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§1  Kronecker’s Jugendtraum 

There is a phrase “Kronecker’s Jugendtraum 

(dream of youth)” in mathematics. Leopold 

Kronecker was a German mathematician who 

worked in the latter half of the 19th century. He 

obtained his degree at the University of Berlin in 

1845 when he was 22 years old, and after that, he 

successfully managed a bank and a farm left by his 

deceased uncle. When he was around 30, he came 

back to mathematics with the study of algebraic 

equations because he could not give up his love for 

mathematics. Kronecker’s Jugendtraum refers to a 

series of conjectures in mathematics he had in those 

days ̶ maybe more vague dreams of his, rather 

than conjectures ̶ on subjects where the theories 

of algebraic equations and of elliptic functions 

intersect exquisitely. In the present note, I will explain 

the dream itself and then how it is connected with 

my dream of the present time. 

§2 Natural numbers N, integers Z and 
rational numbers Q 

Let us review systems of numbers for explaining 

Kronecker’s dream. Some technical terms and 

symbols used in mathematics will appear in the 

sequel and I will give some comments on them, 
but please skip them untill §9 and §10 if you don’t 
understand them. 
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Jugendtraum of a mathematician

A number which appears when we count things 

as one, two, three, ... is called a natural number. 
The collection of all natural numbers is denoted 

by N. When we want to prove a statement which 

holds for all natural numbers, we use mathematical 

induction as we learn in high school. It can be 

proved by using induction that we can define 

addition and multiplication for elements of N (that 

is, natural numbers) and obtain again an element of 

N as a result. But we cannot carry out subtraction 

in it. For example, 2－3 is not a natural number 

anymore. Subtraction is defined for the system of 

numbers ..., －3, －2, －1, 0, 1, 2, 3, .... We call such a 

number an integer and denote by Z the collection 

of integers. For Z, we have addition, subtraction, and 

multiplication, but still cannot carry out division. For 

example, －2/3 is not an integer. A number which 

is expressed as a ratio p/q of two integers (q≠0) is 

called a rational number (in particular an integer 

is a rational number) and the collection of them is 

denoted by Q. Rational numbers form a system of 

numbers for which we have addition, subtraction, 
multiplication, and division.＊1 Such a system of 

numbers is called a field in mathematics. 
We ask whether we can measure the universe by 

rational numbers. The answer is “no” since they still 

miss two type of numbers: (1) solutions of algebraic 

equations, (2) limits of sequences. In the follwoing 

§3 and §4, we consider two extensions Q and Q 
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of Q, and in §6, both extensions are uni�ed in the 

complex number �eld C.

§3  Algebraic numbers Q 
It was already noticed by ancient Greeks that 

one cannot “measure the world” only by rational 

numbers. For example, the length of the hypotenuse 

of a right-angled isosceles triangle with the short 

edges of length 1 is denoted by √2 (Fig. 1) and 

Greeks knew that it is not a rational number. If 
we express √2 by the symbol x, then it satisfies 

the equation x2－2=0. In general, a polynomial 

equality including an unknown number x such as 

a0x
n + a1x

n－1 + … + an－1 x + an =0 (a0≠0, a1, ..., an 

are known numbers called coeffcients) is called an 

algebraic equation. We call a number x an algebraic 

number if it satisfies an algebraic equation with 

rational number coeffcients. The collection of 

algebraic numbers, including rational numbers, is 
denoted by Q. It is a field since it admits addition, 
subtraction, multiplication, and division. Moreover 

we can prove that solutions of algebraic equations 

whose coeffcients are algebraic numbers are again 

algebraic numbers. Referring to this property, we 

say Q is algebraically closed. This Q is an extremely 

exquisite, and charming system of numbers, but we 

are far from complete understanding of it despite 

the full power of modern mathematics. Is 
Q suf�cient to mesure the world? Before answering 

the question, let us consider another extension of 

systems of numbers in the next section. 

§4  Real numbers R 

Analysis was sarted in modern Europe by Newton 

(1642-1723) and Leibniz (1646-1716) and followed 

by Bernoulli and Euler. It introduced the concept of 

approximations of unknown numbers or functions 

by sequences of known numbers or functions.＊2 

At nearly the same time in modern Japanes 

mathematics (called Wasan), started by Seki Takakazu 

(1642(?)-1708) and developed by his student Takebe 

Katahiro (1664-1739), approximations of certain 

inverse trigonometric functions by a power series 

and that of π by series by rational numbers were 

also studied. Takebe wrote “I am not so pure as Seki, 
so could not capture objects at once algebraically. 
Instead, I have done long complicated calculations.” 
We see that Takebe moved beyond the algebraic 

world, an area of expertise of his master Seki, and 

understood numbers and functions which one 

can reach only by analysis (or series). Nowadays, a 

number which “can be approximated as precisely 

as required by rational numbers” is called a real 

number and the whole of them is denoted by R.＊3 A 

number which has an infinite decimal representation 

(e.g. π =3.141592 ... ) is a real number and the inverse 

is also true. Thus, numbers, which we learn in school, 
are real numbers. Japanese mathematicians of the 

time had high ability to calculate such aproximations 

by using abacuses, and competed with each other 

in their skills. However I don’t know to what extent 

they were conscious about the logical contradiction 

that one cannot reach real numbers in general 

without infinite approximations, while the size of 

an abacus is finite (even nowadays, we meet the 

same problem, when we handle real numbers by 

computer). In Japan, we missed the tradition of 

Euclid. Some people, old Archimedes in Greek, 
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Cauchy in France, Dedekind in German and his 

contemporary Cantor, tried to clarify the meaning 

of can be approximated as precisely as required  

and now the system of real numbers R is usually 

described according to their work. However, because 

of an embarrassing problem found by Cantor,＊4 

understanding of R involves another kind of hard 

problem than that of Q. 

§5  Algebraic numbers versus real 
numbers 

Incidentally, I think many mathematicians concern 

either the understanding of R or that of Q and 

have their opinions. Some years ago, I talked 

with Deligne, a great mathematician in this age, 
at a conference about the completeness of real 

numbers. I was deeply impressed, when I heard 

him regretfully saying Real numbers are diffcult. 
We are far from understanding them . Actually, Q 

has a clue called the absolute Galois group, which 

aids our understanding of it,＊5 while R consists of 

all convergent series, which offers little clue for 

capturing its elements (in spite deep theory of 

approximations of irrational numbers by rational 

numbers). 

§6  Marvelous complex nubers C 
A complex number z is a number expressed as 

z = a + bi, using two real numbers a and b where 

the symbol i (called the imaginary unit) satis es the 

relation i 2 = －1. The whole R + Ri of all complex 

numbers, denoted by C and called complex number 

field, carries the both properties: i) algebraically 

closedness like Q, that is, any non-trivial algebraic 

equation with coeffcients in complex numbers 

always has a solution in complex numbers (Gauss), 
and ii) closedness under taking limits where distance 

between two complex numbers z1, z2 is mesure by 

the absolute value |z1－z2|. 
Furthermore, every proof of i) essentially uses a 

property, called the conformality of the product of 

complex numbers, where a germ of complex analytic 

functions can be found. Euler, who worked in 18th 

century, using complex numbers, showed already 

that the trigonometric functions and the exponential 

function, which were studied separately before, are 

combined by the beautifull relation eiz = cos(z)+i sin(z) 

(in particular eπi = －1). Thus, the works of Gauss 

and Euler, titans in mathematics, established the role 

of complex numbers in mathematics. Then, there 

appeared several theories in physics, like elektro-

magnetic theory, which are described by an essential 

use of complex number field. Even though what 

we observe are real numbers, quantum mechanics 

cannot be described without the use of complex 

number field. We have no choice of words but 

mysterious for the usefulness of complex numbers 

to describe laws of physics and the universe. 
A complex number which does not belong to Q 

is called a transcendental number. It was proved 

by Lindemann in 1882 that π is a transcendental 

number, using Euler’s identity eπi = －1 and the 

theory of approximations of the analytic function 

exp(z)= ez by rational functions, which I will explain 

in §7. Returning to a question at the end of 

§3, we observe now that algebraic numbers Q alone

are not suffcient to measure the world. However, the 
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complex number field C, likewise R, carries Cantor’s 
problem stated in ＊4, and the question whether all 

complex numbers are necessary or only a very thin 

part of it is suffcient remains unanswered. 

§7 Rational functions and analytic 
functions 

So far I have described systems of numbers. It 
is not just to give an overview of the history, but 

because Q and R themselves carry profound actual 

problems yet to be understood. Another reason is 

that the development of the concepts of numbers 

repeatedly became models of new mathematics. For 

example, let us consider the collection of polynomials 

in one variable z, denoted by C[z]. Similar to Z, it 
admits addition, subtraction and multiplication 

between its elements but not division. As we 

constructed rational numbers from integers, we 

consider a function which is expressed as a fraction 

P(z)/Q(z) of two polynomials, called a rational 

function, and the whole of them, denoted by C(z). 
Then similarly to constructing a real number from Q, 
we consider a function which is a limit of a sequence 

of rational functions (in a suitable sense) and call it 

an analytic function. Let us denote the collection 

of such analytic functions by C(z), mimicking the 

notation in ＊3. I think the study of C(z) is easier than 

that of R = Q and expect that the understanding of 

C(z) helps that of R=Q as well as of C. The reason 

is that an element of R (C) is a limit of sequences 

of (Gaussian) rational numbers that provides little 

clue for capturing it, while for an element of C(z) 

we have a clue, the variable z. For instance, we have 

some freedom to substitute a  favorable value in the 

variable z as needed. Therefore, we contrast Q with 

C(z) instead of contrasting Q with R = Q as in §5. 

§8 Transcendental functions and 
period integrals 

An element of C(z) which is not either a rational 

function or an algebraic function (in a suitable sense)  

is called a transcendental function. The gamma 

function Γ(z) and zeta function ζ(z) are examples of 

them. However, in what follows let us discuss about 

transcendental functions belonging to different 

category, namely their Fourier duals. 
The exponential function exp(z) and the 

trigonometric functions, we have already seen, 
are, from a certain viewpoint, the first elementary 

transcendental functions appearing after rational 

functions. Let us briefly explain the reason. We learn 

in high school that the length of an arc of the unit 

circle can be obtained as the integral z = 

(Fig. 2). For the correspondence (or map) x → z 

defined by the integral, its inverse map z → x is the 

trigonometric function x = cos(z). In other words, 
the trigonometric functions are obtained as the 

inverse functions of the arc integrals over a circle (a 

quadratic curve). As we learn in high school, they 

are periodic functions with period 2π and satisfy the 

addition formulas (in particular, we can obtain the 

coordinates of the points that divide the arc equally 

into q parts for a natural number q, by solving an 

algebraic equation of degree ≤ q). Then, arc integrals 
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Figure 1: We consider a square whose diagonals have the length 2. Then its area is equal to 2, since

we can decompose and rearrange the square into two squares whose side legths are equal to

1. Therefore, the side length of the original square is equal to √2.

Figure 2: We consider a point P on the circle of radius 1 in the x-y plane. Then the length (angle) 

of the arc 1P is given by the integral

z = 1P =
P

1
dx2 + dy2 =

x

1

| dx |

√1 − x 2

Then as the inverse of the function x z, we obtain the trigonometic-function x = cos (z) .

Figure 3: For a positive number a, the lemniscate curve is characterized as the loci of point

P where the product of distances from two points ±a on the x-axis is the constant equal to

a2, and is given by the equation ( x 2 + y2) 2 = 2a2(x 2 − y2). The length z of the arc P0 P

on the lemniscate is given by the integral

z = P0 P =
P

P 0

dr

√1 − r 4

where r = √x 2+y 2. Then, as the inverse of the function x     z, we obtain an elliptic function 

r = ϕ (z) of period Z+Zi.
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for curves of higher degrees and their inverse 

functions are natural subject of study. The theory of 

elliptic functions and abelian functions was born in 

that way.＊6 The length of arcs in a lemniscate curve 

(see Fig. 3) is given by        . This was the first studied 

elliptic integral, 100 years before Gauss, when an 

Italian, Fargano, found a formula for the duplication 

of arc length of the lemniscate, and later Euler did 

the addition formulas (Jacobi approved it for the 

start of the theory of elliptic functions). The inverse 

function of the lemniscate integral is, from a modern 

viewpoint, an elliptic function having Gaussian 

integers Z+Zi as its periods. 

§9 Kronecker’s theorem = the first 
contact point between algebraic 
numbers and transcendental 
functions? 

Nowadays the following two statements are 

known as Kronecker’s theorems (we refer readers to 

the text book in ＊5 and ＊6 for terminology): 
1. Any abelian extension field of the rational 

number field is obtained by adjoining values that 

are substitutions of rational numbers p/q to the 

variable z of the exponential function exp(2πiz) 

(for short, the coordinates of the points of the 

circle S1 = {z ∈ C | |z| =1} that divide it equally 

into q parts, see figure 1) to the field of rational 

numbers. 
2 Any abelian extension of the gaussian integers 

Z + Zi is obtained by adjoining the coordinate 

values of the points of the lemniscate that divide it 

equally, where the values are expressed by special 

values of the elliptic functions associated with the 

lemniscate. 
Kronecker’s theorems (whose proofs he did 

not leave behind) involve both number theory 

and transcendental functions related to algebraic 

geometry. He devoted his later years of life to 

a proof of the advanced proposition that any 

abelian extension field of an imaginary quadratic 

field is obtained by adjoining solutions of the 

transformation equations for elliptic curves with 

complex multiplication. He called it “the dearest 

dream of my youth (mein liebster Jugend Traum)” 
in a letter to Dedekind, a German contemporary 

mathematician, when he was 58 years old. 
It is said that Kronecker had many likes and 

dislikes; “God made the integers, all else is the 

work of man (Die ganzen Zahlen hat der liebe 

Gott gemacht, alles andere ist Menschenwerk).” is 
his saying. According to books of the history, he 

thoroughly attacked the set theory of Cantor, a 

contemporary German mathematician; Cantor was 

distressed with this and entered a mental hospital. 
Though Kronecker’s mathematics that treats the 

exquisite structure of numbers, and Cantor’s that 

was reached by thorough abstraction of those 

structures (see ＊4) are quite in contrast, I am 

attracted by both of their thoroughness, and the 

unhappy relation between them perplexes me. One 

may think Kronecker is on the side of Q, but I think 

this is a one sided opinion. His results or dreams turn 

out to tell about some delicate points where Q and 
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C(z) contact. Kronecker’s Jugendtraum was later 

solved by Takagi Teiji in Japan and others, with the 

building of class field theory. 

§10  New dream 
Following Kronecker, let me write about a dream 

of my own. Roughly speaking, Kronecker found 

that the first step (i.e. abelian extension of Q) 

of extending the rational number field Q to its 

algebraic closure Q corresponds to another first 

step (i.e. exponential function) of extending the eld 

of rational functions C(z) to the field of analytic 

functions C(z) in such a manner that the algebraic 

extension is recovered by adjoining special values of 

the transcendental function. Let us expect, though we 

have no evidence so far, that similar correspondences 

between algebraic numbers and transcendental 

functions exist further, and that it causes 

certain hierarchies  among the corresponding 

transcendental functions.＊7 Then the problem is 

what transcendental functions should appear. 
My Jugendtraum is to construct (some candidates 

for) such transcendental functions by period 

integrals and their inverse functions, just like that 

the classical circle integrals and elliptic integrals 

gave birth to exponential and elliptic functions. 
To do it, I proposed the theory of primitive forms 

and their period integrals as a higher-dimensional 

generalization of the theory of elliptic integrals. More 

precisely, we have introduced a) semi-infinite Hodge 

theory (or non-commutative Hodge theory) in 

order to define the primitive form associated with a 

Landau-Ginzburg potential, b) torsion free integrable 

logarithmic free connections to describe the period 

map, c) the flat structure (or Frobenius structure) 

on the space of automorphic forms given as the 

components of the inverse maps of period integrals, 

d) several infinite-dimensional Lie algebras (such as 

elliptic Lie algebras, cuspidal Lie algebras, ...) in order 

to capture primitive forms in (infinite) integrable 

systems which are associated with a generalized 

root system and with a regular weight system, and 

e) derived categories for giving a categorical Ringel-

Hall construction of those Lie algebras (every one of 

them is unfinished). It is mysterious that some pieces 

of these structures I have considered from purely 

mathematical motivations have come to be observed 

in topological string theory in recent physics. I 
sincerely wish these attempts for understanding of 

the system of numbers C should also lead to the 

understanding of the physics of the universe. 

＊1 To be precise, we don’t allow division by 0.
＊2 Let us explain a bit more precisely. The collection of rational numbers is 

equipped with an ordering. Then, for two numbers x and y, we define the 
distance between them by |x－y| = max{x－y, y－x} and regard them being closer 
to each other when the distance between them becomes smaller. We say that 
a sequence y1, y2, y3, ... approximates a number x if |x－yn| (n =1, 2, 3,...) becomes 
smaller and closer to 0. We say that an infinite sum (called a series) y1+y2+y3+
… converges to x and write x =y1+y2+y3+…, if the sequence y1, y1+y2, y1+y2+y3, ... 
approximates x. E.g. π2/6=1+1/22+1/32+ … (Leibniz). 

＊3  One may denote R by Q in the sense that it is an analytic closure of Q. However 
Q is also equipped with another distance than that in ＊2 called p-adic non-
Archimedean distance for each prime number p, and we need to distinguish Q 
from the closure Qp with respect to the p-adic distance. 

＊4  Cantor found that, forgetting the structures on the sets N, Z, Q, Q, one can 
construct a one-to-one map between any two of them, while the set R is 
properly larger than them. This left the problem whether an intermediate size 
between N and R exists. Although Cantor himself proposed the continuum 
hypothesis that asserts no intermediate exist, now it is known that the 
continuum hypothesis is independent of the axioms of set theory. Namely we 
don’t know whether there exists a subset of R which is properly smaller than R 
and properly larger than N or not. 

＊5  Q is a union of subfields Q(ξ), called number fields obtained by adjoining 
finitely many algebraic numbers ξ to Q. The projective limit: lim Gal(Q(ξ)/Q) 

 of Galois groups corresponding to Galois fields Q(ξ) (where ξ is closed under 
conjugation) is called the absolute Galois group. It is equipped with the 
inclusion relation among subgroups (hierarchy structure) corresponding to 
extensions of number fields. Reference: Emil Artin, Algebra with Galois Theory, 
American Mathematical Society, Courant Institute of Mathematical Sciences.

＊6  We refer the reader to one best text on elliptic functions and period integrals 
from analytic viewpoint by C.L. Siegel: Topi ics n complex function theory, Part 1, 
Teubner (1970)). 

＊7  Hilbert has suggested certain automorphic forms as such transcendental 
functions for real quadratic fields. However, the author does not know 
whether it is reasonable to expect further such correspondeces. If there exist 
such correspondences, such transcendental functions form quite a thin (ℵ0) 
subset of the field of all transcendental functions. Those functions should be, 
in spite of their transcendency, special functions which are controlled by an 
algorithm in a suitable sense. We can imagine many things, Moonshine for 
instance. What happens on the side of transcendental functions corresponding 
to algebraic extensions with non abelian simple groups as their Galois groups. 
But I don’t think we have examples to assert mathematical propositions. Can 
we resolve  Cantor’s problem (see ＊4) considering only such a thin set of 
special transcendental functions and their special values? For the description of 
mathematics and physics of the universe, is such a thin set of transcendental 
functions suf cient? 




