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Geometry is one of the oldest branches of 

mathematics. Its goal is to describe the structure 

of space, so it is motivated by our physical 

understanding of the space around us. From the 

human perspective, geometry is dominated by 

the visual sense, the source of so-called geometric 

intuition, which allows us to see the connections 

between parts of an image before formally 

describing them. It is our everyday experience of 

seeing everyday things around us that forms the basis 

of our assumptions about what geometry should be 

about.
But modern physics tells us that the structure 

of our physical space (or space-time) at very short 

distances in not known. Why? Because our visual 

sense is based on the eye observing the light 

re�ected by objects. But light is in fact a wave 

phenomenon. So “objects” smaller than the wave 

length of the light, are hard to observe precisely in 

this way. Trying to increase the the resolution, so to 

say, involves bombarding the object with quanta of 

light (or with other particles) with higher and higher 

energies. Since our ability to produce higher energy 

particles is limited, so is our ability to “see” at very 

short distances.
So we cannot just assume that at extremely small 

ranges our space has the same general structure 

as we are used to from everyday life. For example, 
it is not a law of nature that it consists of points 

which are arranged continuously next to each other, 

with well de�ned distances between them, etc. In 

other words, the premises on which we base our 

development of geometry must be re-examined.
There have traditionally been several branches of 

geometry: differential geometry, algebraic geometry, 
topology, combinatorial geometry and so on. But all 

these types agreed on certain assumptions (like the 

above) on what should we understand by a “space” 
in the �rst place, and differed only in the approaches 

they took in studying it: differential calculus, algebraic 

equations and so on.
However, in recent decades, there appeared several 

new directions of geometry which require a change 

in the very way we think about geometric shapes. I 
want to discuss some of these directions.

Most of new geometric approaches are based on 

the theory of schemes developed by A. Grothendieck 

in the early 1960’s as a new foundation of algebraic 

geometry. The basic idea is that all the information 

about a “space” X (whatever we mean by this) must 

be encoded by the datum R of functions on X. In 

the naive settings R consists of functions on X of 

certain kind, i.e., of rules f associating to any point 

x of X some numerical value f (x). Such functions 

can be added, subtracted and multiplied pointwise. 
Mathematically, a system of functions (or other 

entities) closed under addition, subtraction and 
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multiplication is called a ring. The rings of functions 

have one obvious but important property: the 

multiplication is commutative:

f · g = g · f.

This property turns out to be crucial for the formalism 

of algebraic geometry to work.
For example, if X is the n-dimensional coordinate 

space, then the corresponding R consists of 

polynomials in n variables, expressions like

f (x, y) = 2x + 3y + 16x5y3 + x4y7

(here n = 2). If X is given by a polynomial equation, 
then the corresponding R is obtained from the 

polynomial ring by a natural identi�cation: we 

“identify” (consider as one) any two polynomials f, g 

whose difference is a multiple of the equation, and 

similarly for the case of several equations. One refers 

to X as the spectrum of R and writes X = Spec(R).
The word “spectrum” comes from spectral theory 

of linear operators (i.e., the theory of eigenvalues), 
an area that was heavily in�uenced by the needs of 

quantum physics. So this is an example of implicit 

in�uence of physics on mathematics.
The important (and initially controversial) step 

in Grothendieck’s theory is that one can associate 

the geometric image (scheme) Spec (R) to any 

commutative ring R whatsoever. An important non-

classical example is given by the ring of dual numbers 

D. An element of this ring is an expression a + bε; 
such expressions are multiplied formally using the 

rule ε2 = 0. So ε2 = 0 is the equation in this case. 
How is it different from ε = 0? Naively, D cannot 
be realized as the set of functions on anything, 
because there is no number other than 0 which 

squares to 0. Nevertheless, the scheme Spec (D) has 

a meaningful geometric interpretation: it is viewed as 

having one point (where ε = 0) and also having the 
tangent direction at this point, but no further data, 
see Fig. 1. In a way, this is a revival of the old idea 

of “in�nitesimally small quantities”: ε itself is not yet 

zero, but is “so small” that ε2 is already negligible. 
One can also consider in�nitesimals ε such that ε2 

≠ 0 but some higher power of ε vanishes. Rings 
containing such in�nitesimals (called nilpotents) are 

visualized as corresponding to in�nitesimally thin 

neighborhoods of more classical geometric images 

(curves et cetera).

The spectacular success of “visualization of 

commutative rings” given by scheme theory led to 

repeated attempts to extend it to noncommutative 

rings, algebraic structures in which the multiplication 

can lead to f · g ≠ g · f .
A non-mathematician may wonder: what is the 

importance of such structures? do they really appear 

“in real life”? In fact, it was the advent of quantum 

mechanics which brought noncommutative rings 

into the forefront of physics. Usual physical quantities 

are promoted, in quantum mechanics, to non-

commuting “operators”. A typical commutation 

relation is p·q－q·p = ih̅ between the operators 

Noncommutative geometry

Figure 1:  A non-classical space given by the equation ε2 = 0.
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corresponding to the coordinate and momentum of 

a particle. There are many other examples in pure 

mathematics, such as multiplication of matrices, or 

composing transformations, i.e., operations of some 

kind. In fact, if we do any actions in a sequence, the 

result usually depends on the order. To put on a shirt 

and then a jacket is not the same as to �rst put on a 

jacket and then a shirt!
A good illustration of the challenges presented 

by noncommutativity is provided by the concept 

of “noncommutative polynomials”. For instance, 
consider two variables x, y which do not commute. 
Then we have 4 quadratic monomials: x2, xy, yx, y2, 
all different. If we think of x, y as commuting, then 

xy and yx are the same but as noncommutative 

monomials they are different. In this way, a single 

commutative monomial can be represented by 

several noncommutative ones. For example x5y3 

can be lifted to yx3yx2y, or to xyx2yxyx, or to several 

others. It is convenient to make a picture (known as 

Newton’s diagram) depicting a usual monomial, say 

x5y3 by a point on the plane with coordinates 

(5, 3). Then a noncommutative lifting of this 

monomial corresponds to a “taxicab path” (like in 

a city with a grid of street blocks) starting from (0, 
0) and ending at (5, 3). That is, one move to the 

east corresponds to x and one move to the north 

corresponds to y, see Fig. 2.
Thus a noncommutative polynomial is really a 

sum over such paths. Making x and y commute 

means that we perform summation over paths 

with �xed beginning and end. This means that 

“commutativization” (forcing noncommutative rings 

to be commutative) can be seen as an algebraic 

analog of path integration which is the fundamental 

conceptual tool of modern physics.
One way of attaching geometric intuition to 

noncommutative rings is to use the concept of a 

vector bundle in geometry, i.e., a continuous family 

of vector spaces parametrized by a space X. For 

example, the Moebius strip (Fig.3) is a vector bundle 

over its central (black) circle: a family of “vertical” 
lines parametrized by it. If X corresponds to a ring R, 
then a vector bundle on X gives rise to an algebraic 

object M called a module over R, where we can 

multiply elements r of R and m of M and get an 

element m’ = r · m of M .
Attaching geometric intuition to noncommutative 

rings is not only a tool for studying such rings, it 
has many applications to more familiar geometric 

problems. In many cases, one can approximate a 

usual (“commutative”) but complicated or badly 

behaved space, by a much simpler non-commutative 

object.

Still, noncommutative algebraic structures do not 

Super-geometry

Figure 2:  A noncommutative monomial represented by a path.
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seem to be capable of fully geometric interpretation. 
It is the commutativity property that makes many 

essential constructions work.
An alternative approach is to look for properties 

“similar to commutativity” which act as similar but 

different keys to the realm of geometry. One of such 

properties is graded, or super-commutativity, which 

leads to super-geometry.
In this setting we have a ring R having quantities 

of two types, even and odd. A general element of R 

is represented as a sum of an odd and an even one. 
The super-commutativity law (also known as the 

Koszul sign law) reads:

(1) f · g = (－1)deg(f ) · deg(g) g · f,

where f and g are either even or odd. The quantity 

deg(f) is equal to 0 for f even and 1 for f odd. In 

other words, we have f · g = g · f when at least one 

of f, g is even and f · g = －g · f when both are odd.
So a super-commutative ring is not commutative 

in the usual sense. Nevertheless, the experience of 

mathematicians has been that super-commutativity 

unlocks all the geometric features that can be 

associated to usual commutative rings. For example, 
one can speak about super-manifolds, objects which 

have usual (even, commuting) coordinates together 

with odd, anti-commuting coordinates.
The super-commutative law is just one of an 

elaborate system of sign rules in this kind of algebra 

(sometimes called super-algebra). The remarkable 

fact is that these rules are non-contradictory: various 

transformations incur various sign changes but it 

never happens that doing something in two different 

ways results in different signs (that would destroy the 

whole theory). This almost mystical self-consistency 

of the rules adds a lot to the appeal of the theory. 
But perhaps the real reason the things do not 

collapse is the physical origins of super-algebra.
It is known in physics that elementary particles fall 

into two types: bosons and fermions. The difference 

is that more than one fermion cannot be in the same 

quantum state (this is known as the Pauli exclusion 

principle), while for bosons it is possible. For example, 
electron and proton are fermions, while photon (the 

quantum of light) is a boson. At a more mathematical 

level, the state vector of a system of several fermions 

changes sign under permuting any two of them, 
in a way remindful of (1). This fermionic nature of 

electrons is at the basis of the structure of atoms and 

chemical elements, and so is fundamental for the 

existence of the universe as we know it.
The idea of super-geometry was �rst suggested 

by F. Berezin in the late 1960s. He had a clear 

physical motivation: to create geometry that would 

account for the behavior of fermionic particles. 
This was included into a large program of so-called 

supersymmetry, i.e., symmetry between bosonic and 

＊1 Picture source: pgfplots.

Figure 3:  The Moebius strip1 and the multiplication in a module.

r · m = m’
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fermionic particles. Most importantly, these ideas 

turned out to be extremely fruitful in string theory. 
The ± signs that appear in super-algebra, far from 

being an annoyance, ended up serving a crucial 

purpose: they make answers provided by physical 

theories more manageable (free from obvious 

in�nities). That is, individual terms in the calculations 

end up being very large but because of summation 

with ± signs the end results appear �nite, something 

that would not happen without super-algebra.
Modern super-geometry serves as a geometric 

language underlying superstring theory. Especially, 
super-analogs of algebraic curves and of their moduli 

spaces provide a mathematically solid background for 

many aspects of the theory.

Every mathematical object is, at least formally, 
a set, a collection of simpler entities of some kind 

called elements. Thus, a circle “is” the set (collection) 

of its points, a ring is the set of the functions that 

form it etc. This approach is still the mainstream of 

mathematical reasoning. A mathematician usually 

does not understand a construction unless it is 

formulated in such terms.
Now, there are two fundamentally different and 

dual ways of constructing new sets (mathematical 

objects) out of ones we have already.

One is by conditions, say describing a circle by the 

equation x2 + y2 = 1.
The other is by parametrization, i.e., by presenting 

an exhaustive list of all the data in the collection. For 

example, the same circle can be parametrized by x = 

cos(α), y = sin(α).
Homological algebra, in a wider sense, is the part 

of mathematics that studies the interplay between 

these two types of description. Often it is not 

possible to give two exactly matching descriptions 

of the same object, there is a “gap” between them: 
not every element satisfying the conditions is listed. 
This gap is formalized in the mathematical concept of 

cohomology.
The origins of homological algebra were in 

topology, the part of geometry that studies rough 

shapes of spaces invariant under deformations. To 

understand such structures, one considers cycles, 
geometric images with no boundary. Two cycles are 

called homologous, if their difference is a boundary. 
In such a way one can tell, for example, the difference 

between a sphere and a torus: in the torus we can 

have 1-dimensional cycles non-homologous to each 

other, unlike in the sphere. See Fig. 4. So here the 

conditions (vanishing of the boundary) and the lists 

(being a boundary) stem from the same geometric 

concept.
A mathematical structure allowing for systematic 

study of such phenomena (conditions vs. lists) is called 

Interlude: Homological algebra

Figure 4:  Homologous and non-homologous cycles. 
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a cochain complex, a vector space V together with 

a “differential” (analog of the boundary operator) 

d which, applied twice, gives 0. This formalizes the 

fundamental geometric property that “the boundary 

has no boundary.” In most cases there is also a 

grading: vectors are assigned integer degrees.
This type of approach has also slowly gained 

ground in physics where it is known as the BRST 

quantization (named after physicists C. Becchi, A. 
Rouet, R. Stora and I. Tyitin who �rst introduced it 

in the 1970s). In this approach, only the “states” 
(vectors) ψ annihilated by d, are considered physical. 
Further, two physical states ψ, ψ’ are considered 
equivalent (physically the same!) if their difference is 

of the form d(φ). Thus the actual physical meaning 

is assigned to the cohomology, i.e., to the gap! The 

full implications of this bold idea are still not fully 

understood.

One can say that geometry teaches us how to 

pass from �at (linear) spaces to curved spaces (called 

manifolds). A manifold has a �at approximation 

associated to each point: the tangent space. A 

different choice of the concept of a �at space may be 

often upgraded to a curved generalization. The idea 

of derived geometry is to match this approach with 

that of homological algebra. That is, we consider, 

as �at models, not linear spaces but complexes as 

above.
The motivation for this was originally purely 

intrinsic to mathematics. It was known for a long 

time that moduli spaces (spaces of parameters of 

geometric structures) can be singular, i.e., possess 

points near which linear approximation breaks down, 
like the sharp point of a cone (see Fig. 5). It turns out 

that introduction of derived structures allows one 

to overcome these dif�culties by producing new 

objects, which do possess nice linear approximations, 
but these approximations are complexes!

However, passing to the derived world drastically 

enlarges our supply of geometric objects. Along with 

“spaces” in the usual sense (even when understood 

as schemes in the sense of Grothendieck) one �nds 

other types of geometric objects, some known, some 

new, which can be roughly classi�ed by the range 

of the degrees of their tangent spaces (complexes) 

(see Fig. 6 where some of these types and the 

corresponding ranges are outlined). Thus, stacks 

(whose range comprises (－1) and 0) describe “spaces 

with internal symmetry” (similar to gauge symmetry 

in physics); most moduli spaces are known to be, 
in fact, stacks. Higher stacks describe even more 

sophisticated symmetries.
In some intuitive sense, the positive (right-hand) 

range corresponds to “geometry in the small”, 
where we focus on small details near a complicated 

Derived geometry

Figure 5:  A smooth and a singular space.
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(singular) point of a geometric object. The negative 

(left hand) range corresponds similarly to “geometry 

in the large”, where we focus on large scale, 
topological properties of spaces. It is remarkable that 

these two complementary aspects of geometry �nd 

a natural common framework.
Although somewhat abstract in its origins, 

derived geometry has by now found many 

remarkable applications in physics. Thus, derived 

stacks (objects belonging mostly to the right hand 

direction) provide the source of integration cycles in 

topological quantum �eld theories. Derived analogs 

of symplectic manifolds (geometric objects at the 

basis of Hamiltonian formalism of classical mechanics) 

have, in the last few years, emerged as a structure 

carried by many moduli spaces.
There is also a strong connection to super-

geometry as the concept of commutativity in the 

derived world also involves the super sign rule (1). 
In fact, the sign system underlying (1) (such 

structures are called Picard groupoids) can be 

given a purely topological interpretation, in terms 

of the classi�cation of mappings between higher-

dimensional spheres (so-called stable homotopy 

groups). The degrees deg (f) (assumed integer) 

correspond to the integer invariant of maps between 

spheres of the same dimension, also known as the 

degree. The two signs ± corresponds to two types 

of maps between spheres of dimension n +1 and n, 
where n = 3 or more.

These are just a few examples of new geometric 

techniques that mathematicians use. Which type of 

geometry describes “the real world”? Which other 

types may be necessary for such description? So 

far, we do not know. The concept of space-time at 

extremely small distances may not even make sense 

as such, and some grainier, more chaotic quantum 

structure may replace it. But to be able to even talk 

about such things meaningfully, we need bridges 

connecting them to our geometric intuition and to 

our human patterns of thought. It is likely our lack of 

imagination of what kinds of geometry are possible 

that prevents us from asking the right questions.
To me, the fascinating power of super-geometry 

and the physical promise of supersymmetry suggest 

that commutativity in some even higher sense may 

open the doors to new geometric worlds relevant to 

physics. In particular, I think that structures related 

to stable homotopy groups of spheres, a classical 

subject of algebraic topology, may provide a guide to 

such new worlds.

Conclusion

Figure 6:  Panorama of derived geometry.
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