationary) black hole is Schwarzschild(Kerr) strictly stationary spacetime is Minkowski

Positive mass theorem I

Schoen & Yau(1979)

- Asymptotically flat $g_{ij} = \delta_{ij} \left| 1 + \frac{2}{n-3} \frac{M}{r^{n-3}} \right| + O\left(\frac{1}{r^{n-2}}\right)$
- $^{(n-1)}R \ge 0$ (4≤n≤8, spin for n≥ 4)

- (i) Mass *M* is non-negative. (ii) *M*=0 iff spacetime is Minkowski

Positive mass theorem II

Schoen & Yau(1981), Witten(1981)

-Asymptotically flat
$$g_{ij} = \delta_{ij} \left[1 + \frac{2}{n-3} \frac{M}{r^{n-3}} \right] + O\left(\frac{1}{r^{n-2}}\right)$$

- -Einstein equation, energy condition
- $4 \le n \le 8$ ($4 \le n$ for spin)

- (i) Mass *M* is non-negative. (ii) *M*=0 iff spacetime is Minkowski

Strictly stationary spacetimes

Configurations of static/stationary spacetimes

vacuum spacetime is Minkowski

Lichnerowicz 1955 [for 4 dimensions]

Proof

Komar mass formula for stationary and asymptotically spacetimes

$$\begin{split} M &= -\frac{1}{8\pi} \int_{S_{\infty}} \nabla_{\mu} k_{\nu} dS^{\mu\nu} \\ &= \frac{1}{4\pi} \int_{\Sigma} R_{\mu\nu} k^{\mu} n^{\nu} d\Sigma \\ &= \frac{1}{4\pi} \int_{\Sigma} \left(T_{\mu\nu} - \frac{1}{2} g_{\mu\nu} T \right) k^{\mu} n^{\nu} d\Sigma = 0 \end{split}$$

spacetime is flat

Positive mass theorem

4D BH

 Static vacuum black hole is unique to be Schwarzschild spacetime

Israel 1967, Bunting & Masood-ul -Alam1987

Stationary vacuum black hole is unique to be Kerr spacetime
Carter 1971, 73

Higher dimensional BH

Static black holes is unique to be Schwarzschid.

Gibbons, Ida & Shiromizu 2002

Stationary black holes is axisymmetric.
Hollands, Ishibashi & Wold (

Hollands, Ishibashi & Wald 2007

5-dim stationary and 2-rotational symmetric black holes are determined by mass, angular momentum and rod structure(~quasi local b.c. at horizon, axes).

Hollands & Yazadjiev 2007

Static black hole spacetimes

metric
$$ds^2 = -V^2(x^i)dt^2 + g_{ii}(x^i)dx^idx^j$$

t =constantspacelike surface

Vacuum, Einstein, higher dimensions Sketch of proof Gibbons, Ida & Shiromizu 2002

conformaltransformation
$$\widetilde{g}_{ij} = \left(\frac{1 \pm V}{2}\right)^{4/(n-3)} g_{ij}$$
, such that $\widetilde{M} = 0$, $\widetilde{R} = 0$

- Positive mass theorem $\Rightarrow \tilde{g}_{ii}$: flat space
- Regularity on event horizon
 - ⇒ V=0 surface in conformally transformed space is spherical symmetric

•
$$\Delta \left(\frac{1}{1+V}\right) = 0$$
, $\Delta = \partial_{x_1}^2 + \partial_{x_2}^2 + \dots + \partial_{x_{n-1}}^2$

electrostatic potential with spherical boundary

3. Einstein-Gauss-Bonnet

Einstein-Gauss-Bonnet

String theory predicts the presence of the Gauss-Bonnet term

Zwieback 1985, Gross & Sloan 1987, Metsaev & Tseytlin 1987

Einstein-Gauss-Bonnet(EGB)

$$S = \int d^{n}x \sqrt{-g} \left[R + \alpha (R_{\mu\nu\alpha\beta} R^{\mu\nu\alpha\beta} - 4R_{\mu\nu} R^{\mu\nu} + R^{2}) \right] \qquad \alpha \sim M_{\text{string}}^{2}$$

Field equation

$$\begin{split} R_{\mu\nu} = -\alpha \widetilde{H}_{\mu\nu} \\ \widetilde{H}_{\mu\nu} = 2R_{\mu\alpha\beta\rho}R_{\nu}^{\ \alpha\beta\rho} - 4R_{\mu\alpha\nu\beta}R^{\alpha\beta} - 4R_{\mu}^{\ \alpha}R_{\nu\alpha} + 2RR_{\mu\nu} \\ -\frac{1}{n-2}g_{\mu\nu}(R_{\alpha\beta\rho\sigma}R^{\alpha\beta\rho\sigma} - 4R_{\alpha\beta}R^{\alpha\beta} + R^2) \end{split}$$

Various noble theorems?

Singularity theorem, positive mass theorem, area theorem, features of apparent horizons, ...

Convergence condition
$$\begin{pmatrix} R_{\mu\nu}k^{\mu}k^{\nu} \geq 0 \\ R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R \end{pmatrix} k^{\mu}k^{\nu} \geq 0$$
 k^{a} : timelike or null

⇔ non-negativity of energy density in Einstein

It is not natural to assume the above in EGB

But, if the corrections are tiny,...
$$R_{\mu\nu} = -\alpha \widetilde{H}_{\mu\nu} \qquad \widetilde{H}_{\mu\nu} \approx 2 R_{\mu\alpha\beta\rho} R_{\nu}^{\ \alpha\beta\rho} \\ \widetilde{H}_{00} \approx 2 R_{0ijk} R_{0}^{\ ijk} + 2 R_{0i0j} R_{0}^{\ i0j} \ ?$$

As expected, no definite sign

static BH uniqueness dose not depend on the above condition directly. The structure of the field equations is important.

Check list for BH uniqueness

- -Positive mass theorem
- -finding a conformal transformation to show conformal flatness
- -finding the harmonic function in the flat space
- -spherical symmetry on "the horizon" in the flat space

Looks hard!

Yet there is no reason that uniqueness holds in full order of α!

Lichnerowicz in EGB

Strictly stationary and vacuum spacetimes should be Minkowski in GR.

Lichnerowicz 1955

??? The above holds in EGB ???

There is no reason that it holds in full order of α . But, if the corrections are tiny,...

For simplicity, we focus on static cases

Static spacetimes

metric

$$ds^{2} = -V^{2}(x^{i})dt^{2} + g_{ij}(x^{i})dx^{i}dx^{j}$$

equations

$$\begin{bmatrix}
R_{00} = VD^{2}V = -\alpha \tilde{H}_{00} \\
^{(n-1)}R + \alpha^{(n-1)}L_{GB} = 0
\end{bmatrix}$$

$$\begin{bmatrix}
\tilde{H}_{00} = -4\frac{n-4}{n-2}VD_{i}D_{j}V^{(n-1)}G^{ij} + \frac{1}{n-2}V^{2(n-1)}L_{GB} \\
^{(n-1)}L_{GB} := {}^{(n-1)}R_{ijkl}{}^{(n-1)}R^{ijkl} - 4^{(n-1)}R_{ij}{}^{(n-1)}R^{ij} + {}^{(n-1)}R^{2}
\end{bmatrix}$$

$$= {}^{(n-1)}C_{ijkl}{}^{(n-1)}C^{ijkl} - 4\frac{n-4}{n-3}\left({}^{(n-1)}R_{ij}{}^{(n-1)}R^{ij} - \frac{n-1}{4(n-2)}{}^{(n-1)}R^{2}\right)$$

Lichnerowicz in EGB Shiromizu & Ohashi 2013

$$D^{2}V = 4\frac{n-4}{n-2}\alpha D_{i}D_{j}V^{(n-1)}G^{ij} - \frac{\alpha}{n-2}V^{(n-1)}L_{GB}$$

$$(n-1)R = O(\alpha), (n-1)R_{ij} = \frac{1}{V}D_iD_jV + O(\alpha) + (n-1)C_{ijkl} = O(\alpha) \text{ [assumption!]}$$

$$\Rightarrow (n-1)L_{GB} = -4\frac{n-4}{n-3}\frac{1}{V}D_iD_jV^{(n-1)}R^{ij} + O(\alpha)$$

$${}^{(n-1)}R = -\alpha^{(n-1)}L_{GB} = \frac{4(n-4)}{n-3}\alpha^{(n-1)}R_{ij}{}^{(n-1)}R^{ij} + O(\alpha^2) \implies \text{If } \alpha > 0, \quad {}^{(n-1)}R \ge 0$$

4. Dynamical Chern-Simons gravity

Dynamical Chern-Simons gravity

dCSG

Jackiw and Pi 2003,...

$$S = \int d^4x \sqrt{-g} \left[\kappa R + \frac{\alpha}{4} \theta^* R_{\mu\nu\alpha\beta} R^{\mu\nu\alpha\beta} - \frac{\beta}{2} (\nabla \theta)^2 \right]$$

Field equation

$$\begin{cases}
R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R + \frac{\alpha}{\kappa} C_{\mu\nu} = \frac{1}{2\kappa} T^{\theta}_{\mu\nu} \\
\nabla^2 \theta = \frac{\alpha}{4\beta} R_{\mu\nu\alpha\beta} {}^* R^{\mu\nu\alpha\beta}
\end{cases}$$

$$\begin{bmatrix} C^{\mu\nu} = \nabla_{\sigma}\theta\varepsilon^{\sigma\delta\alpha} (^{\mu}\nabla_{\alpha}R_{\delta}^{\nu)} + \nabla_{\sigma}\nabla_{\delta}\theta^{*}R^{\delta(\mu\nu)\sigma} \\ T^{\theta}_{\mu\nu} = \beta\nabla_{\mu}\theta\nabla_{\nu}\theta - \frac{\beta}{2}g_{\mu\nu}(\nabla\theta)^{2} \end{bmatrix}$$

Field equations in static spacetimes

Static

$$ds^{2} = -V^{2}(x^{i})dt^{2} + g_{ii}(x^{k})dx^{i}dx^{j}$$

Trivial parts

$$R_{0i} = C_{00} = C_{ij} = T_{0i}^{\theta} = R_{\mu\nu\alpha\beta}^{\ \ *} R^{\mu\nu\alpha\beta} = 0$$

A part of field equations

$$\int_{(3)}^{2} D^{2}V = 0$$

$$(3)R = \frac{2\beta}{\kappa} (D\theta)^{2}$$

$$D^{2}\theta + \frac{1}{V} D_{i}VD^{i}\theta = 0$$

$$C_{0i} \neq 0$$

Strictly static spacetimes

$$\int_{(3)}^{2} D^{2}V = 0 \Longrightarrow M = 0$$

Minkowski spacetime

static BH uniqueness

conformaltransformation
$$\tilde{g}_{ij} = \left(\frac{1 \pm V}{2}\right)^4 g_{ij}$$
, such that $\tilde{M} = 0$, $\tilde{R} \ge 0$

- Positive mass theorem $\Rightarrow \tilde{g}_{ij}$: flat space $\Rightarrow \theta = \text{constant}$
- Regularity on event horizon
 - ⇒ V=0 surface in conformally transformed space is spherical symmetric

•
$$\Delta \left(\frac{1}{1+V}\right) = 0$$
, $\Delta = \partial_x^2 + \partial_y^2 + \partial_z^2$

electrostatic potential with spherical boundary

Spherical symmetric ⇒ Schwarzschild

Then, Massive gravity...

- Strictly static/stationary spacetime is Minkowski?
- •In BH spacetime, staticity implies the presence of spherical symmetry?

In general, not. But, if specify the asymptotic behaviors or employ a perturbative argument, you may do something.

$$g = -V^{2}(x^{i})dt^{2} + 2\beta_{i}(x^{j})dtdx^{i} + g_{ij}(x^{k})dx^{i}dx^{j}$$
$$\eta = -dt^{2} + \delta_{ij}dx^{i}dx^{j}$$

Unitary gauge: Stuckelberg $\phi^{\alpha} = x^{\alpha}$,.....