CONTENTS

FOREWORD

1 INTRODUCTION

2 NEWS & EVENTS

3 ORGANIZATION

4 STAFF

5 RESEARCH HIGHLIGHTS

5.1 Newly Discovered Strong Lenses in HSC Data

5.2 Rare B Decay Anomaly and U(1)B-L

5.3 Wonderful Compactifications of Moduli Spaces

5.4 The Search for CP Violation in Neutrino Oscillations at T2K and Beyond

5.5 First Public Data Released by the Hyper Suprime-Cam Subaru Strategic Program

5.6 Discovery of the Two Faint Satellites in the Milky Way by the Hyper Suprime-Cam Subaru Strategic Program

5.7 Splashback Radius: A Physical Boundary for Dark Matter Halos

5.8 A Lefschetz Theorem for Overconvergent Isocrystals with Frobenius Structure

5.9 Time-Reversal Anomalies of Quantum Field Theories

5.10 Microlensing Constraints on Primordial Black Holes with the HSC Observation of M31

6 Assembly of Massive Galaxy Traced by Extended Stellar Halo

7 CONFERENCES

7.1 PhyStat Workshop on Statistical Issues in Experimental Neutrino Physics

7.2 Higher Residue Week, 2016

7.3 Lectures on Cosmology with Planck at IPMU

7.4 Matrix Factorization and Related Topics, 2016

7.5 Statistics, Quantum Information, and Gravity

7.6 Workshop on Categorical and Analytic Invariants in Algebraic Geometry IV

7.7 Resurgence at Kavli IPMU

7.8 Conference “D-modules and Hodge Theory”

7.9 Conference: MEXT Scientific Research on Innovative Area

“Why Does the Universe Accelerate? – Exhaustive Study and Challenges for the Future –”

7.10 Workshop “Mathematics and Superstring Theory”

8 SEMINARS

9 VISITORS

10 PUBLICATIONS

11 PREPRINTS

12 CONFERENCE PRESENTATIONS AND SEMINAR TALKS

13 OUTREACH AND PUBLIC RELATIONS

On the cover: A color composite image in the g, r and i bands of a small piece of the COSMOS field, as imaged by the Hyper Suprime-Cam. This image contains thousands of galaxies as faint as 27th magnitude. The galaxies are seen at such large distances that the light from them has taken billions of years to reach us. The light from the faintest galaxies was emitted when the universe was less than 10% of its present age. (Credit: Princeton University/HSC Project)
I’m amazed. This annual report covers our activity through the Japanese Fiscal Year 2016, and the WPI funding was supposed to be finished on March 31, 2017. Then why haven’t we disappeared from the map by now? Institute for the Physics and Mathematics of the Universe was launched on October 1, 2007. The WPI funding was promised for nine and a half years. We started to recruit very best scientists with the fear that they may all leave well before the end of this period. It is a culmination of many forces and sheer luck that got us through these years and beyond.

Kenzo Nakamura was just about to retire from KEK, and agreed to come as the Administrative Director on October 16. He was IPMU Employee #1. Since then, he started to assemble a team of competent staff, to get ready for the anticipated arrival of many scientists, with a large fraction from other countries. All the PIs worked hard to advertise the new institute and announced a large number of available positions. At the same time, many of our research projects, most notably Hyper Suprime-Cam on Subaru telescope, were started but constrained by funding. I began my appointment only on January 1, 2008 because of my duties in Berkeley which I had complete. Kenzo worked out my appointment which was approved only a few days before my arrival.
Many young faculty started to arrive soon, mostly Japanese at the beginning. Kenzo and I worked on our staff to change their mindset from the traditional system to a new open and forward-looking system. Surprisingly, they were very eager to tackle new challenges. Soon enough, the web site our staff put together received President’s award, the first recognition by the University that IPMU is off to something good. Yet when the first batch of young international postdocs started to arrive in fall 2008, it was quite a bit of chaos and trial and errors. Thanks to dedication of our staff, we managed to create a system that supports international scientists very well so that they could kickstart their research soon after they arrived. Vast majority of the initial postdocs are already on faculty positions elsewhere in the world because of their great research accomplishments at IPMU. Given their success, IPMU started to become known to the world, and more people came for workshops and appointments. We started to attract international faculty members. The building momentum caught the attention of the University administration, and they created Todai Institutes for Advanced Study (TODIAS) to house IPMU, later renamed as UTokyo Institutes for Advanced Study (UTIAS). It was originally meant to be purely organizational issue, but it turned out to have critical importance later.

Thanks to the wise decision by Executive Vice President Nishio, we could build our wonderful building by borrowing money from ten-years of overhead up front. Thanks to strong support by Executive Vice President Ookayama, we could launch daily tea time, and create flexible appointment system. Thanks to then-Presidents Komiyama and Hamada, we started to obtain permanent positions, despite the fixed-term nature of funding. Kavli Foundation observed this development, and decided to make IPMU the first Kavli Institute in Japan; actually the first institute in Japan named after any donor, not to even speak of an international donor. It broke a new ground, and gave us a greater visibility. IPMU became Kavli IPMU in 2012. The Foundation intended to make this happen earlier, but was delayed by Lehman shock in 2008.

Yet Lehman shock helped. It prompted the Japanese government to create economic stimulus package, which included large funding called FIRST to 30 individuals. For a sheer luck, I managed to get one approved, without which the current major project Hyper Suprime-Cam would not have been completed, nor the next major project Prime Focus Spectrograph launched.

We were very keen on public outreach from the onset, because of our sense of our obligation to bring back the research products to who paid for them, namely the general public. Unexpectedly, it created a strong public support to Kavli IPMU, by being volunteers, providing donations, and just being fans.

All of them combined, we received the top mark from the interim review on Dec 2012. Mr. Towatari, then a high-ranking official at MEXT, suggested that we should go after permanent funding that goes beyond WPI. TODIAS framework gave us right to put forward a budget request. It took several years to materialize, but without his suggestion, we would not have put in such a request. It started to produce permanent funding so that Kavli IPMU could go on beyond the WPI funding.

In the mean time, our scientists kept producing world class research as we have shown in the annual reports the last nine times. Then in October 2015, we overjoyed when one of our PIs, Takaaki Kajita, was announced to received Nobel Prize in Physics!

If we had missed any one of them above, we would not be here today.
INTRODUCTION

The Kavli IPMU marks the 10th year since it was established on October 2007 as the Institute for the Physics and Mathematics of the Universe by the World Premier International Research Center Initiative of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. The Kavli IPMU aims at establishing a multi-disciplinary research institute with the unifying goal of understanding five fundamental questions about the Universe: how it starts, what it is made of, what its fate is, what its fundamental laws are, and why we exist in it. We proposed to address these questions from the synergistic perspectives of physics, mathematics, experimental physics, and astronomy. Since the quality of our work is well recognized in the community, the Kavli IPMU became a member of the Kavli Institutes in 2012 and it has now grown to a competitive world-class institute consisting of 252 researchers, and 39 administrative and research support staffs.

In the calendar year (CY) 2016, 345 (450 when including WPI-related) papers were published. We have consistently produced a large number of scientific papers in the past 3 years (452 in CY2014, 466 in CY2015 including WPI-related papers) after a steady increase (75, 199, 240, 292, 347, 380 papers from CY2008 to CY2013). Among the WPI papers published in CY2016, the rate of highly cited papers “top 1% of papers” was 16 (3.6%) based on the Web of Science by Thomson Reuters. The impact factor for all of our refereed papers published from the institute’s inception to Dec 2016 are as follows: the average number of citations per paper is 23.1; 85 papers have over 100 citations and 287 over 50 citations in which review papers are excluded. The fraction of CY2016 papers with international collaboration reaches 78 %. The Kavli IPMU members also received 10 valuable prizes/awards during FY2016. For example, N. Yoshida was awarded the Japan Academy Medal and the Japan Society for the Promotion of Science Award. T. Kajita and H. Ooguri received the Japan Academy Medal and the Japan Society for the Promotion of Science Award. T. Kajita and H. Ooguri received the Japan Academy Medal and the Japan Society for the Promotion of Science Award. T. Abe was awarded the 2017 Mathematical Society of Japan Spring Prize.

• Theoretical physicists in the Kavli IPMU work on a variety of topics. The particle phenomenology group, led by T. Yanagida and S. Matsumoto, searched for new physics with the 750GeV diphoton anomaly reported by the LHC experiment in 2015. H. Murayama’s proposal that dark matter is Strongly Interacting Massive Particle as “dark pions” has attracted a lot of attention, selected as one of Highly Cited Papers based on Thomson Reuters. Our new young professor Y. Tachikawa conducted research in various aspects of quantum field theories including time-reversal anomaly of 2+1 dimensional systems. String theorists performed various studies including that of new aspects of duality map between Heterotic and Type IIA string theories by T. Watari.
• Mathematicians actively work on a variety of subjects in arithmetic, algebraic complex and symplectic geometry and representation theory that have deep connections with theoretical physics in particular with string theory. M. Kapranov is a leader in higher category theory and significantly boosts our international reputation. T. Abe was awarded the 2017 Mathematical Society of Japan Spring Prize.
• The XMASS team led by Y. Suzuki looked for annual modulation of the dark matter signal using the data spanning more than a year. They found that almost all the DAMA/LIBRA allowed region in 6 to 16 GeV/c^2 are excluded when assuming WIMP dark matter.
• The T2K collaboration presented its first neutrino oscillation results using a simultaneous analysis of data collected with neutrino and antineutrino beam configurations. M. Hartz and C. Bronner led the analysis of T2K data to give the world’s best constraint on the parameter related to CP violation in neutrino mixing. They found that their result is most consistent with a value of the parameter for which CP violation is large. The result has been accepted for publication in Physical Review Letters (PRL) with the “Editors’ Suggestion” designation.
• The KamiLAND-Zen led by K. Inoue and A. Kozlov demonstrated the best sensitivity in the search for neutrinoless double-beta decay in Xenon 136. The team set the best limit on the effective Majorana neutrino mass of 61 meV to 165 meV, which excludes most of the degenerate mass region. The work was published in PRL as an “Editor’s Suggestion”.
• Both the Super-Kamiokande and T2K Collaborations have now officially endorsed and approved the IPMU-originated and IPMU-developed idea of loading Super-K with gadolinium, a concept known as GADZOOKS! (Gadolinium Antineutrino Detector Zealously Outperforming Old Kamiokande, SuperK). This new phase of operations, formally known as SK-Gd, is expected to get underway in 2018, with the first gadolinium load going into the tank in 2019.
• The CMB satellite mission, LiteBIRD, is now progressed to the JAXA/ISAS PhaseA1 and has also been selected as a top-priority large-scale project “Master plan 2017” by the Science Council of Japan. The LiteBIRD team extends the collaboration in different fields: the Ohsaki group at the...
Graduate School of Frontier of Sciences develops the superconducting magnetic bearing technology, while the Gonokami-Yumoto-Ideguchi group at the Institute for Photon Science and Technology develops laser machining technology.

- The Hyper Suprime-Cam (HSC) project, which is currently taking 300 nights worth of images on the Subaru telescope over a 5 year period using a new 900M-pixel digital camera, finally made a public release of the first-year HSC data from its first 1.7 years (61.5 nights of observations) — the HSC DR1. The dataset already contains almost 100 million galaxies and stars including some of the most distant galaxies in the Universe. The total amount of data is already comparable to the size of the US-based Sloan Digital Sky Survey that took over 10 years to establish. The HSC team is now working very hard to prepare a series of the first-year science papers.

- MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) has been collecting integral-field spectroscopy for a vast sample of galaxies since 2014 and a wealth of exciting early science results from the survey have been published. E. Cheung and K. Bundy led a May 2016 Nature publication describing the discovery a new class of galaxy termed “red geysers”. Additional 19 scientific and technical articles on MaNGA have been published.

We have held interdisciplinary seminars, including 68 math-string (MS) seminars and 87 Astronomy-Particle physics-Experimental physics-Cosmology (APEC) seminars, among 184 seminars in FY2016. N. Yoshida leads the Statistical Computational Cosmology CREST project funded by JST, which aim to fuse studies between astronomy, statistics and mathematics. In collaboration with the Institute of Statistical Mathematics, the project team is developing fast imaging data analysis applications for Subaru HSC including the machine-learned classifier of supernovae and an “emulator” for weak lensing studies. H. Ooguri, in collaboration with a mathematician, discovered the positivity and monotonicity of the relative entropy in information theory implies a new type of positive energy theorems in General Relativity. This opened a new approach to study General Relativity using information theory. H. Ooguri organized a workshop entitled “Statistics, Quantum Information, and Gravity” to explore the emerging interface between high energy theory and gravity with statistics and information theory. We reappointed Y. Tachikawa from UTokyo as our new professor who works at the interface between physics and mathematics.

The ratio of non-Japanese members among all of researchers is 41% at the end of FY2016. During FY2016, we held 14 conferences and workshops inside the Kavli IPMU. We had 728 (982) visitors (the numbers in the parentheses take into account multiple visits). Among them, 464 (569) were international. We obtained 595 applicants for our postdoctoral positions and 90% of them were from outside Japan. So far the Kavli IPMU has signed 17 cooperative research agreements or memorandum of understanding (MOU). We concluded a new agreement with the Department of Physics, and the University of Oxford, for the purpose of the Kavli IPMU Oxford D.Phil. fellowships, which enforces the globalization of U Tokyo.

The Kavli IPMU administrative staff members were awarded the U Tokyo’s 2016 Special Prize for business innovation. Following on from 2008, 2013, 2015, this is the fourth time the staff received this award. Our successful system reforms are expected to spread to the rest of the University and other research institutions to help boost the overall competitiveness of Japan on a global scale. A ripple effect of the host institute’s achievement has been cross-appointment. It was initiated at the Kavli IPMU and has now spread across the university and also between other research laboratories.

Japanese science documentary special “Hitoshi Murayama’s Great Adventures in the Universe – Where did we come from?” was presented by H. Murayama and aired on NHK on Jan 6, and again as a two-part extended version on NHK BS on Feb 9 and 16. A science movie “The Man from the 9 Dimensions”, supervised by H. Ooguri, won Best Educational Production Award at the International Planetarium Society Full-dome Festival Brno 2016. We invited Lisa Randall, a well-known theoretical physicist at Harvard University to give a public lecture “Dark Matter and the Dinosaurs”. We held a program to encourage female students to study science, “Look into the Universe”, in which a total of 70 people including junior high-school and high-school girls listened to lectures given by Y.-K. Kim with interpretation by H. Murayama. We also held an event called “Actually I Really Love Physics! – Career Paths of Female Physics Graduates” to support female students in physics to plan their careers. As part of the Artist in Residence program, media artist Norimichi Hirakawa stayed to carry out research and make new works. The prototype was exhibited at our open campus and at some art galleries.
Events April 2016-March 2017

April
- Kavli IPMU and ICRR co-host public lecture “Decoding the Universe”
- Hirosi Ooguri elected to American Academy of Arts and Sciences

May
- Takaaki Kajita and Hirosi Ooguri receive Chunichi Cultural Award
- New test by deepest galaxy map finds Einstein’s theory stands true
- Hitoshi Murayama speaks at Symposium on Science and Technology Diplomacy
- Supermassive black hole wind can stop new stars from forming
- PhyStat-v Workshop on Statistical Issues in Experimental Neutrino Physics

June
- 2016 Kavli Prize Announcement
- 9 Scientific pioneers receive the 2016 Kavli Prizes
- Higher Residue Week, 2016
- Scientists detect most distant signs of oxygen in the universe
- Kavli IPMU Public Lecture held with Lisa Randall
- Science movie supervised by Hirosi Ooguri wins Best Educational Production Award

July
- Science Cafe Universe 2016
- Blue is an indicator of first star’s supernova explosions
- Hirosi Ooguri elected President of the Aspen Center for Physics
- Hyper Suprime-Cam found an “Ancient Eye” in the sky

August
- Investigating the Neutrino Mass Scale with the ultra-low background KamLAND-Zen detector
- Booth at the 2016 super science high school student fair
- A Program to encourage female students to study science: “Look into the Universe”
- Ninth External Advisory Committee Meeting
- Hyper-Supreme Cam Collaboration Meeting
- Lectures on Cosmology with Planck at IPMU
- IGM Tomography Workshop 2016

September
- Matrix factorization and related topics, 2016
- IPMU Annual Report 2014 released
- Booth at the new scientist live in London
- Statistics, Quantum Information and Gravity
- FY2016 WPI Site Visit
October
>> Open Campus Kashiwa 2016

November
>> Toshiyuki Kobayashi elected Fellow of the American Mathematical Society
>> Kavli IPMU visiting senior scientist Tadashi Takayanagi receives Nishina Memorial Prize
>> The Minister of State for Special Missions Yosuke Tsuruho visits Kavli IPMU
>> Workshop on Categorical and Analytic invariants IV
>> Event: “Actually I Really Love Physics! - Career Paths of Female Physics Graduates”
>> Record-breaking faint satellite galaxy of the Milky Way discovered
>> Violent collision of massive supernova with surrounding gas powers superluminous supernovae
>> 15th Kavli IPMU/ICRR joint public lecture “The Observable Universe and Beyond”
>> Kavli IPMU Oxford DPhil graduate fellowships
>> 5th String Theory in the Greater Tokyo Area

December
>> Resurgence at Kavli IPMU
>> Kyoji Saito awarded 1st Kiyoshi Oka Prize 2016
>> Kavli IPMU Staff Recognized at the University of Tokyo’s 2016 Special Business Innovation Prize
>> Naoki Yoshida awarded 13th Japan Society for the Promotion of Science Award

January
>> Naoki Yoshida awarded 13th Japan Academy Medal
>> Kavli IPMU/ELSI joint public lecture “A Question of Origins”
>> Conference: D-modules and Hodge theory
>> Faster-Than-Expected Expansion of the Universe supported by results from cosmic lensing research

February
>> 4th Hyper-Kamiokande Proto-Collaboration Meeting
>> AAAS 2017 Annual Meeting in Boston
>> First public data released by the Hyper Suprime-Cam Subaru strategic program

March
>> Conference: Why does the Universe accelerate? – Exhaustive study and challenge for the future –
>> Meeting of WPI center administrative directors held at Kavli IPMU
>> Japanese class completion ceremony
>> Workshop on Mathematics and Superstring Theory -Unlocking the Mysteries of the Accelerating Universe through Superstring Theory and Astrophysical Observations -
>> Workshop - Searching for the Lost Study - Art x Science x Philosophy
>> Practical Statistics for Particle Physics Analyses
>> Tomoyuki Abe awarded the 2017 Mathematical Society of Japan Spring Prize
>> Mysterious cosmic explosion puzzles astronomers
Kavli IPMU

Organization

President
Makoto Gonokami

UTIAS
Director: Ken Furuya

Kavli IPMU External Advisory Committee

Kavli IPMU

Director
Hitoshi Murayama

Administrative Director
Tomiyoshi Haruyama

Deputy Directors
Hiroaki Aihara
Yoichiro Suzuki

Associate Director
Nobuhiko Katayama

Scientific Advisory Committee

Steering Committee

Executive Board

Chair
Hitoshi Murayama
Hiroaki Aihara
Yoichiro Suzuki
Nobuhiko Katayama
Tomiyoshi Haruyama

Director
Deputy Director
Deputy Director
Associate Director
Administrative Director

Kyoji Saito
Tsutomu Yanagida
Masahiro Takada

Principal Investigator
Principal Investigator
Professor

Kavli IPMU Research

Principal Investigators

Faculty, Postdocs, Students, Visitors

10 Kavli IPMU Annual Report 2016
The Kavli IPMU has a rather unique organization. While research is conducted in a flat structure manner with loosely defined grouping, the decision making is done in a top-down scheme under the Director's strong leadership. This scheme minimizes the administrative load for the researchers. It is also intended to maximally extract young researcher's creative and challenging minds as well as to encourage daily cross-disciplinary interactions.

The Director is appointed by the President of the University of Tokyo and reports directly to his office. The Director proposes to hire the Principal Investigators to the President. For other hiring of research staff and administrative staff, he has a complete authority. He is also solely responsible for making all other decisions. He is assisted by the two Deputy Directors, the Associate Director, and the Administrative Director. They constitute the Executive Board (EB) and regularly meet to ensure smooth operation of the Institute. The EB has direct access to the Office of the President for consultations on both scientific and administrative matters.

The Director is obliged to report the appointments of new Principal Investigators and faculty members to the Director of the University of Tokyo Institutes for Advanced Study (UTIAS). Also, to clear the university formality in faculty hiring, the decisions of the Institute have to be endorsed by the Steering Committee of the Kavli IPMU.

The Principal Investigators are world's leading scientists in their fields. They have a large autonomy in the research they conduct. They can make proposals to the Director to hire research staff at the Institute.

The Scientific Advisory Committee (SAC) gives advice to the Director on hiring scientific staff and planning scientific strategies. The members are appointed by the Director.

The External Advisory Committee (EAC), appointed by the President of the University of Tokyo, reviews annually the scientific achievement and activities of the Institute and advises the President on scientific priorities and the research activities to keep the Institute stay on the course of its objectives.

The Scientific Advisory Committee Members (March 2017)

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hiroaki Aihara</td>
<td>U Tokyo, Physics Dept</td>
<td>High Energy Physics</td>
</tr>
<tr>
<td>Yoichiro Suzuki</td>
<td>U Tokyo, ICRR</td>
<td>Astrophysical Physics</td>
</tr>
<tr>
<td>Nobuhiko Katayama</td>
<td>Kavli IPMU</td>
<td>High Energy Physics</td>
</tr>
<tr>
<td>Toshitake Kohno</td>
<td>U Tokyo, Mathematics Dept</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Hirosi Ooguri</td>
<td>Caltech</td>
<td>Particle Theory</td>
</tr>
<tr>
<td>Kyoji Saito</td>
<td>Kavli IPMU</td>
<td>Mathematics</td>
</tr>
<tr>
<td>David Spergel</td>
<td>Princeton U</td>
<td>Astrophysics</td>
</tr>
<tr>
<td>Tsutomu Yanagida</td>
<td>Kavli IPMU</td>
<td>Particle Theory</td>
</tr>
</tbody>
</table>

The External Advisory Committee Members (March 2017)

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Ellis</td>
<td>King's College London</td>
<td>Particle Theory</td>
</tr>
<tr>
<td>Steven Kahn</td>
<td>SLAC/Stanford U; Chair</td>
<td>Astrophysics</td>
</tr>
<tr>
<td>Young-Kee Kim</td>
<td>U Chicago</td>
<td>High Energy Physics</td>
</tr>
<tr>
<td>Sadayoshi Kojima</td>
<td>Tokyo Tech</td>
<td>Mathematics</td>
</tr>
<tr>
<td>David Morrison</td>
<td>UC Santa Barbara</td>
<td>Mathematics and Physics</td>
</tr>
<tr>
<td>Sadanori Okamura</td>
<td>Hosei U</td>
<td>Astronomy</td>
</tr>
<tr>
<td>Nigel Smith</td>
<td>SNOLAB</td>
<td>Astroparticle Physics</td>
</tr>
</tbody>
</table>
The Research Strategy Office pursues external funds in order to strengthen the research activities. A university research administrator (URA) was hired to start the office activities.

The main laboratory building on the Kashiwa Campus provides a basis for our researchers. Even most of experimentalists who are involved in Kamioka experiments and astronomical observations spend a good fraction of their time in Kashiwa for analyzing data, sharing seminars and discussing with theorists. The Kamioka Branch is a basis for the Kavli IPMU staff members who are engaging in the underground experiments conducted at the Kamioka underground laboratory. The Berkeley Satellite, besides being a place for research, serves as a contact place to the US scientific community. We also have a close collaborative relation with several institutions both in Japan and overseas as well as with other departments within the University of Tokyo.
The Kavli IPMU holds close relations with similar research institutions in the world for encouraging exchanges in research and training of young research staff. We have signed either an agreement or a memorandum of understanding with those institutions.

Foreign institutions/consortia/programs having MOU with the Kavli IPMU

- The University of California, Berkeley, Department of Physics
- National Taiwan University, Leung Center for Cosmology and Particle Astrophysics (LeCosPA)
- The Astrophysics Research Consortium [on the Sloan Digital Sky Survey III]
- The Astrophysics Research Consortium [on the Sloan Digital Sky Survey AS3 (“After SDSS III”)]
- The Astrophysics Research Consortium [on the Sloan Digital Sky Survey IV]
- Garching/Munich Cluster of Excellence on “The Origin and Structure of the Universe”
- UNIFY (Unification of Fundamental Forces and Applications) [under the EU’s Seventh Framework Program]
- The Scuola Internazionale Superiore di Studi Avanzati (SISSA)
- The Academia Sinica Institute of Astronomy and Astrophysics of Taiwan (ASIAA) [on the SuMIRe Project]
- The Intermediate Palomar Transient Factory (iPTF)
- Steklov Mathematical Institute, Russian Academy of Sciences
- Center for Mathematical Sciences, Tsinghua University
- The Tata Institute of Fundamental Research
- TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics)
- Deutsches Elektronen Synchrotron (DESY)
- Princeton University
- The University of Oxford, Department of Physics
Director
Hitoshi Murayama, Particle Theory

Deputy Directors
Hiroaki Aihara, High Energy Physics
Yoichiro Suzuki, Astroparticle Physics

Associate Director
Nobuhiko Katayama, High Energy Physics

Principal Investigators
Hiroaki Aihara (U Tokyo), High Energy Physics
Alexey Bondal (Steklov Math. Inst.), Mathematics
Kunio Inoue (Tohoku U), Neutrino Physics
Takaaki Kajita (U Tokyo, ICRR), Neutrino Physics
Stavros Katsanevas (U Paris 7), Astroparticle Physics
Masahiro Kawasaki (U Tokyo-ICRR), Cosmology
Toshiyuki Kobayashi (U Tokyo-Math), Mathematics
Toshitake Kohno (U Tokyo-Mat), Mathematics
Hitoshi Murayama (Kavli IPMU & UC Berkeley), Particle Theory
Masayuki Nakahata (U Tokyo-ICRR), Astroparticle Physics
Mihoko Nojiri (KEK), Particle Theory
Ken'ichi Nomoto (Kavli IPMU), Astronomy
Hiroshi Ooguri (Caltech), Mathematical Physics
Kyoji Saito (Kavli IPMU), Mathematics
Henry W Sobel (UC Irvine), Astroparticle Physics
David Spergel (Princeton U), Cosmology
Naoshi Sugiyama (Nagoya U), Cosmology
Yoichiro Suzuki (Kavli IPMU), Astroparticle Physics
Tsutomu Yanagida (Kavli IPMU), Particle Theory
Faculty Members
Tomoyuki Abe, Mathematics
Alexey Bondal, Mathematics (2016/08/01 - 2017/02/15)
Kevin Allen Bundy, Astronomy (till 2016/09/04)
Masataka Fukugita, Astrophysics
Marian Krzysztof Gorski, Cosmology (till 2016/04/15)
Mark Patrick Hertz, Neutrino Physics
Masashi Hazumi, High Energy Physics
Simeon John Hellerman, String Theory
Takeo Higuchi, High Energy Physics
Chiaki Hikage, Astronomy
Kentaro Hori, String Theory
Mikhail Kapranov, Mathematics
Hiroshi Karoji, Astrophysics
Nobuhiko Katayama, High Energy Physics
Alexandre Kozlov, Neutrino Physics
Alexie Solange Leauthaud Harnett, Astrophysics (till 2016/09/04)
Kai Uwe Martens, Astroparticle Physics
Shigeki Matsumoto, Cosmology
Tomotake Matsumura, Experimental Physics
Todor Eliseev Milanov, Mathematics
Hitoshi Murayama, Particle Theory
Takahiro Nishimichi, Astronomy
Ken'ichi Nomoto, Astronomy
Satoshi Shirai, Particle Theory (from 2016/10/01)
John David Silverman, Astronomy
Hajime Sugai, Astronomy
Nao Suzuki, Astrophysics
Yoichiro Suzuki, Astroparticle Physics
Masahiro Takada, Cosmology
Yuji Tachikawa, Particle Theory
Naoyuki Tamura, Astronomy
Yukinobu Toda, Mathematics
Mark Robert Vagins, Astroparticle Physics
Taizan Watari, Particle Theory
Masahito Yamazaki, String Theory
Tsutomu Yanagida, Particle Theory
Naoki Yoshida, Astrophysics

Postdoctoral Researchers
Marco Bertolini, Particle Theory (from 2016/09/01)
Christophe Pierre Yves Bronner, High Energy Physics
Richard Graham Calland, Neutrino Physics (till 2016/11/01)
Yalon Cao, Mathematics (from 2016/08/01)
Peter Jonathan Cox, Particle Theory (from 2016/09/01)
Edmond Cheung, Astronomy
Dmitry Chernyak, Experimental Physics (from 2016/05/01)
William Ross Goodchild Donovan, Mathematics
Anne Laure Marie Ducout, Cosmology (from 2016/11/01)
Marco Bertolini, Particle Theory (from 2016/09/01)
Christophe Pierre Yves Bronner, High Energy Physics
Richard Graham Calland, Neutrino Physics (till 2016/11/01)
Yalon Cao, Mathematics (from 2016/08/01)
Peter Jonathan Cox, Particle Theory (from 2016/09/01)
Edmond Cheung, Astronomy
Dmitry Chernyak, Experimental Physics (from 2016/05/01)
William Ross Goodchild Donovan, Mathematics
Anne Laure Marie Ducout, Cosmology (from 2016/11/01)
Yue-Lin Sming Tsai, Particle Theory (till 2016/09/30)
James Michael Wallbridge, Mathematics
Matthias Weissenbacher, String Theory
Benda Xu, Experimental Physics
Itamar Yaakov, Particle Theory
Kiyoto Yabe, Astronomy
Kazuya Yonekura, Particle Theory
Gabi Zafrir, Particle Theory (from 2016/10/01)

Support Scientists
Tomoko Morii, High Energy Physics

Joint Appointments
Sergey Blinnikov (ITEP), Astronomy (2016/10/01 - 2016/11/30)
Alexander Kusenko (UCLA), Particle Theory (2016/10/05 - 2016/12/20)
Hitoshi Murayama (Berkeley), Particle Theory
Sergey Todorov Petcov (SISSA), Particle Theory (2016/10/20 - 2016/11/18)
Edwin L. Turner (Princeton U), Astrophysics (2016/06/02 - 2016/06/22, 2017/01/05 - 2017/01/20)

Affiliate Members
Kou Abe (U Tokyo-ICRR), Astroparticle Physics
Mina Aganagic (UC Berkeley), String Theory
Shin’ichiro Ando (LBLN), Astronomy (from 2016/09/01)
Bruce Berger (Colorado State U), Neutrino Physics
Melina Bersten (CONICET), Astronomy
Sergey Blinnikov (ITEP), Astronomy
Raphael Bousso (UC Berkeley), Cosmology
Kevin Allen Bundy (UC Santa Cruz), Astronomy (from 2016/09/05)
Andrew Bunker (U Oxford), Astrophysics
Martin Gilles Bureau (U Oxford), Astrophysics
Scott Huai-Lei Carnahan (U Tsukuba), Mathematics
Yuji Chinone (U Tsukuba), Astronomy (from 2005/01/01)
Neal K Dalal (U Illinois), Astrophysics
Patrick Decowski (U Amsterdam-GRAPP A), Neutrino Physics
Jason Detwiler (U Washington), Experimental Physics
Mamoru Doi (U Tokyo-IoA), Astronomy
Yuri Efremenko (U Tennessee), Neutrino Physics
Tohru Eguchi (Rikkyo U), Field Theory
Motoo Endo (U Tokyo), Particle Theory
Sanshiro Enomoto (U Washington), Neutrino Physics
Andrea Ferrara (Scuola Normale Superiore di Pisa), Astronomy
Gaston Folatelli (CONICET), Astrophysics
Andreu Font-Ribera (Scuola Normale Superiore di Pisa), Astronomy
Brian Fujikawa (LBL), Neutrino Physics
Kenji Fukaya (SCGP), Mathematics
Kazuyoshi Koyama (U Tokyo-ICRR), Astroparticle Physics
Tomoko Morii, High Energy Physics
Koichi Hamaguchi (U Tokyo-Phys), Particle Theory
Koji Hara (KEK), Particle Theory
Tetsuo Hatsuda (RIKEN), Nuclear Physics
Kohei Hayashi (KIAS), Astronomy (from 2016/10/01)
Yoshinari Hayato (U Tokyo-ICRR), Neutrino Physics
Keiichi Ichimura (U Tokyo-ICRR), Astroparticle Physics
Motoyasu Ikeda (U Tokyo-ICRR), High Energy Physics
Shiro Ikeda (U Tokyo-ICRR), Mathematics (from 2016/05/01)
Ken’ichi Izawa (Kyoto U-YITP), Particle Theory
Chang Kee Jung (SUNY, Stony Brook), High Energy Physics
Jun Kameda (U Tokyo-ICRR), Neutrino Physics
Amanda Irene Karakas (Australian Natl U), Astronomy
Masaki Kashiwara (Kyoto U), Mathematics
Akishi Kato (U Tokyo-Math), Mathematical Physics
Yasuyuki Kawahigashi (U Tokyo-Math), Mathematics
Seiji Kawamura (U Tokyo-ICRR), Astroparticle Physics
Edward T. Kearns (Boston U), Neutrino Physics
Gregory J. Keefe (LLNL), Neutrino Physics (from 2016/05/01)
Sergey Ketov (Tokyo Metropolitan U), Cosmology
Nobuhiro Kimura (KEK), High Energy Physics
Anatol N. Kirillov (Kyoto U), Mathematics
Yasuhiro Koshio (Okayama U), Neutrino Physics
Takahiro Kubota (Osaka U), String Theory
Alexander Kusenko (UCLA), Particle Theory
Alexie Solange Leauthaud Harnett (UC Santa Cruz), Astrophysics (from 2016/09/05)
Si Li (Tsinghua U), Mathematics
Marco Limongi (Rome Observatory), Astronomy
Keiichi Maeda (Kyoto U), Astrophysics
Yuya Matsumoto (Nagoya U), Mathematics (till 2016/05/31)
Brice Menard (Johns Hopkins U), Astrophysics
Shigeta Moriyama (U Tokyo-ICRR), Neutrino Physics
Takeo Moroi (U Tokyo-Phys), Particle Theory
Tomoki Morokuma (U Tokyo-Astron), Astronomy
Shinji Mukohyama (Kyoto U-YITP), Cosmology
Motohico Mulase (UC Davis), Mathematics
Staff

Katsuro Nakamura (KEK), Experimental Physics
Kengo Nakamura (Tohoku U), Neutrino Physics
Tsuyoshi Nakaya (Kyoto U), High Energy Physics
Kazunori Nakayama (U Tokyo-Phys), Cosmology
Shoel Nakayama (U Tokyo-ICRR), Neutrino Physics
Yu Nakayama (Rikkyo U), String Theory
Yasunori Nomura (UC Berkeley), Particle Theory (till 2016/06/15, from 2016/07/16)
Hiroshi Ogawa (U Tokyo-ICRR), Astroparticle Physics
Masamune Oguri (U Tokyo-RESCEU), Cosmology
Kimihiro Okumura (U Tokyo-ICRR), Neutrino Physics
Yoshiyuki Onuki (U Tokyo-ICEPP), High Energy Physics
Masaki Oshikawa (U Tokyo-ICEPP), Theoretical Physics (from 2016/09/01)
Christian Ott (Caltech), Astrophysics
Masami Ouchi (U Tokyo-ICRR), Astronomy
Andrei Pajitnov (U Nantes), Mathematics
Myeonghun Park (APCTP), Particle Theory
Serguey Todorov Petcov (SISSA), Particle Theory
Andreas Piepke (U Alabama), Neutrino Physics
Robert Michael Quimby (San Diego State U), Astronomy
Jason Rhodes (NASA JPL/Caltech), Astrophysics
Yoshihisa Saito (U Tokyo-Math), Mathematics
Yoshio Saito (KEK), High Energy Physics
Hidetaka Sakai (U Tokyo-Math), Mathematics
Katsumi Sato (NIMS), Cosmology
Nobuhiko Sato (KEK), Engineering
Kate Scholberg (Duke U), Neutrino Physics
Hiroyuki Sekiya (U Tokyo-ICRR), Astroparticle Physics
Masato Shiozawa (U Tokyo-ICRR), High Energy Physics
Fedor Smirnov (LPTHE), Mathematics
Michael Smy (UC Irvine), Neutrino Physics
Charles Louis Steinhardt (CAL TECH), Astronomy
James L. Stone (Boston U), High Energy Physics
Shigeki Sugimoto (Kyoto U), String Theory
Toshikazu Suzuki (KEK), Gravity
Atsushi Takehara (Osaka U), Mathematics
Fuminobu Takahashi (Tohoku U), Particle Theory
Ryutaro Takahashi (U Tokyo-ICRR), Astrophysics
Atsushi Takahashi (Osaka U), Mathematics
Takashi Takeda (Kyoto U-YITP), String Theory
Takashi Takeda (U Tokyo-ICRR), Astrophysics
Yasushi Takemoto (Osaka U), Experimental Physics (from 2016/05/01)
Yasuo Takeuchi (Kobe U), Astroparticle Physics
Hide-Kazu Tanaka (U Tokyo-ICRR), Neutrino Physics
Masahiro Tanaka (NAOJ), Astronomy
Atsushi Taruya (Kyoto U-YITP), Astrophysics
Takayuki Tomaru (KEK), High Energy Physics
Nozomu Tomianga (Konan U), Astrophysics
Werner Tornow (Duke U), Neutrino Physics
Yuichiro Tada, Particle Theory
Tomislav Vladisavljevic, Neutrino Physics (from 2016/10/01)
Motoo Suzuki, Particle Theory
Yuichiro Tada, Particle Theory
Tomislav Vladisavljevic, Neutrino Physics (from 2016/10/01)
Noriaki Watanabe, Mathematical Physics
Masataka Watanabe, String Theory
Yota Watanabe, Cosmology
Shinji Yamaoka, Particle Theory
Takemasa Yamaura, Particle Theory

Graduate Students

Kazuyuki Akitsu, Astronomy
Hajime Fukuda, Particle Theory
Taku Hayakawa, Particle Theory
Jeong Pyong Hong, Theoretical Physics
Shunichi Horigome, Particle Theory
Keisuke Inomata, Theoretical Physics
Keita Kanno, Particle Theory
Taisuke Katayose, Theoretical Physics
Takahiro Kato, Astronomy
Nozomu Kobayashi, Particle Theory
Yosuke Kobayashi, Cosmology
Xiangchong Li, Mathematics (from 2016/09/23)
Shunsuke Maeda, Particle Theory
Ryo Matsuda, Particle Theory
Ryoma Murata, Theoretical Physics
Yuuki Nakaguchi, Particle Theory
Wakutaka Nakano, Theoretical Physics
Mang Chiu Ng, Particle Theory
Hiroko Niikura, Cosmology
Tomohiro Nozawa, Cosmology
Tomoki Ohtsuki, String Theory
Genki Oouchi, Mathematics
Yosuke Sakata, Particle Theory
Hiroyuki Shimizu, Particle Theory
Charles Henry Simpson, Astroparticle Physics (from 2016/10/01)
Motoo Suzuki, Particle Theory
Yuichiro Tada, Particle Theory
Tomislav Vladisavljevic, Neutrino Physics (from 2016/10/01)
Noriaki Watanabe, Mathematical Physics
Masataka Watanabe, String Theory
Yota Watanabe, Cosmology
Shinji Yamaoka, Particle Theory
Takemasa Yamaura, Particle Theory
Berkley Satellite Members
Mina Aganagic, String Theory
Raphael Bousso, Cosmology
Brian Fujikawa, Neutrino Physics
Lawrence J Hall, Particle Theory
Petr Horava, String Theory
Yasunori Nomura, Particle Theory
Administration
Tomiyoshi Haruyama (Administrative Director, Project Professor)
Junichi Mizukami (General Manager)
Satoshi Chichibu (Deputy General Manager)

Research Strategy Office
NobuhiroKatayama* (Associate Director, Professor)
Eriko Sano (URA) (till 2016/11/30)

Planning & Assessment
Kenzo Nakamura* (Project Professor)

General Management
Naoki Kobayashi*
Mika Miura
Ayako Nakada

Director’s Secretary
Yuuko Enomoto

Budget Control
Kenzi Maki* (till 2016/06/30)
Daisuke Hamada* (from 2016/07/01)
Kaori Watanabe (till 2016/09/30)

Accounting
Michiyo Kobayashi*
Naoko Ishida
Kazuko Omoto
Yukiko Yoshikawa
Hiromi Yoshida

Contract & General Purchasing
Atsushi Hosaka*
Tomoko Yamanaka
Takako Okawa

International Relations and Researchers Support
Akiko Fujita*
Shoko Ichikawa
Masaki Kato
Rie Kohama
Hisami Kuboshima
Masami Nishikawa
Tomoko Shiga
Eri Shinoda
Rieko Tamura

PFS Project
Yuki Ishizuka

CREST Project
Miyuki Onuki

Cosmic Acceleration Research Grant Program
Takako Saegusa

Public Relations
Marina Komori (Project Assistant Professor)
Aya Tsuboi
Motoko Kakubayashi (till 2016/11/09)
John Amari

Network and Web Service
Yoshihisa Obayashi (Project Associate Professor)
(till 2016/12/31)
Hideki Tanaka (Project Assistant Professor)

Planning & Assessment
Kenzo Nakamura* (Project Professor)

Kamioka Branch
Hiroaki Doi* (till 2016/06/30)
Yuuki Ito* (from 2016/07/01)
Hitoshi Nakagawa
Miwa Shimode
Yoshimi Kakioka

(*section head)
Strong gravitational lensing is a very powerful tool for cosmology and galaxy evolution studies. It has allowed us to study in detail the internal structure of massive elliptical galaxies, providing clues about their density profile, their average dark matter content and their stellar initial mass function. However, there are still many open questions that need to be answered in order to understand the formation and evolution of these objects:

- How do massive elliptical galaxies grow in time?
- How does their stellar content change as a result of mergers with smaller galaxies?
- How does the distribution of dark matter respond to the infall of gas or the presence of a central black hole?

In order to answer these questions it is crucial to carry out observations covering a large range in lookback time, so that the physical mechanisms at the basis of the evolution of these galaxies can be inferred. Although the current number of known strong lenses is on the order of a few hundred systems, most of these lenses are at a relatively low redshift. In order to robustly study the evolution of massive galaxies, more lenses are needed, particularly at redshift $z > 0.5$.

The recent installation of the Hyper Suprime-Cam (HSC) on the Subaru telescope gives us an excellent opportunity to search for new lenses. The currently ongoing HSC survey combines great depth (down to magnitude 26 in the i-band) with great image quality for a ground-based survey (typical seeing $0.6\arcsec$). This makes HSC the best suited survey for lens finding purposes among ongoing surveys worldwide.

With the goal of discovering the largest possible number of lenses in the HSC survey, I developed a new automatic strong lens finder, called YattaLens. YattaLens scans images of massive galaxies looking for tangentially elongated blue arcs, then models these candidate arcs to determine if they are the gravitationally lensed images of star forming galaxies.

I led a search for strong lenses in the first internal data release of the HSC survey [1]. With my collaborators, we applied three different search algorithms, including YattaLens, to HSC data of 37,000 massive galaxies with BOSS spectroscopy.

We found 15 new lenses, as well as 36 highly probable lens candidates. These newly found lenses form the first sample of the Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI). By the end of the HSC survey, the number of SuGOHI lenses will be several hundreds, making it the largest sample of lenses from a single survey. I will use these new lenses to study the evolution of the stellar initial mass function and the inner dark matter content of massive galaxies from $z = 1$ to the present.

Reference
There has recently been significant interest in hints of Lepton flavour universality (LFU) violation in semi-leptonic B decays, as observed by LHCb [1, 2]. Measurements of the ratios

\[R_v = \frac{\Gamma(B \rightarrow K^{\ast} \mu^+ \mu^-)}{\Gamma(B \rightarrow K^{\ast} e^+ e^-)} , \]

show a consistent departure from the SM prediction, which is under excellent theoretical control. In fact, global fits to the data suggest significant tension with the SM at around the 4σ level.

In the work with Prof. Tsutomu T. Yanagida, Rodrigo Alonso and Peter Cox, we proposed a \(U(1)^{(B-L)_3} \) model [3] which could accommodate the observed low energy phenomenology. In the model, three generation right hand neutrinos are added to explain the neutrino data. The new gauge boson only couples to the third generation quarks and leptons with a charge equaling to \(B-L \). To explain the B anomaly, flavor changing coupling need be generated through mixing. The related feynman diagram is shown in Fig. 1.

The model might get other constrains like LHC collider search, flavor physics as well as the Landau pole for the gauge coupling. After considering all the limits, we find plenty of parameter space which can explain the B anomaly, which is shown in Fig. 2. The best-fit region to the LFU anomalies at 1/2σ is drawn in solid lines (dashed lines). The shaded regions are excluded by existing measurements at 95% CL. We have fixed \(\theta_l = \pi/2, \theta_q = 0.1 \).

In addition, this model has other interesting features:

(i) The model admits two heavy RH neutrinos which can explain the existence of the neutrino mass through see-saw mechanics.

(ii) the observed baryon asymmetry can be generated via leptogenesis by two heavy RH neutrinos.

(iii) the third right hand neutrino could provide a candidate of dark matter [4].

References
1. 2017. Talk by Simone Bifani for the LHCb collaboration / CERN-18-4
An infamous and deep result of Hironaka asserts that any (non-compact) variety Z over an algebraically closed field of characteristic 0 can be embedded in a smooth compact variety Z', such that the complement $Z' \setminus Z$ is a normal crossings divisor. Such Z', sometimes with more assumptions depending on the context, are often referred to in the literature as ‘wonderful compactifications’. In the study of moduli spaces in algebraic geometry, the existence of wonderful compactifications suggests that one can control their behavior at infinity; for example, one can often carry out intersection theory and compute enumerative invariants of the compactified moduli space. Therefore, the construction of explicit wonderful compactifications of moduli spaces is often crucial to our understanding of them.

In joint work with P. Gallardo (European Journal of Mathematics, Vol. 3, Issue 3), we showed that, under certain hypotheses, wonderful compactifications that admit an action by a reductive group descend to wonderful compactifications in their GIT quotients by that group. As a consequence, by studying GIT quotients of the Fulton-MacPherson compactification, we were able to construct higher dimensional analogs of the Deligne-Mumford-Knudsen moduli space of genus 0 stable curves, which share some of its remarkable properties, such as smoothness, normal crossings boundary and explicit blowup construction. More generally, we introduced and studied wonderful compactifications of the moduli space of n labeled points with weights in projective space, which extend previous work of Hassett in the one dimensional case and are birational to the moduli space of weighted hyperplane arrangements introduced by Alexeev and Hacking-Keel-Tevelev. Moreover, we described a novel and natural iterated blow-up construction of the Chen-Gibney-Krashen compactification of the configuration space of n labeled points in affine space up to translation and homothety and we studied a weighted version of it.

In joint work with M. Kapranov (https://arxiv.org/abs/1702.00120), most of which was carried out in 2016, we constructed a natural generalization of the classical space of complete collineations by Chasles-Schubert-Semple-Tyrell dating back to the 19th century. Since then, the space of complete collineations has been studied intensively and has been used to derive groundbreaking results in various areas of mathematics, a striking example being Lafforgue’s compactification of the stack of Drinfeld’s shtukas, which he subsequently used to prove the Langlands correspondence for the general linear group. A complete collineation can be viewed as a spectral sequence of a two term complex (up to scalar multiplication). Starting from this observation, we considered spectral sequences of a complex with arbitrarily many terms (up to scalar multiplication) and constructed a variety the geometric points of which we proved to be equal to the set of all such spectral sequences. Our construction, the variety of complete complexes, is realized as a sequence of blowups of the projectivized Buchsbaum-Eisenbud variety of complexes $\mathbb{P}(C^*,E^*)$, where E^* is a graded vector bundle concentrated in degrees $[0, m]$, for some $m < \infty$, on an arbitrary smooth variety X over an algebraically closed field. We also showed that the variety of complete complexes is a desingularization of the Buchsbaum-Eisenbud variety of complexes and actually a wonderful compactification of the union of its maximal strata.
The phenomenon of neutrino oscillation was established by measurements in 1998 by the Super-Kamiokande experiment and 2001 by the SNO experiment, leading to the awarding of the 2015 Nobel Prize in Physics. Neutrino oscillations are a quantum mechanical process where neutrinos are produced in one flavor state and may oscillate to a different flavor state after traveling a distance through vacuum or matter. The parameters that govern neutrino oscillations depend on the mechanism for the generation of neutrino masses, which is governed by physics beyond the Standard Model. Neutrino oscillations are also of interest since they allow for a new source of charge conjugation-parity symmetry (CP) violation, i.e., different oscillation rates for neutrinos and antineutrinos.

The Tokai-to-Kamioka (T2K) experiment has been a world leading experiment studying neutrino oscillations and mixing since 2010. The T2K experiment generates a beam of muon neutrinos (ν_μ) at the J-PARC accelerator on the east coast of Japan and measures the content of the neutrino beam 295 km away at the Super-Kamiokande (SK) detector. In 2014, T2K published the discovery of the $\nu_\mu \rightarrow \nu_e$ oscillations (Phys. Rev. Lett. 112, 061802 (2014)), the first direct measurement of neutrinos oscillating from one flavor to another. Since 2014, T2K has added data collected in antineutrino operating mode, allowing for the study of the muon antineutrino to electron antineutrino oscillation rate. By combining data taken in neutrino and antineutrino operating modes with external oscillation measurements of reactor experiments, T2K can constrain the phase δ_{CP} that governs CP violation. If δ_{CP} has a value that is not an integer multiple of π, then CP violation is present.

In July 2016, T2K presented new results at the Neutrino 2016 conference that included equal amounts of beam operation in neutrino mode and antineutrino mode. T2K observed 32 electron neutrino candidates events and 4 electron antineutrino candidates events. For CP conserving values of δ_{CP}, T2K would expect to observe 24 electron neutrino candidates and 7 electron antineutrino candidates. These data prefer a value of δ_{CP} near $-\pi/2$ and the confidence intervals are shown in Fig. 2. The values that conserve CP symmetry, $\delta_{CP} = 0$ and $\delta_{CP} = \pi$, are disfavored at 90% confidence. This result represents the words best constraint on δ_{CP}. These results were published in Phys. Rev. Lett. 118, 151801 (2017), and received and Editor's Suggestion designation.
The T2K results presented in summer 2016 are produced with 20% of the approved beam exposure for the T2K experiment. T2K has proposed an extended operation of the experiment until 2026 that will allow for a beam exposure 13 times larger than that collected through summer 2016. This will give T2K sensitivity to exclude CP symmetry conserving values of δ_{CP} at 3 sigma significance for favorable true values of δ_{CP}.

Beyond the extended operation of T2K, Kavli IPMU researchers are collaborating on the proposed Hyper-Kamiokande (HK) experiment. HK will probe the same physics as T2K, but with an 8 times larger detector to allow for increased sensitivity to CP violation and other neutrino oscillation effects. Kavli IPMU is participating in two proposals aimed at maximizing the experimental sensitivity of HK. The first is the proposed E61 experiment, which consists of a water Cherenkov detector located near the neutrino beam source at J-PARC. This detector can be moved relative to the neutrino beam direction, allowing the energy dependence of neutrino-nucleus interactions to be studied in detail. The physics program of E61 is aimed at reducing systematic uncertainties for HK. The second proposal is for the construction of a second HK detector in South Korea, for which a white paper has been produced (arXiv:1611.06118). The location of a second detector at a baseline of ~1100 km will allow for the neutrino oscillation effects to be probed at the second oscillation maximum where the CP violation effect is larger and the measurement is less sensitive to systematic errors. Fig. 3 shows that the best precision for the measurement of δ_{CP} can be achieved with one detector in Japan and a second detector in Korea at an off-axis angle of 1.5 degrees.

![Diagram](image)

Fig. 2: The $\Delta \chi^2$ from the fit to T2K data as a function of δ_{CP}. The black and yellow curves correspond to the normal and inverted neutrino mass orderings. The regions outside the black (normal ordering) and yellow (inverted ordering) vertical lines are disfavored at 90% confidence.
The T2K experiment continues to make world leading neutrino oscillation measurements including the best constraints on phase δ_{CP} that governs CP violation. The result presented at Neutrino 2016 has been published in Physical Review Letters with an Editor’s Suggestion designation. T2K is approved to collect 5 times the data set presented in 2016, and has proposed to collect a data set that is 13 times larger. Beyond T2K, the Hyper-Kamiokande experiment will further increase the sensitivity to neutrino oscillation effects with an 8 times larger neutrino detector. Kavli IPMU is participating in two proposals to maximize the sensitivity of Hyper-Kamiokande: the E61 experiment which will probe critical neutrino-nucleus scattering physics, and the proposal for a second detector in Korea, which will improve the experimental sensitivity to neutrino oscillation parameters.

The best-case and worst-case (depending on the true value) precision of the δ_{CP} measurement with two detectors in Hyper-K. For black, both detectors are in Japan at a 295 km baseline. For red, blue and magenta, one detector is in Japan and a second detector is in Korea at an off-axis angle of 2.5, 2.0 or 1.5 degrees.
The first massive data set of a “cosmic census” has been released using the largest digital camera on the 8.2 m Subaru Telescope, Hyper Suprime-Cam (HSC). With its beautiful images now available for the public at large, figuring out the fate of the Universe has come one step closer.

Data from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) was released to the public on February 27th, 2017. HSC-SSP is a large survey being done using HSC, an optical imaging camera mounted at the prime focus of the Subaru Telescope. Since it is difficult to analyze such a huge dataset with standard tools, the HSC team has developed a dedicated database and interface for ease of access and use of the data.

The HSC-SSP project is being done based on collaboration between institutes in Japan, the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA) in Taiwan, and Princeton University in the United States. The project will survey 300 nights over 5 to 6 years. This survey consists of three layers: Wide, Deep, and UltraDeep, using optical and near infrared wavelengths in five broad bands (g, r, i, z, y) and four narrow-band filters (see Figure 1 for an example image of the deep HSC data).

This first public dataset already contains almost 100 million galaxies and stars. It demonstrates that HSC-SSP is making the most from the performance of the Subaru Telescope and HSC. In contrast, the US-based Sloan Digital Sky Survey (SDSS)—which is known for its wide area observation and equivalent data sets—took over 10 years to establish. The total amount of data taken so far by the HSC-SSP, meanwhile, comprises 80 terabytes, which is comparable to the size of about 10 million images by the SDSS.
This release includes data from the first 1.7 years (61.5 nights of observations beginning in 2014). The observed areas covered by the Wide, Deep, and UltraDeep layers are 108, 26, and 4 square degrees, respectively. The limiting magnitudes, which refer to the depth of the observations, are 26.4, 26.6 and 27.3 mag in r-band (about 620 nm wavelength), respectively, allowing observations of some of the most distant galaxies in the Universe.

In multi-band images, the images are extremely sharp, with only 0.6 to 0.8 arcseconds across for point-like objects like stars. One arcsecond equals 3600 th part of a degree. The high-quality data will allow an unprecedented view into the nature and evolution of galaxies and dark matter.

HSC team is now working very hard to carry out science with the early-year HSC data. The team, which consists of more than 200 scientists, is preparing a series of scientific papers to submit to the HSC special issue of the peer-review journal, the Publication of the Astronomical Society of Japan (PASJ). About 20 papers among the 42 submitted papers are accepted as of Sep 1st, 2017 and the others are under the reviewing process. The key papers include the paper describing the overview and survey design of the HSC SSP survey (Aihara et al. arXiv:1704.05858, accepted), and the details of the First Public Data Release of HSC data and products (Aihara et al., arXiv:1702.08449). The authors in these papers are in alphabetical order; but Masahiro Takada and Masayuki Tanaka (the former IPMU member, and now an assistant professor at NAOJ) led these papers.

The wide, deep and high-angular-resolution datasets of HSC enable accurate measurements of weak lensing effects caused by hierarchical structures in the universe. Weak lensing provides us with a way of observing the total matter distribution (including dark matter) in the universe, via the deflection of light due to intervening matter along the line-of-sight, which distorts galaxy shapes. By measuring a coherent distortion pattern in galaxy shapes as a function of scales and redshifts, we can trace structure growth as a function of time, which is a very powerful probe of cosmological parameters including the nature of dark energy. Compared to competing other wide-area lensing surveys such as the Kilo-Degree Survey (KiDS) in Europe and the Dark Energy Survey (DES) in the US, the depth and angular resolution of HSC gives it the best constraining power for higher-redshift cosmological constraints covering a transition between the cosmic decelerating and accelerating...
expansion phases. The HSC Weak Lensing Working Group (HSC WLWG), being run by Masahiro Takada & Rachel Mandelbaum (CMU) as co-chairs, managed to build the catalog of galaxy shape measurements from the HSC-SSP data (Mandelbaum, Miyatake et al. 2017, submitted to PASJ). Figure 2 shows that the HSC data has an excellent image quality. The team defined the requirements for cosmological weak lensing science with this catalog, characterized potential systematics in the catalog using a series of internal null tests for problems with point spread function (PSF) modeling, shear estimation, and other aspects of the image processing, and described systematics tests also using image simulations. The team carefully showed that the current shear catalog meet the requirements (i.e. passed all the systematics tests compared to the statistical errors of the early-year datasets).

As the first application, the team, being led by Masamune Oguri, used the galaxy shape catalog to reconstruct the matter distribution (including dark matter) that is then compared with maps of the distribution of the stellar mass associated with luminous red galaxies (Oguri et al., 2017, accepted for publication in PASJ). The team found a strong correlation between these two maps, supporting the structure formation scenario where galaxies are preferentially formed in a place of matter concentration in an expanding universe. Moreover, by combining the galaxy shape catalog with the photometric redshift information for each source galaxy, the team successfully reconstructed the three-dimensional maps of matter up to a high redshift of z~1, as shown in Figure 3. The three-dimensional mass map is also found to correlate with the three-dimensional galaxy map. Thus these results clearly show the power of HSC data for unveiling the dark matter distribution up to high redshifts. The team is now working on the cosmological weak lensing analysis, and will deliver the results within a few months (Hikage et al. in preparation).

Figure 3. Top panel: Three-dimensional map of matter reconstructed by combining the galaxy shape catalog and the photometric redshift information for each source galaxy for the VVDS field (about 25 sq degrees for the area). The bottom panel shows three-dimensional map of galaxies. The two maps show a nice correlation, supporting the structure formation scenario where galaxies tend to be formed in a place of dark matter concentration.
The number of faint satellite galaxies around our own Milky Way Galaxy provides one of the important observational tests for the standard Λ cold-dark-matter (CDM) model for the structure formation of the universe. It has been known that the number of satellite galaxies around Milky-Way-mass galaxies predicted by cosmological simulations of dark matter is in serious disagreement with the actual number of observed satellite galaxies. The discrepancy could suggest that there are still a number of satellites yet undiscovered because of their low-surface brightness and/or large distances. Indeed, thanks to the recent massive photometric surveys such as the Sloan Digital Sky Survey (SDSS), many faint satellite galaxies have newly been discovered in the past ~20 years. If the number of satellites including fainter ones are actually smaller than that predicted by the CDM model, it suggests that the current understanding of either the nature of dark matter or the baryonic physics should be updated.

The team lead by Daisuke Homma, a former PhD student of Tohoku University, made a great effort to analyze the initial data-set for ~300 deg^2 of the sky from the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) and discovered new faint satellites in the constellations of Virgo and Cetus [1, 2]. These objects, named as Virgo I and Cetus III, were identified as an extended stellar overdensity, whose likely member stars have colors and magnitudes consistent with an old and metal-poor stellar population at distances of 91 and 215 kpc, respectively. It turned out that these systems are the faintest satellites known so far at respective distances and thus are beyond the detection limit of SDSS (Figure 1). The discoveries of these objects demonstrate that the HSC is powerful in detecting these faint and ancient stellar systems at the outer region of the Milky Way, where no other surveys can reach.

The discoveries have important implication for the current understanding of the structure formation of the universe under the Λ CDM model. The detection of two faint satellites (M_V < 0.0) for the current HSC-SSP survey depth and area is consistent with the number of satellites predicted by the cosmological simulations. When the survey completes, the area will be extended to 1400 deg^2 allowing further tests for the cosmological model with a larger statistical sample.

In the future, follow-up spectroscopic observations can measure line-of-sight velocities and chemical composition of individual stars in these systems. The stellar velocities give an estimate of dark matter masses in these systems, providing a clean test for the cold dark matter model. The stellar chemical compositions tell us about the metal-enrichment history in these systems through supernova explosions and thus provide insights into how these small galaxies formed in the early universe.

Figure 1: Total absolute magnitudes plotted against helio-centric distances for globular clusters and dwarf satellite galaxies in the Milky Way. The red and blue symbols with error bars show the locations of Virgo I and Cetus III, respectively. The solid red and blue lines show the detection limits of SDSS and HSC, respectively.

References
5.7 Splashback Radius: A Physical Boundary for Dark Matter Halos

Surhud More

Dark matter halos form out of the gravitational collapse of initial density fluctuations in the Universe. They form the fundamental building blocks of the large scale structure in the Universe and are prime sites for galaxy formation. Our research addresses the following questions: do dark matter halos have physical boundaries, can they be accessed with observations, and what can we potentially learn from them?

Dark matter halos grow continuously by accretion of mass from the outskirts of the halo. This mass falls into the halo and eventually reaches the apocenter of its orbit (where the radial infall velocity is zero by definition). The coherent reduction in the radial velocities for particles reaching the apocenter causes a pileup of material and results in a sharp feature in the density distribution [1–4]. We have advocated that this physical feature, which we call the “splashback radius”, should be used to define the boundary of the dark matter halo [5]. This feature is sensitive to the physical accretion rate on to the halo [3–5]. At fixed mass, halos which accrete faster have smaller splashback radii. We have provided fitting formulae to describe this dependence on the mass accretion history and redshift for use by the wider community. We have also worked out the implications of using such a boundary for the mass accretion rates of halos and its impact on galaxy formation.

Given that the splashback radius corresponds to a physical feature in the density distribution, we have used the Sloan digital sky survey (SDSS) data to look for the boundaries of dark matter halos in observations. In [6], we found that the density distribution of galaxies around massive galaxy clusters in SDSS shows a sharp density drop associated with the splashback radius (see Fig. 1). Compared to the expected location of the splashback radius based on similar mass clusters found in cosmological simulations, we find that the observed location is smaller by about 20 percent. This could either be a systematic effect in the optical cluster selection or could be an indication of the nature of self-interactions of dark matter. We are currently pursuing these interesting avenues for further research.

Figure 1: Figure adapted from [6] Upper panel: The observed surface density profile of galaxies around massive clusters in SDSS is shown as solid points with errorbars. The surface density distribution of subhalos around similar mass clusters selected from cosmological simulations is shown with a dashed line. Lower panel: The logarithmic derivative of the observed density profile is shown using a solid line, while that of the subhalos from numerical simulations is shown using a dashed line. The splashback radius corresponds to the location where the logarithmic slope of the density profile reaches its minimum.

References

Langlands’ philosophy suggests that, in certain situations, there exists a correspondence between “number theoretic objects” and “analytic objects”. In the case of the original conjecture, or program, of Langlands, the number theoretic objects were Galois representations and the analytic objects were automorphic representations. After Langlands formulated these striking program, various analogous phenomena had been observed, some of which may be related to theoretical physics under the name of S-duality.

Rather straightforward analogue of the program is the one for function fields of varieties of finite fields. Interpreting this program, P. Deligne conjectured a correspondence between Galois representations for the fundamental group of algebraic variety over a finite field. More precisely, let X be a smooth variety over \mathbb{F}_p. Fixing a prime number ℓ different from p, we have a cohomology theory called ℓ-adic cohomology. A priori, there are no relation between different ℓs. However, the Deligne’s conjectured that there exists a natural correspondence between ℓ-adic and ℓ'-adic local systems. A remarkable fact is that, contrary to many mathematical correspondences, this correspondence is not functorial. Many of this conjecture of Delinge was proven by Lafforgue almost 20 years ago.

In this Lafforgue’s theorem, he did not treat the p-adic part. This is because the behavior is extremely different from ℓ-adic cohomology theories. However, Deligne was also conjecturing a similar correspondence. In the curve case, I succeeded in proving this conjecture a few years ago. In the ℓ-adic case, the conjecture had been proven also for smooth varieties not necessarily curves. This year, I showed, in a collaboration with H. Esnault, that we can construct ℓ-adic local systems when we are given p-adic objects. The essential point of the proof is to establish the Lefschetz type theorem for p-adic objects. This roughly says that if we have an irreducible p-adic object on a smooth scheme, we may find a curve such that the restriction of the p-adic object to the curve remains to be irreducible. Even though this type of theorems is expected to hold more generally, our proof works only for varieties over finite field. This is because we use class field theory and Langlands correspondence for curves in a crucial manner. In the future, I plan to prove the existence of corresponding p-adic objects of ℓ-adic local systems in the sense of Langlands.
5.9 Time-Reversal Anomalies of Quantum Field Theories

Yuji Tachikawa

Quantum field theory is a general framework to describe any extended medium quantum mechanically, and symmetry is the first principle we use to constrain a given quantum field theory. Symmetry in quantum field theory is often anomalous, or equivalently has an anomaly, meaning that there is a precisely controllable phase ambiguity in the response of a system to the action of the symmetry. The concept of the anomaly can be thought of as a generalization of the concept of a projective representation of a group. As the structure of the anomaly is strongly constrained by the symmetry, it is often a robust and computable quantity, and is a useful handle for us to explore the properties of systems otherwise hard to analyze.

The anomaly of continuous symmetries has been studied for almost half a century in high energy physics, but the anomaly of discrete symmetries has received less attention until about a decade ago, when condensed matter physicists realized its importance. In the last several years, high energy theorists joined condensed matter theorists in uncovering the properties of the anomaly of discrete symmetries. This also opened up a new interaction between theoretical physics and a subfield of mathematics, this time the algebraic topology.

For example, there is a prediction that the anomaly of the time-reversal symmetry of fermionic systems in 2+1 d (i.e. with two spatial dimensions and one temporal dimension) is a quantity measured by an integer modulo 16. In particular, this implies that N gapless fermions in 2+1 d can be completely gapped without leaving any trace whatsoever in a time-reversal invariant manner if N is a multiple of 16. Mathematically, this number 16 comes from the so-called Pin+ cobordism group in 3+1 dimensions, which can be seen e.g. in an old review article:

In a collaboration with an IPMU postdoc Kazuya Yonekura, we approached this property using the technique of duality of supersymmetric field theories in PTEP 2016 093B07 [arXiv:1604.06184]: 16 gapless fermions can be realized on a domain wall of a softly-broken N=2 supersymmetric SU(2) gauge theory with four flavors. This system is a classic example where the so-called S-duality is applicable, and indeed this duality allows us to continuously eliminate the fermions.

In 2+1d, it also happens that N gapless fermions can be completely gapped but they leave topological degrees of freedom behind. In this case, the question is to determine what is the value of N modulo 16, if we are given a time-reversal invariant system of topological degrees of freedom. Again in a collaboration with Kazuya Yonekura, we addressed this issue in a set of two papers (PTEP 2917 033B04 [arXiv:1610.07010] and arXiv:1611.01601 currently under review), where we showed that N modulo 16 can be computed by putting the system on a Möbius strip and by measuring the fractional momentum flowing around it. This analysis leads to an explicit formula giving N modulo 16 in terms of the properties of the anyons in the system.

(Taken from Kirby&Taylor, p.177-242 in London Math. Soc. Lect. Notes 151, 1990)
The nature of dark matter (DM) is one of the biggest mysteries in cosmology and physics. Previous studies have suggested that DM is non-baryonic, non-relativistic and interact with ordinary matter only via gravity. Primordial black holes (PBH), which can be formed during the early universe, are potential candidates of black hole binary systems whose gravitational wave events are recently detected by the LIGO experiment.

The abundance of PBHs at different mass scales are constrained by various observations except for a mass window of $M_{\text{PBH}} \approx [10^{19}, 10^{24}]$ g or equivalently $[10^{-14}, 10^{-9}]$ M_{\odot}. Gravitational microlensing, the prediction of Einstein's gravity theory, provides us with a powerful way of probing PBHs in the unconstrained mass window, where microlensing causes a time-varying magnification of a background star while a lensing PBH crosses the line-of-sight to the star at close proximity. For this purpose, we carried out a dense cadence observation of the Andromeda galaxy (M31), with the Subaru Hyper Suprime-Cam (HSC). M31 is the largest neighboring spiral galaxy, at a distance of 770 kpc. Even a single night of HSC yields an ideal dataset to search for a microlensing event due to PBHs. First, the 1.5 degree diameter field-of-view of HSC allows us to cover the entire region of M31 (the bulge, disk and halo regions) with a single pointing. Secondly, the 8.2 m large aperture and its superb image quality (typically 0.6'' seeing size) allow us to detect fluxes from M31 stars for each exposure, even with a short exposure of 90 sec. Hence we can monitor much more than millions stars in M31 simultaneously for each exposure. Thirdly, the 90 sec exposure and a short camera readout of ~35 sec enable us to take data at an unprecedented cadence of 2 min, giving us an access to a microlensing search of smaller mass-scale PBHs than previously done. Fourthly, there is a huge volume between M31 and the Earth, leading to a large optical depth of PBH microlensing to each star in M31.

We used 188 exposures of the HSC M31 data, which were taken with every 2 min cadence, in order to make a careful search of PBH microlensing event(s). In doing so, we extensively used an image subtraction method to efficiently identify candidates of various stars, and then monitor the light curve of each candidate with the high cadence data. Although we successfully identified a number of real variable stars such as eclipsing binaries and stellar flares, we find only one possible candidate of PBH microlensing whose genuine nature is yet to be confirmed. We then used this result to derive the most stringent upper bounds on the abundance of PBHs in the mass range, as shown in Figure 1. When combined with other observational constraints, our constraint rules out almost all the mass scales for the PBH dark matter scenario where all PBHs share a single mass scale.

References

Massive galaxies are important laboratories to study galaxy formation and cosmology. As galaxies that live in very massive dark matter halo, they also provide unique constraint of the galaxy-halo connection. Yet, there are still many open questions regarding their star-formation history and mass assembly process. Massive galaxies often display extremely extended surface brightness profiles that can reach several hundreds of kilo parsecs. Although these stellar halos provide crucial fossil record to their assembly history, they have been proved to be difficult to study mainly due to their low surface brightness.

Using deep imaging data from Hyper Suprime-Cam Subaru Strategic Program (HSC SSP)- an ambitious multi-band wide-field survey, Song Huang and his collaborators systematically study the stellar halos of a sample of more than 7000 galaxies at $0.3 < z < 0.5$ with stellar mass more massive than $10^{11.4}$ solar masses. These deep (reach to > 28.5 mag arcsec$^{-2}$ in i-band), high quality (average 0.6 arcsec seeing) imaging data enable us to trace the surface mass density profiles of massive galaxies out to 100 kpc individually, without using stacking method. We find the extended stellar halos of massive galaxies show a diversity of significance and larger intrinsic scatter than their inner structures.

In Huang et al. (2017), we find that more massive galaxies exhibit more extended outer halos. When this extended stellar halo is not properly accounted for as a result of shallow imaging or inadequate profile modeling, the derived stellar mass function can be significantly underestimated at the highest masses. Across our sample, the ellipticity of outer halo increases substantially with radii. We show for the first time that these ellipticity gradients steepen as a function of total stellar mass. These results support the two-phase formation scenario for massive galaxies in which outer envelopes are built up at late times from a series of merging events.

We also investigate the dark matter halo mass dependence of the surface mass density profiles and outer stellar envelopes of these galaxies. In Huang et al. (submitted), we conclusively show that at fixed total stellar mass, the stellar mass density profiles of massive galaxies depend on the masses of their dark matter halos. On average, massive central galaxies in more massive halos at $0.3 < z < 0.5$ have shallower inner stellar mass density profiles (within ~10 kpc) and more prominent outer envelopes. These differences translate into a halo mass dependence of the mass-size relation: central galaxies in halos more massive than 10^{14} solar masses are ~20% larger in effective radius at fixed total stellar mass. Our results demonstrate that, with deep images from HSC, we can quantify the connection between halo mass and the outer stellar halo, which may provide new constraints on the formation and assembly of massive central galaxies.

Left: Three-color images of massive galaxies using HSC data. All these galaxies have similar amount of stellar mass within inner 10 kpc. It perfectly demonstrates the diversity of extended stellar halos among massive galaxies. We use red boxes to highlight the ones living in very massive dark matter halos. Right: Average surface mass density profiles of massive galaxies from more massive [Red] and less massive [Black] dark matter halos. The two samples share the same stellar mass within inner 10 kpc, while the ones in more massive dark matter halos show more prominent outer stellar envelope.
The Aspen Center for Physics was established in 1962 in Aspen, Colorado, one of America’s picturesque resort areas, to provide physicists with a creative environment for their individual research and to encourage interactions between different fields to open new directions of research.

The International Planetarium Society (IPS) awarded this year’s Best Educational Production Award to the 3D dome theater movie “The Man from the 9 Dimensions.” It was announced at the IPS Full-dome Festival 2016, held in Brno, Czech Republic from June 15 to 17.

The movie was supervised by Hirosi Ooguri, and was produced by Japan’s National Museum of Emerging Science and Innovation (Miraikan). It had just opened to the public in April this year. Directed by noted horror film director Takashi Himizu, the movie explores the Theory of Everything and follows a group of physicists in pursuit of To.E — a man of mystery. To.E. takes his pursuers to a world of superstring theory, a leading candidate for the Theory of Everything.

The IPS Full-dome Festival showcased 66 dome theater movies from 15 countries. The Best Education Production Award is the only prize chosen by an international jury. The judges commented that the “Man from the 9 Dimensions” is a piece that sparks curiosity, and provides fresh insight into the complex and deep subject that is the Theory of Everything.” A prize ceremony was held in Warsaw, Poland on June 23 — the last day of the IPS Warsaw Conference.

Hirosi Ooguri Member of American Academy of Arts and Sciences

Hirosi Ooguri was named a new member of the American Academy of Arts and Sciences, it was announced on April 20, 2016. The academy was established in 1780, making it one of the oldest in the United States, and is considered to be one of the most prestigious honorary societies. Its members have made significant accomplishments in academia, arts, business, and politics.

The 213 new members announced this year will be inducted at a ceremony at the academy’s headquarters in Cambridge, Massachusetts on October 8.

IPS Best Educational Production Award

The International Planetarium Society (IPS) awarded this year’s Best Educational Production Award to the 3D dome theater movie “The Man from the 9 Dimensions.” It was announced at the IPS Full-dome Festival 2016, held in Brno, Czech Republic from June 15 to 17.

The movie was supervised by Hirosi Ooguri, and was produced by Japan’s National Museum of Emerging Science and Innovation (Miraikan). It had just opened to the public in April this year. Directed by noted horror film director Takashi Himizu, the movie explores the Theory of Everything and follows a group of physicists in pursuit of To.E — a man of mystery. To.E. takes his pursuers to a world of superstring theory, a leading candidate for the Theory of Everything.

The IPS Full-dome Festival showcased 66 dome theater movies from 15 countries. The Best Education Production Award is the only prize chosen by an international jury. The judges commented that the “Man from the 9 Dimensions” is a piece that sparks curiosity, and provides fresh insight into the complex and deep subject that is the Theory of Everything.” A prize ceremony was held in Warsaw, Poland on June 23 — the last day of the IPS Warsaw Conference.

President of the Aspen Center for Physics

Hirosi Ooguri, Principal Investigator of the Kavli IPMU and Professor of California Institute of Technology, has been elected the President of the Aspen Center for Physics for a three-year term by its board of trustees on July 12, 2016. The Aspen Center for Physics was established in 1962 in Aspen, Colorado, one of America’s picturesque resort areas, to provide physicists with a creative environment for their individual research and to encourage interactions between different fields to open new directions of research.

It is a short-stay type physicists’ paradise for thinking and talking, and, every year, more than 1000 physicists from around the world come to the Center, mostly in summer and winter. Since 1968 the Center has been an independent non-profit corporation operated for scientists by scientists.

Toshiyuki Kobayashi Fellow of the American Mathematical Society

On November 1, 2016, the American Mathematical Society (AMS) announced the list of the 2017 Class of Fellows; University of Tokyo Graduate School of Mathematical Sciences Professor and Kavli IPMU Principal Investigator Toshiyuki Kobayashi was among those selected. The AMS has recognized his contributions to the structure and representation theory of reductive Lie groups. Professor Kobayashi has paved the way for a new mathematics via his research on the theory of discontinuous groups, branching laws of infinite-dimensional representations, and global analysis of minimal representations, and pioneered revolutionary breakthroughs in mathematics.

The Fellows of the American Mathematical Society program was inaugurated in 2012. It recognizes members who have made outstanding contributions to the creation, exposition, advancement, communication, and utilization of mathematics. The responsibilities of Fellows are to take part in the election of new Fellows, to present a “public face” of excellence in mathematics, and to advise the President and/or the Council on public matters when requested.*

* Cited from the AMS Fellows Program Document.
Kyoji Saito Kiyoshi Oka Prize

On December 3, 2016, Kavli IPMU Principal Investigator Kyoji Saito was awarded the inaugural Kiyoshi Oka Prize. The award ceremony was held at the beginning of the 15th Oka Symposium at Nara Women’s University in Nara City. The award bears the name of world-renowned mathematician Kiyoshi Oka, who was a professor emeritus at Nara Women's University. Established in 2016, the prize is given to mathematicians who have found interesting problems and solutions, have broken new ground in mathematics, and have made promising discovery and innovation for future mathematics.**

Professor Saito is a world-class mathematician in the field of complex geometry. He has been working on various subjects in complex geometry and representation theory. In particular, his theory of primitive forms and their period maps, and theory of elliptic Lie algebras and their representation theory have had a wide influence not only in mathematics but also in physics, including superstring theory and topological field theory. These achievements, which have led to new developments, as well as his lifetime contributions to the mathematics community, have been recognized.

Cited from http://www.nara-wu.ac.jp/omi/oka_prize_en.html

Naoki Yoshida JSPS Prize and Japan Academy Medal

Naoki Yoshida, Professor of the University of Tokyo School of Science and Kavli IPMU, was awarded the 13th JSPS (Japan Society for the Promotion of Science) Award and the 13th Japan Academy Medal in recognition of his "Large-Scale Numerical Simulations of Structure Formation in the Early Universe." The award ceremony was held at The Japan Academy on February 8, 2017.

The JSPS Prize and Japan Academy Medal were both established in 2004. The JSPS Prize is meant to recognize young researchers with fresh ideas who have the potential to become world leaders in their fields. The purpose of the Japan Academy Medal is to honor outstanding young researchers, and up to six awardees (6 researchers this time) are selected every year from among the annual winners of the JSPS Prize (25 researchers this time).

Professor Yoshida has developed a computer simulation code called GADGET (Galaxies with Dark matter and Gas intEracT) with collaborators. Using this code he has been studying structure formation and the evolution of the early universe, the formation of the first stars, and the origin of massive black holes.

Now, GADGET is a standard code in the field of large-scale computer simulation studies of the Universe. It also has a great influence on astronomical observations. Thus, Professor Yoshida’s contribution to astronomy and future prospects of his research have been recognized.

Tomoyuki Abe MSJ Spring Prize

Kavli IPMU Associate Professor Tomoyuki Abe won the Mathematical Society of Japan (MSJ) Spring Prize for his contributions to the “Study of Arithmetic D-module Theory and Langlands Correspondence.” An award ceremony was held on March 25 during the MSJ’s Annual Meeting at Tokyo Metropolitan University.

The MSJ Spring Prize was inaugurated in 1988 as the successor to the Iyanaga Prize which had been established in 1973. It is awarded to MSJ members under the age of 40 to recognize outstanding mathematical achievement.

There are mainly two cohomology theories for varieties over fields of positive characteristic: one with a topological nature and the other with a more analytic nature. Deligne conjectured that these two cohomology theories have similar information. Professor Abe used a variant of “analytic cohomology theory,” called theory of arithmetic D-modules, to establish Langlands type correspondence, and verified a part of Deligne’s hope. His research is difficult to understand, but you may get some idea from his article in the Kavli IPMU News, No. 35, pp. 4-9.

Tadashi Takayanagi Nishina Memorial Prize

Kavli IPMU Visiting Senior Scientist and Kyoto University Yukawa Institute for Theoretical Physics Professor Tadashi Takayanagi has been awarded the 2016 Nishina Memorial Prize. Commemorating the achievements of the late Dr. Yoshio Nishina, the Nishina Memorial Prize honors young researchers who have outstanding attainments in nuclear physics research and application.

Six notable Japanese who have won the Nobel Prize in Physics, namely Reona Esaki, Masatoshi Koshiba, Makoto Kobayashi, Toshhide Masukawa, Shuji Nakamura, and Takaaki Kajita, have also received the award.

Moreover, Kavli IPMU Principal Investigator, California Institute of Technology Professor, Caltech Walter Burke Institute for Theoretical Physics Director, and Aspen Center for Physics Director Hirosi Ooguri, won the award in 2009, as did Kavli IPMU Principal Investigator and Tohoku University Research Center for Neutrino Science Professor Kunio Inoue.

This time, Takayanagi received the Nishina Memorial Prize for his “discoveries in—and development of—holographic entanglement entropy formula.” Based on theories of black hole entropy, the holographic principle—which was established within the framework of string theory in 1997—has had significance in superstring theories. The concept of entanglement (or quantum entanglement) plays an important role in quantum mechanics, quantum information theory, and condensed matter physics, while entanglement entropy is a measure of how much a given quantum state is entangled.

Announced in 2006 by Takayanagi (and co-author Shinsei Ryu), holographic entanglement entropy formulas calculate entanglement entropy using theories of gravity. Based on the holographic principle, it describes entanglement entropy by linking it to the geometric character of gravitational theories.

Known as the Ryu-Takayanagi Formula, and developed over some 10 years, the calculations and its development have elucidated our understanding of holographic entanglement entropy, and made significant contributions to theoretical physics.

Upon receiving the Nishina Memorial Prize, Takayanagi said: “I am very honored to receive this prestigious prize which appreciates that we opened up an interdisciplinary field between string theory and quantum information theory. I am very grateful to my collaborators, especially Shinsei Ryu.

“Taking this great opportunity, I would like to make greater efforts in developing related subjects. It is also my pleasure if, in receiving this award, I can encourage young researchers who are challenging new interdisciplinary fields in theoretical physics.”
PhyStat-v Workshop on Statistical Issues in Experimental Neutrino Physics
The PhyStat-v workshop on statistical issues in experimental neutrino physics attracted over 90 particle physicists and statisticians from around the world to Kavli IPMU on May 30-June 1, 2016. The workshop focused on the statistical methods used to interpret data from current and future neutrino experiments.

The discovery of neutrino masses through the phenomenon of neutrino oscillations opened a new window to physics beyond the standard model and led to the 2015 Nobel Prize awarded to Takaaki Kajita and Arthur B. McDonald. Neutrino experiments now aim to further understand the phenomenon of neutrino oscillations and the mechanism by which neutrinos obtain their very small masses. Outstanding questions include: do neutrinos and antineutrinos oscillate differently (so-called CP violation), is the neutrino its own anti-particle, what is the ordering of masses for the three neutrinos, will precision measurements of the parameters governing oscillations indicate an underlying symmetry involved in the generation of neutrino masses?

To study these outstanding questions, neutrino physicists are building ever more complex experiments that require significant human and monetary resources. Therefore, it is critical to maximize the information extracted from these experiments while also ensuring that inferred information on neutrino model parameters and choices between models are statistically sound. The PhyStat-v workshop addressed three major statistical issues: event classification, parameter estimation and model selection.

Event classification refers to the process by which physicists interpret raw data observed in detectors as physical processes. For example, a pattern of light observed in a neutrino detector may be interpreted as one or more charged particles propagating through the detector medium and producing Cherenkov light. New techniques that can maximize the information extracted from the raw data were presented, including boosted decision trees and a non-parametric Bayesian event reconstruction.

Parameter estimation involves the inference of allowed values for model parameters given the data that is observed. Both classical and Bayesian methods were presented at PhyStat-v with a focus on challenging cases such as parameters with physical bounds and deciding between a two-sided or one-sided interval for a parameter.

The topic of model selection received significant attention since the next generation of experiments will measure the hierarchy of neutrino masses, which has two options, normal or inverted hierarchy. Since this measurement involves a discrete choice rather than a continuous parameter, naive expectations for what constitutes a significant result can be wrong. The methods of model selection in both the classical and Bayesian approaches were discussed and comparisons were made to a similar discrete choice made with LHC data, the determination of the Higgs boson candidate spin-parity.

The PhyStat-v workshop at IPMU was the first PhyStat workshop in the field of neutrino physics and laid the groundwork for future workshops on statistical methods in experimental neutrino physics. A second PhyStat-v workshop will be held at Fermilab on September 19-21.
The “Higher Residue Week, 2016” at Kavli IPMU took place from June 6 to 10, 2016. The event started with a two-day mini-workshop and it continued as a series of lectures by Dmytro Shklyarov (TU Chemnitz). The main goal of the workshop was to present the recent work of Shklyarov who has introduced Hodge-like structures of dg-categories motivated by Kyoji Saito’s theory of primitive forms. The notion of a primitive form was invented by K. Saito during his visit to Harvard in 1980. The main motivation is to provide a generalization of the classical period map for Riemann surfaces in the settings of Singularity Theory, i.e., the study of isolated critical points of holomorphic functions.

The importance of K. Saito’s work increased significantly in the early 90s when Alexander Givental and Maxim Kontsevich noticed that the theory of primitive forms provides the key concepts to state mirror symmetry and it can be used in symplectic geometry to compute Gromov-Witten invariants of compact Kahler manifolds. Mirror symmetry consists of finding a triple of an affine manifold \(Y \), a holomorphic function \(f \) on \(Y \), and a primitive form \(\omega \). The key ingredient in Saito’s theory is the so-called Higher Residue Pairing. This is a certain non-degenerate bi-linear pairing defined on the twisted de Rham cohomology of \(Y \) via a sequence of residues. The primitive form is a special cohomology class satisfying an infinite system of bi-linear relations. The key observation of Givental is that the oscillatory integral built from \(f \) and \(\omega \) coincides with what he called the \(J \)-function, i.e., a certain generating series of genus-0 Gromov-Witten invariants.

The main contribution of Shklyarov is that by studying the category of matrix factorizations he found a categorical interpretation of the twisted de Rham cohomology and the Higher Residue Pairing. In particular, the ideas and the concepts of K. Saito’s theory could be extended in much more general settings. As an application, Shklyarov also gave a talk during the mini-workshop based on his solution of a conjecture of Anton Kapustin and Yi Li, which implies the existence of an interesting A-infinity structure.

During the workshop, Hiroshi Ohta explained his joint work with Kenji Fukaya, Kaoru Ono and Yong-Geun Oh in open Gromov-Witten theory, which provides yet another tool to construct A-infinity structures and primitive forms. The workshop made an interesting contribution to understanding the big puzzle of mirror symmetry and primitive forms. Many ideas were exchanged and most importantly several possible directions for further investigations were clearly outlined.
Lectures on Cosmology with Planck at IPMU

Daisuke Kaneko
Kavli IPMU Postdoctoral Fellow
“Lectures on Cosmology with Planck at IPMU”* was quite a stormy seminar due to Typhoon No. 10. The seminar was held from August 29 to 31 at the Kavli IPMU, but the schedule for August 30 and 31 was postponed in order to avoid the typhoon and any other accidents. Therefore, supplementary lectures were held on September 13 on the University of Tokyo’s Asano campus. The lecturer was Dr. Guillaume Patanchon (University Paris Diderot) who is working on the Planck experiment: a cosmic microwave background (CMB) observation with a satellite which was launched in 2009 by the European Space Agency.

The main target in the audience was young post-docs and students who are not yet particularly familiar with cosmology, and many attendees came from KEK (Sokendai), JAXA, NAOJ, Yokohama National University, and Okayama University, in addition to the University of Tokyo. It shows a high level of interest in the recent results of the Planck experiment.

The lecture started with general relativity and an introduction to cosmology. Basic parameters in the standard model of cosmology were also introduced. The expansion of a homogeneous and isotropic universe was explained by calculating the FLRW (Friedmann-Lemaître-Robertson-Walker) metric. On the second day, perturbation in the universe was discussed. Calculation of the anisotropy was carefully performed, as anisotropy of the CMB photon temperature is one of the most important topics. The relation between the CMB power spectrum and cosmological parameters was explained for beginners. Lectures then moved into observation of the CMB. The design of the Planck satellite, high-frequency and low-frequency instruments, cooling system, and bolometer sensor of the detectors were shown. At the end, results from the recent Planck experiment (published in 2015) were presented. The observed CMB maps and spectra, as well as the fitted cosmological parameters, were shown in comparison with other experiments. The results with respect to B-mode polarization were presented with a comparison to a recent BICEP2 experiment. A measurement of non-Gaussianity was also mentioned.

On the additional day, the analysis method and systematic uncertainties were discussed. Issues such as long time-constant signal by cosmic rays, noise from 4K coolers, and non-linearity of ADC were realistically discussed, thanks to the lecturer’s experience in analyzing the Planck data.

Finally, a Q&A session of the lessons of the Planck experiment was held, and meaningful information was exchanged by CMB experimentalists. The seminar finished on a high note.

* These lectures were supported by JSPS Core-to-Core Program, A. Advanced Research Networks.
The workshop “Matrix factorization and related topics, 2016”, organised by Hirosi Ohta (Nagoya), Kyoji Saito (Kavli IPMU) and Atsushi Takahashi (Osaka), was successfully held at the Kavli IPMU for four days from September 5, 2016. The programme consisted of two series of lectures by Tobias Dyckerhoff (Bonn) and Daniel Murfet (Melbourne) together with related research talks by Atsushi Takahashi (Osaka), Andrei Losev (Moscow), and Michael Brown (Bonn). This workshop has brought together 35 participants from algebra, geometry, and mathematical physics.

Matrix factorizations were introduced by David Eisenbud, as a tool for studying the homological behaviour of modules over a hypersurface ring. More recently, matrix factorizations have begun appearing in a wide variety of contexts. For instance they arise in string theory as categories of D-branes for Landau-Ginzburg B-models. The expectation in homological mirror symmetry is that for any given symplectic manifold, there is a mirror Landau-Ginzburg model such that, the Fukaya category of the symplectic manifold should be equivalent to the matrix factorization category of the Landau-Ginzburg model. In addition, Kajiura-Saito-Takahashi’s explicit description of the equivalence of triangulated categories involving matrix factorizations of simple singularities nicely fits into this categorical expectation.

Tobias Dyckerhoff, following his joint works with Mikhail Kapranov, Chris Brav, Vadim Schechtman, and Yan Soibelman, discussed various topics on topological Fukaya categories. Firstly he constructed topological Fukaya categories for the two dimensional case. Then he introduced the concept of a relative Calabi-Yau structure and constructed them on topological Fukaya categories. Finally, he discussed more details using the categorical machinery of perverse sheaves.

Daniel Murfet gave his lectures under the title of generalized orbifolding of simple singularities. He started his lecture series by explaining an important result due to Carqueville-Ros Camacho-Runkel, which directly leads to new descriptions and relations between the associated categories of matrix factorizations and Dynkin quiver representations of simple singularities. Then he discussed these concepts in the abstract bicategorical framework for generalised orbifolding. He concluded his lectures with some concrete examples of Landau-Ginzburg models and its graded version. In the final lecture, he explained how to obtain finite dimensional models of matrix factorization categories.

Atsushi Takahashi gave a gentle introduction to Kyoji Saito’s theory of primitive forms. He highlighted the historical development of the subject and directions for further advancements mainly in the categorical setup. Under the section of research talks, Michael Brown explained about the topological K-theory of matrix factorization categories in order to extract topological information from the matrix factorization category associated to an isolated singularity. In his research talks, Andrei Losev first discussed about the theory of primitive forms and generalised Hodge theory; and then he went to talk on tropical mirror symmetry where he considered tropical limit of Gromov-Witten theory.

Numerous discussions among the participants, most importantly from different mathematical communities, have contributed to the workshop in an essential way. Furthermore, participants also appreciated ample time for interaction with other researchers. So the workshop provided an ideal atmosphere for fruitful interaction and exchange of ideas.
Statistics, Quantum Information, and Gravity

Hirosi Ooguri
Kavli IPMU Principal Investigator
Unification of general relativity and quantum mechanics has been one of the holy grails of modern physics. After the discovery of the Ryu-Takayanagi formula for the entanglement entropy 10 years ago, it has become increasingly clear that information theory provides powerful tools to study quantum gravity and quantum field theory. In turn, the study of quantum gravity has provided a new set of problems that information theorists can study and stimulated its progress.

In the past, the Kavli IPMU has successfully hosted Focus Weeks at the interface of high energy physics and condensed matter physics, and they have led to new collaborations between theorists at the Kavli IPMU and condensed matter theorists at other institutes. The purpose of this one-day conference is to explore another interface area, between high energy physics and information theory.

We invited a broad range of scientists as speakers: Masanao Ozawa (who studies quantum information theory and foundations of quantum mechanics), Hal Tasaki (who studies fundamental questions in statistical mechanics), Takahiro Sagawa (who studies non-equilibrium statistical mechanics, quantum measurement, control and information theory), Yasuyuki Kawahigashi (who studies operator algebras, which are important for quantum field theory), and Simmeon Hellerman (who is at the Kavli IPMU and studies string theory, which is the leading candidate for the unification of general relativity and quantum mechanics).

Ozawa is well-known for his discovery of “Ozawa inequality” in quantum measurement theory. The conference opened with Ozawa’s talk, in which he discussed measurement theory in quantum field theory. He was followed by Kawahigashi, who discussed operator algebraic approach to conformal field theory, which is an important class of quantum field theories, relevant to many aspects of string theory and AdS/CFT correspondence. In the afternoon, Tasaki discussed thermalization of statistical systems and Sagawa used information theoretic methods to discuss fundamental questions in statistical mechanics. The conference ended with a talk by Hellerman, who pointed out an issue with defining quantum entanglement in quantum field theories with non-vanishing gravitational anomalies.

The conference offered an excellent opportunity for scientists with such a broad range of backgrounds to interact with each other. We hope to foster such interactions further and encourage collaborations between high energy physics and information theory.
Workshop on Categorical and Analytic Invariants in Algebraic Geometry IV

Alexey Bondal
Kavli IPMU Principal Investigator
The year 2016 was final for the bilateral Japanese-Russian project “Categorical and analytic invariants in algebraic geometry.” It was financially supported jointly by JSPS and Russian Foundation for Basic Research (RFBR). The project is governed by Kyoji Saito and Alexey Bondal.

In 2016, the series of events started in 2015 was continued. A conference “Categorical and Analytic Invariants in Algebraic geometry III” under the auspice of this project was organized by the Kavli IPMU, Steklov Institute, Higher School of Economics in Moscow (where this conference was held) and the Institute of Fundamental Science on September 12–16. Members of the Kavli IPMU participated, as well as mathematicians from the Graduate School of Mathematical Sciences of Tokyo University, Osaka University, Tokyo Metropolitan University, Steklov Institute in Moscow, Higher School of Economics in Moscow and from other institutions in Britain and Poland.

Another workshop “Categorical and Analytic Invariants in Algebraic geometry IV” took place at the Kavli IPMU in the week of 14-18 November 2016. Further exchange of ideas and cooperation between Japanese and Russian participants of the project as well as with other Russian and Japanese scientists took place.

A particular attention was given to birational transformations and their mirror symmetric partners. Constructions of derived equivalences of algebraic varieties given by both birational and nonbirational varieties were discussed. Noncommutative mirror partners of ordinary algebraic varieties were scrutinized. The foundational base of the theory via properties of DG-enhanced categories, introduced by A. Bondal and M. Kapranov almost 30 years ago, was carefully studied.

The work of analytical invariants constructed by means of mirror symmetry was presented in several talks from the Japanese side. As in the events of the previous year, many talks of the workshop were devoted to the study of one of the sides of the mirror and/or to comparison of the two.

Mikhail Kapranov outlined a new perspective in his talk on higher Kac-Moody algebras and derived moduli spaces of G-bundles. He developed a generalization for higher dimensional varieties of one of the fundamental features of the Conformal Field Theory on Riemann surfaces, that is the action of the current (Kac-Moody) algebras on the moduli space of rigidified G-bundles.

A young Japanese mathematician T. Kuwagaki presented his powerful result on coherent-constructible correspondence. The first observation and results of A. Bondal on equivalence of derived categories of coherent sheaves on toric varieties with the derived categories of constructible sheaves on the real torus subordinated to a suitable stratification was developed by a range of authors into a general conjecture of such equivalence for toric stacks. The conjecture can be interpreted in terms of mirror symmetry by identifying the constructible side with the relevant Fukaya category. T. Kuwagaki reported on his proof of the conjecture in full generality.

The cooperation with physicists was particularly fruitful. Kentaro Hori presented mathematical conjectures about derived equivalences of some Calabi-Yau varieties based on consideration of a two parameter gauged linear sigma model that has six phases. It can be regarded as a two parameter extension of Hosono-Takagi model. Sh. Hosono in his turn described a series of examples of mirror symmetric partners for Calabi-Yau varieties that have infinite birational automorphisms and identify these automorphisms with monodromy transformations in their mirror families.

A young Russian mathematician Andrei Yonov developed the physics proposal of A. Belavin that the Witten’s descent deformation of the chiral ring should correspond to the certain K. Saito’s primitive forms for the Gepner singularity. Yonov constructed by purely mathematical tools primitive forms for Gepner singularities.
Resurgence at Kavli IPMU

Aleksey Cherman
University of Washington Postdoctoral Research Associate
The “Resurgence at Kavli IPMU” was held from December 12 to 16, and focused on surveying recent developments in resurgence theory and related topics. Resurgence theory is a framework to systematically construct solutions to non-linear problems arising in physics and mathematics. For example, one may want to construct solutions to non-linear differential equations, or to write expressions for observables in a quantum field theory (QFT) as a function of its coupling constants. The starting point for the analysis of such problems is of course perturbation theory around a linearized limit. But perturbation theory alone is usually not enough, because it produces divergent asymptotic series, and the result is not valid non-perturbatively. Resurgence theory allows one to develop exact solutions by systematically putting together perturbative expansions around different linearized limits. For example, in QFT, this involves understanding how perturbative fluctuations around various instanton-like sectors fit together to produce an unambiguous result valid for any value of the coupling constants.

The workshop was highly international, with participants from Europe, North America, South America, and Asia. The talks highlighted exciting developments along several directions. Many talks, for example by Y. Tanizaki, T. Schafer, E. Poppitz, P. Putrov, G. Basar, and T. Misumi, discussed the relation between resurgence theory, which gives an algebraic perspective on semiclassical expansions, and Lefshetz thimbles, which give a geometric perspective on the same topic. A. Cherman and T. Sulejmanpasic gave overviews of techniques necessary to produce smooth weakly-coupled limits for asymptotically-free QFTs, which is a necessary step to apply resurgence theory techniques. O. Costin and G. Dunne announced intriguing results on practical new methods for summation of semiclassical expansions and relations between perturbative and non-perturbative effects. R. Schiappa and M. Yamazaki explained recent developments in applications of resurgence theory to string theory and supersymmetric gauge theory, while T. Aoki, Y. Takei, and A. Getmanenko presented advances in the study of the WKB expansion and related topics in resurgence and Stokes phenomena.

The format of the workshop was focused on leaving as much time for informal discussion as possible, with most days having two talks in the morning and two in the evening, and plenty of tea and cookies placed near blackboards to trigger interactions. Kavli IPMU’s wonderful staff and facilities provided an excellent and stimulating environment, and the workshop was very successful, with many participants remarking that they developed new research ideas from the talks and interactions with other researchers.
Conference “D-modules and Hodge Theory”

Tomoyuki Abe
Kavli IPMU Associate Professor
From 23rd to 27th of January 2017, a conference entitled “D-modules and Hodge Theory” was held at the Kavli IPMU. There were 15 invited speakers, including three who gave two lectures.

Hodge theory, a main theme of the conference, sits at the intersection of various fields: algebraic, analytic, and arithmetic geometry. The story starts when W.B.D. Hodge discovered a marvelous decomposition of singular cohomologies of Kähler varieties by means of harmonic forms. Even though the proof is completely analytic, this decomposition can be interpreted in terms of algebraic geometry, and the existence of such decomposition is regarded as a unique feature of algebraic (or Kähler) geometry. Some decades after Hodge’s discovery, A. Weil conjectured a surprising conjecture for varieties over finite fields. J.P. Serre pointed out that complex analogue of his conjecture could be solved by using Hodge theory. Since then, Hodge theory has been a source of inspiration for those studying cohomology theory over finite fields. On the other hand, inspired by works on the Weil conjecture, P. Deligne found a new way to understand Hodge decomposition from a more philosophical point of view: invention of Hodge structure. Following this philosophy as well as Grothendieck’s “yoga of 6 functors,” M. Saito established the theory of Hodge modules by using ideas from D-module theory. The next step was seeking for analogous structure for “irregular connection” generalizing Saito’s theory. The program was initiated C. Sabbah after C. Simpson’s work on twister Hodge structure, and recently completed by T. Mochizuki. One of the main aims of the conference was to understand this theory and relevant topics.

Mochizuki gave two lectures on his works. In the first lecture, he explained some basic facts on this theory, and in the second lecture, he gave some applications. His theory enabled him to explain some facts appearing in mirror symmetry in a more natural way, which is expected to lead to more applications. K.S. Kedlaya gave two lectures on the resolution of turning points, which was shown independently by Mochizuki. Kedlaya’s method uses ideas from p-adic analysis. The most interesting aspect of his proof is that, by combining differential equation theory for Berkovich spaces and valuation theoretic point of view, he can explain the blow-up locus in a coherent manner. A. D’Agnolo gave lectures on irregular Riemann-Hilbert correspondence that he established in the work with M. Kashiwara. This result enables us to understand Stokes phenomenon in a higher dimensional situation. In the heart of the proof, they used resolution of turning points.

The conference was very successful with a lot of attendance from many universities and with various backgrounds.

Masahiro Takada
Kavli IPMU Professor
There are observational evidences for two periods of accelerated cosmic expansion: at the very beginning, known as inflation, and the present. Since gravity, according to Newton as well as Einstein, is known as an attractive force, gravity can only “pull” the expansion to slow it down. Hence cosmic acceleration is the biggest mystery in cosmology. What is “pushing” the Universe to speed it up? We often invoke “inflation” and “Einstein’s cosmological constant” as its theory, but they have many unnatural features and are far from satisfying explanations. The purpose of this research area is to understand the origin of the accelerated cosmic expansion, as well as its interplay with dark matter which competes with the acceleration to build galaxies and clusters of galaxies. To address this problem, we launched the research program “Why Does the Universe Accelerate? – Exhaustive Study and Challenges for the Future –” (PI: Hitoshi Murayama), based on the MEXT Scientific Research on Innovative Area (FY2015 – 2019). We propose to conduct the research program based on a comprehensive approach; Theory units ranging from cosmic acceleration due to inflation (A01: Misao Sasaki, Kyoto Univ.), to decelerated expansion phase due to dark matter (A02: Fuminobu Takahashi, Tohoku Univ.), and late-time cosmic acceleration due to dark energy (A03: Naoshi Sugiyama, Nagoya Univ./Kavli IPMU); Observational units based on the CMB experiments (B01: Masashi Hazumi, KEK/Kavli IPMU), galaxy imaging survey (B02: Satoshi Miyazaki, NAOJ), galaxy redshift survey (B03: Masahiro Takada, Kavli IPMU), and the Thirty-Meter Telescope (B04: Tomonori Usuda, NAOJ); and then Ultimate units developing tools of combining different cosmological datasets to fully extract cosmological information (D01: Eiichiro Komatsu, MPA/Kavli IPMU) and seeking ultimate theory of cosmic acceleration from super-string theory with top-down perspective (C01: Hirosi Ooguri, Caltech/Kavli IPMU). This is a 5-year research program (FY2015 – 2019).

We held the conference at the High Energy Accelerator Research Organization (KEK) at around the end of the second year from the launch of this program, March 8 – 10 in 2017, where almost all members from each research group gathered together. At the conference we had updates from each research group/program and there were a lot of productive, stimulating discussions. We also had contributed talks mainly by young researchers. In addition, we had a special session “Primordial Black Hole” (PBH) on the third day, where we discussed the current observational constraint, a scenario to generate PBHS from an inflationary universe, a scenario to explain dark matter with PBHS, and a connection of PBHS to the gravitational events in the Advanced LIGO experiment that detected gravitational waves from a binary black hole system. We had more than 120 participants, and the conference was greatly successful.

Finally we would like to thank the organizers, Masaya Hasegawa, Haruiki Nishino, Shuichi Yokoyama, and Teruaki Suyama. We also thank the secretaries of KEK for their dedicated support.

Photo: Courtesy of KEK IPNS.
Workshop “Mathematics and Superstring Theory”

Yukinobu Toda
Kavli IPMU Associate Professor
Conferences

From March 21 to 23, 2017, the workshop entitled “Mathematics and Superstring theory” was held at the Kavli IPMU. This workshop was organized as a summary of the JSPS program “Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers” adopted as “Unlocking the Mysteries of the Accelerating Universe through Superstring Theory and Astrophysical Observations.” The aim of this program is to support young researchers in Japan to go abroad and do joint works with foreign researchers. Several researchers in Japan, including workshop organizers Masahito Yamazaki and Yukinobu Toda, went abroad and had discussions in foreign countries.

In the workshop, both mathematicians and string theorists came together and had significant discussions. From the mathematics side, there were 7 speakers: Ivan Ip, Zheng Hua, Akishi Ikeda, Atsushi Kanazawa, Georg Oberdieck, Yinbang Lin, and Kyoung-Seog Lee. The contents included various topics: derived algebraic geometry, mirror symmetry, stable pair invariants, derived categories of coherent sheaves, etc. Atsushi Kanazawa talked about Doran-Harder-Thompson conjecture on the construction of mirror Calabi-Yau manifolds by their degenerations, and showed that their conjecture is true for elliptic curves and some abelian surfaces. Georg Oberdieck talked about his very strong result on the proof of Katz-Klemm-Vafa conjecture on Pandharipande-Thomas stable pair invariants, which count algebraic curves on Calabi-Yau 3-folds, for the products of K3 surfaces and elliptic curves.

From the superstring theory side, there were also 7 speakers: Mauricio Romo, Nezhla Aghaee, Shamil Shakirov, Pietro Longhi, Bruno Le Floch, Dongming Gang, and Taizan Watari. Mauricio Romo talked about sphere correlators for a hybrid model given by some non-affine algebraic variety equipped with a super-potential. Shamil Shakirov talked about deformations of Chern-Simons topological field theory. It was known that such a deformation exists in the case that boundaries are Riemann surfaces with genus less than or equal to one, but Shakirov explained that it extends to the case that boundaries have genus two. There were also talks on quantization of super Teichmueller spaces, wall-crossing of BPS states, etc., which were also interesting for mathematicians.

During the workshop, both mathematicians and physicists enjoyed many discussions.
Nicholas Battaglia (Princeton U)
Cross correlations with CMB secondaries: constraining cosmological parameters and cluster astrophysics
Apr 05, 2016

Yongbin Ruan (U Michigan)
Moduli spaces in gauged linear sigma model (GLSM)
Apr 05, 2016

Ryosuke Sato (Weizmann Inst)
Self-consistent Calculation of the Sommerfeld Enhancement
Apr 06, 2016

Benedikt Diemer (Harvard U)
The edge of darkness, and other halo surprises
Apr 07, 2016

Michael Wemyss (U Edinburgh)
Affine actions from 3-fold flops, and tilings of the plane
Apr 08, 2016

Krzysztof Gorski (JPL / Kavli IPMU)
The Future of Cosmology with the CMB
Apr 08, 2016

Alan Weinstein (UC Berkeley)
Special subspaces in symplectic vector spaces
Apr 11, 2016

Robert Lupton (Princeton U)
Difference Imaging: Algorithms, Problems, and some Possible Solutions
Apr 12, 2016

Min-Seok Seo (IBS)
On dark mesonic realization of the SIMP scheme
Apr 12, 2016

Edgar Shaghoulian (UCSB)
Modular forms, new Cardy formulas, and black hole entropy
Apr 13, 2016

Po-Yan Tseng (Natl. Tsing Hua U, Taiwan)
A Higgcision study on the 730 GeV Di-photon Resonance and 125 GeV SM Higgs boson with the Higgs-Singlet Mixing
Apr 13, 2016

Mathew Madhavacheril (Stoney Brook U)
Dark energy science from CMB lensing and cross-correlations
Apr 14, 2016

Alan Weinstein (UC Berkeley)
Geometric and algebraic Poisson modules
Apr 14, 2016

Gabriel Lopes Cardoso (Instituto Superior Técnico)
Deformed special geometry and topological string theory
Apr 19, 2016

Anatol Kirillov (RIMS, Kyoto)
Affine braid groups of classical types, baxterization and integrable systems
Apr 20, 2016

Akito Kusaka (LBNL)
Path toward next-generation CMB missions
Apr 20, 2016

Henry McCracken (IAP)
Galaxies, dark matter haloes and how efficient galaxy formation really is: new results from the UltraVISTA survey
Apr 21, 2016

Kota Ogasawara (Rikkyo U)
High energy particle collision and collisional Penrose process near a Kerr black hole
Apr 22, 2016

Jie-qiang Wu (Peking U)
Entanglement entropy and higher genus partition function in AdS3/CFT2
Apr 26, 2016

Razieh Emami (HongKong U)
Different aspects of Anisotropic Inflation: From Theoretical side to Observation
Apr 27, 2016

Osamu Yasuda (TMU)
Future prospects of neutrino oscillation study
Apr 27, 2016

Luca Merlo (Instituto de Física Teórica, Madrid)
The problem of the Mass in SM and Beyond
Apr 27, 2016

Jean Coupon (U Geneva)
The gas-galaxy-halo connection
Apr 28, 2016

Wilfried Buchmüller (DESY)
Grand Unification and Supersymmetry at High Scales
May 09, 2016

Eric Sharpe (Virginia Tech)
Recent developments in 2d (0,2) theories
May 10, 2016

Robert Williams (Space Telescope Science Inst)
The Distant Universe Revealed by Hubble Space Telescope
May 11, 2016

Yoshiki Oshima (Kavli IPMU)
Orbit method and characters of representations
May 12, 2016

John Carlstrom (U Chicago)
Cosmic Microwave Background: Neutrino & GUT-Scale Physics from the Cosmos
May 13, 2016
Satoshi Shirai (DESY)
Quest for Dark Matter
May 16, 2016

Valentin Tonita (Humboldt U)
K-theoretic mirror formulae
May 17, 2016

Nassim Bozorgnia (U Amsterdam)
The dark matter halo from hydrodynamic simulations
May 18, 2016

Akikazu Hashimoto (U Wisconsin, Madison)
Supergravity duals of N=4 theories in 2+1 dimensions on a Coulomb branch
May 18, 2016

Tom Melia (LBNL / UCB)
Colliding frontiers: the search for new physics at the LHC
May 23, 2016

Fredrik Bjorkeroth (Southampton U)
Towards a complete Delta(27) × SO(10) SUSY GUT
May 25, 2016

Bogdan Stoica (Caltech)
Gravitational Positive Energy Theorems from Information Inequalities
May 26, 2016

Neil Barrie (Sydney U)
Explaining the LHC 750 GeV Diphoton Excess via Photon Fusion
May 26, 2016

Chen Jiang (Kavli IPMU)
Boundedness results on Fano varieties
May 26, 2016

Junichi Yokoyama (RESCEU, U Tokyo)
Creation of an inflationary universe out of a black hole
Jun 01, 2016

Lei Hao (Shanghai Optical Observatory)
The Co-evolution of AGNs and Galaxies, Viewed from 2D Spectroscopy and Mid-infrared Spectroscopy
Jun 01, 2016

Roland Diehl (MPE)
Cosmic Gamma-Ray Lines: About supernova interiors, diffuse radioactivity, and black hole accretion
Jun 02, 2016

Johannes Walcher (U Heidelberg)
Exponential networks and representations of quivers
Jun 02, 2016

Mark K. Mezei (Princeton U)
Spread of entanglement and chaos
Jun 06, 2016

Enrico Brehm (Ludwig Maximilian U)
Entanglement, conformal field theory, and interfaces
Jun 07, 2016

Viraf M. Mehta (Heidelberg U)
Monodromy Dark Matter
Jun 08, 2016

Takuro Abe (Kyushu U)
Divisionally free arrangements of hyperplanes
Jun 16, 2016

Massimo Porrat (NYU)
On a Canonical Quantization of Pure AdS3 Gravity
Jun 21, 2016

Todor Milanov (Kavli IPMU)
The Painleve property for the Schlesinger equations
Jun 23, 2016

Hisayoshi Matsumoto (U Tokyo)
Parabolic Verma modules
Jun 25, 2016

William Raphael Hix (U Tennessee)
Multidimensional Simulations of Core-Collapse Supernovae & their Impact on Supernova Nucleosynthesis
Jun 27, 2016

Chiaki Kobayashi (U Hertfordshire)
Simulating metallicity distribution in the Universe
Jun 28, 2016

Rene Meyer (Stony Brook U)
Nonequilibrium Chiral Magnetic Effect in Asymmetric Weyl Semimetals
Jun 28, 2016

Colin Ingalls (U New Brunswick)
Noncommutative resolutions of discriminants of reflection groups
Jun 29, 2016

Kipp Cannon (RESCEU, U Tokyo)
Latest Results from Advanced LIGO’s First Science Run
Jun 29, 2016

Takashi Nakamura (Kyoto U)
Physics, Astronomy and Cosmology from the first direct detection of gravitational wave
Jun 29, 2016

Shingo Kamimoto (Hiroshima U)
Iterated convolution of resurgent functions
Jun 30, 2016

Roberto Franceschini (CERN)
Precision Top mass from energy peaks
Jul 01, 2016

Bernhard Mueller (Queen’s U, Belfast)
Understanding the Explosions of Massive Stars
Jul 06, 2016

Shuai Zha (Chinese U Hong Kong)
Accretion Induced Collapse of White Dwarf and its Possible Signals
Jul 07, 2016

Kyoji Saito (Kavli IPMU)
De Rham cohomology of vanishing cycles for non-isolated critical points
Jul 07, 2016

Andrew Kels (Australian National U)
Introduction to the star-triangle relation form of the Yang-Baxter equation and modern applications
Jul 12, 2016

Francesco Belfiore (U Cambridge)
The spatially resolved transition between star formation and quiescence with SDSS IV MaNGA
Jul 14, 2016

Andreas Karch (U Washington)
Particle-Vortex Duality from 3d Bosonization
Jul 26, 2016

Sho Tanimoto (U Copenhagen)
On the geometry of thin exceptional sets in Manin’s conjecture
Jul 26, 2016
Hassan Firouzjahi (IPM, Tehran)
Primald anisotropies and asymmetries during inflation
Jul 27, 2016

Sunil Mukhi (IISER Pune)
Recent Developments in the Study of Rational Conformal Field Theories
Jul 28, 2016

Wen Yin (Tohoku U)
Novel Approach to Fine-tuned Supersymmetric Standard Models, and the Explanation of the Muon Anomalous Magnetic Dipole Moment Anomaly
Jul 29, 2016

Kazuki Sakurai (Durham U)
Search for Sphalerons: LHC vs. IceCube
Aug 03, 2016

Djordje Radicevic (Stanford U)
3D bosonization and Chern-Simons-matter theory
Aug 10, 2016

Encieh Erfani (IASBS)
Dark Matter Primordial Black Holes and their Formation
Aug 10, 2016

Yasuhito Sakaki (Kavli IPMU)
QCD jet substructure and its simulation
Aug 24, 2016

Yoshifumi Hyakutake (Ibaraki U)
Quantum Nature of D-branes
Aug 25, 2016

David Morrison (UC Santa Barbara)
Spaces with holonomy G2 and their use in M-theory
Aug 25, 2016

Jason Xavier Prochaska (UC Santa Cruz)
Rise of the Proto-Galaxy System in the Universe
Aug 31, 2016

Jason Evans (KIAS)
Natural Low-Scale Inflation and the Relaxion
Sep 07, 2016

Kallol Sen (Kavli IPMU)
Conformal bootstrap in Mellin space
Sep 21, 2016

Po-Yen Tseng (Kavli IPMU)
Z’ and Lepton-Flavor Violation
Sep 21, 2016

Daisuke Kaneko (Kavli IPMU)
The result of the MEG experiment with the full dataset
Oct 05, 2016

Scott Carnahan (Tsukuba U)
Generalized Monstrous Moonshine
Oct 11, 2016

Ke-Jung Chen (NAOJ)
Multidimensional Simulations of Magnetar Powered Supernovae
Oct 13, 2016

Yulong Cao (Kavli IPMU)
Gauge Theory and Calibrated Geometry for Calabi-Yau 4-folds
Oct 13, 2016

Francisco Morales (INFN Sezione di Roma)
Exact results in N=2 gauge theories
Oct 18, 2016

Olyr Sumensari (LPT Orsay)
B-Physics Puzzles and Lepton Flavor Violation
Oct 19, 2016

Tommaso Treu (UCLA)
The other 95%: Insights from Strong Gravitational Lensing
Oct 20, 2016

Harold Williams (UT Austin)
The Coherent Satake Category and Line Operators in N=2 Gauge Theory
Oct 20, 2016

Akihiro Suzuki (Kyoto U)
Radiation-hydrodynamic modeling of supernova shock breakout in multi-dimension
Oct 20, 2016

Tim Tait (UCI)
Hints for New Physics from a Rare Decay of Beryllium-8?
Oct 21, 2016

Boris Pioline (CERN)
D-instantons and indefinite theta series
Oct 21, 2016

Houjun Mo (U Massachusetts)
Lecture 1: Dark matter halos
Oct 25, 2016

Houjun Mo (U Massachusetts)
Lecture 2: Gas processes and galaxy formation
Oct 25, 2016

Takuo Matsuoka
Introduction to topological field theories
Oct 26, 2016

Houjun Mo (U Massachusetts)
Reconstructing the initial conditions to simulate the formation of the local universe
Oct 26, 2016

Petr Bakanov (ITEP Moscow)
A Massive Progenitor of Strongly Lensed Supernova Refsdal
Oct 27, 2016

Takuo Matsuoka
Introduction to topological field theories
Oct 27, 2016

David A. Nichols (Radboud U Nijmegen)
Gravitational-wave memory observables and charges of the extended BMS algebra
Oct 28, 2016
<table>
<thead>
<tr>
<th>Seminar</th>
<th>Speaker</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paolo Rossi (Inst Mathematics at Burgundy)</td>
<td>Double ramification hierarchies</td>
<td>Nov 01, 2016</td>
<td></td>
</tr>
<tr>
<td>Felix Kahlhoefer (DESY)</td>
<td>Dark matter self-interactions - from observations to particle physics</td>
<td>Nov 02, 2016</td>
<td></td>
</tr>
<tr>
<td>Alexei Rosly (ITEP)</td>
<td>Self-Dual Yang-Mills Theory and Twistors</td>
<td>Nov 08, 2016</td>
<td></td>
</tr>
<tr>
<td>Zvonimir Vlah (KIPAC)</td>
<td>Towards understanding the Large-Scale Structure in the Universe using perturbation theory</td>
<td>Nov 09, 2016</td>
<td></td>
</tr>
<tr>
<td>Samuel Jones (HITS, Heidelberg)</td>
<td>Supernovae and their progenitor systems</td>
<td>Nov 10, 2016</td>
<td></td>
</tr>
<tr>
<td>Andrei Ionov (HSE)</td>
<td>Primitive forms for Gepner singularities</td>
<td>Nov 14, 2016</td>
<td></td>
</tr>
<tr>
<td>Charles Kirkham Rhodes (U of Illinois, Chicago)</td>
<td>Decoding the perfect Universe</td>
<td>Nov 15, 2016</td>
<td></td>
</tr>
<tr>
<td>Gabi Zafir (Kavli IPMU)</td>
<td>4d $N=1$ from 6d $(1,0)$</td>
<td>Nov 15, 2016</td>
<td></td>
</tr>
<tr>
<td>Patrick Francois (Observatoire de Paris-Meudon)</td>
<td>The search for the oldest stars in our Galaxy</td>
<td>Nov 16, 2016</td>
<td></td>
</tr>
<tr>
<td>Philipp Edelmann (HITS, Heidelberg)</td>
<td>Hydrodynamics of Rotating Stars</td>
<td>Nov 17, 2016</td>
<td></td>
</tr>
<tr>
<td>Tatsuki Kuwagaki (U Tokyo)</td>
<td>Homological mirror symmetry via constructible sheaves</td>
<td>Nov 18, 2016</td>
<td></td>
</tr>
<tr>
<td>Mikhail Kapranov (Kavli IPMU)</td>
<td>Geometric Satake correspondence</td>
<td>Nov 21, 2016</td>
<td></td>
</tr>
<tr>
<td>Satoshi Yamaguchi (Osaka U)</td>
<td>The ϵ-expansion of the codimension two twist defect from conformal field theory</td>
<td>Nov 22, 2016</td>
<td></td>
</tr>
<tr>
<td>Atsushi Kanazawa (Kyoto U)</td>
<td>Tyurin conjecture and SYZ mirror symmetry</td>
<td>Nov 28, 2016</td>
<td></td>
</tr>
<tr>
<td>Miguel A. Vazquez-Mozo (Universidad de Salamanca)</td>
<td>Planar zeros in gauge theories and gravity</td>
<td>Nov 29, 2016</td>
<td></td>
</tr>
<tr>
<td>Elisabeth Krause (U Stanford)</td>
<td>Combining Cosmological Probes in the Dark Energy Survey, and Beyond</td>
<td>Dec 06, 2016</td>
<td></td>
</tr>
<tr>
<td>Yuya Tanizaki (RIKEN BNL Research Center)</td>
<td>Cheshire Cat Resurgence and Quasi-Exact Solvability</td>
<td>Dec 06, 2016</td>
<td></td>
</tr>
<tr>
<td>Danilo Marchesini (Tufts U)</td>
<td>The Assembly of Today’s Most Massive Galaxies Over the Last 12.8 Gyr</td>
<td>Dec 07, 2016</td>
<td></td>
</tr>
<tr>
<td>Alexey Bondal (Kavli IPMU)</td>
<td>Canonical relative tilting generator</td>
<td>Dec 08, 2016</td>
<td></td>
</tr>
<tr>
<td>Daniel Jafferis (Harvard U)</td>
<td>Bulk reconstruction in the Hartle-Hawking formalism</td>
<td>Dec 09, 2016</td>
<td></td>
</tr>
<tr>
<td>Alexey Chernov (U Washington)</td>
<td>Constructing expansion parameters for QCD-type theories</td>
<td>Dec 13, 2016</td>
<td></td>
</tr>
<tr>
<td>Manos Chatzopoulos (Louisiana State U)</td>
<td>Pre-supernova Convection in Massive Stars</td>
<td>Dec 13, 2016</td>
<td></td>
</tr>
<tr>
<td>Peter Behroozi (UC Berkeley)</td>
<td>The Connection between Galaxy Growth and Dark Matter Halo Assembly from $z=0-10$</td>
<td>Dec 15, 2016</td>
<td></td>
</tr>
<tr>
<td>Martin Buret (U Oxford)</td>
<td>3D Observations of Molecular Gas in Galaxies: From Global Dynamics to Supermassive Black Holes</td>
<td>Dec 22, 2016</td>
<td></td>
</tr>
<tr>
<td>Igor Klebanov (Princeton U)</td>
<td>Random Tensor Models and Melonic Large N Limits</td>
<td>Jan 05, 2017</td>
<td></td>
</tr>
<tr>
<td>Dmitry Budker (Johannes Gutenberg University)</td>
<td>Searching for ultralight dark matter with atomic spectroscopy and magnetic resonance</td>
<td>Jan 06, 2017</td>
<td></td>
</tr>
<tr>
<td>David Simmons-Duffin (IAS)</td>
<td>The Lightcone Bootstrap and the Spectrum of the 3d Ising CFT</td>
<td>Jan 10, 2017</td>
<td></td>
</tr>
<tr>
<td>Speaker</td>
<td>Topic</td>
<td>Date</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Masahiro Nozaki</td>
<td>Entanglement Entropy in Smooth Quenches</td>
<td>Jan 10, 2017</td>
<td></td>
</tr>
<tr>
<td>Erwin Lau</td>
<td>Modeling baryonic physics in galaxy clusters</td>
<td>Jan 11, 2017</td>
<td></td>
</tr>
<tr>
<td>Frederico Garcia</td>
<td>Observable properties of accretion disks in Kerr spacetimes</td>
<td>Jan 12, 2017</td>
<td></td>
</tr>
<tr>
<td>Francesco Sala</td>
<td>K-HA/CoHA of the stack of Higgs sheaves on a curve</td>
<td>Jan 12, 2017</td>
<td></td>
</tr>
<tr>
<td>Devendra Sahu</td>
<td>Peculiar Type Ia Supernovae - An Observational Perspective</td>
<td>Jan 13, 2017</td>
<td></td>
</tr>
<tr>
<td>Gary Lowe</td>
<td>Collapsar Model of Gamma Ray Bursts with MHD</td>
<td>Jan 16, 2017</td>
<td></td>
</tr>
<tr>
<td>Susanne Reffert</td>
<td>Global properties of gauge theories via M-Theory</td>
<td>Jan 17, 2017</td>
<td></td>
</tr>
<tr>
<td>Domenico Orlando</td>
<td>Compensating strong coupling with large charge</td>
<td>Jan 17, 2017</td>
<td></td>
</tr>
<tr>
<td>Ryosuke Sato</td>
<td>Spherical symmetry of the bounce solution</td>
<td>Jan 18, 2017</td>
<td></td>
</tr>
<tr>
<td>Alexander Heger</td>
<td>Life and Death of the First Stars</td>
<td>Jan 18, 2017</td>
<td></td>
</tr>
<tr>
<td>Kenneth Wong</td>
<td>A Tale of Three Lenses: From Galaxy Structure to Cosmology</td>
<td>Jan 19, 2017</td>
<td></td>
</tr>
<tr>
<td>Milen Yakimov</td>
<td>Double Bruhat cells, clusters and maximal green sequences</td>
<td>Jan 25, 2017</td>
<td></td>
</tr>
<tr>
<td>Antonio Sciarrappa</td>
<td>Painlevé equations and AGT correspondence</td>
<td>Jan 27, 2017</td>
<td></td>
</tr>
<tr>
<td>Kin-Wang Ng</td>
<td>1. Production of high stellar-mass primordial black holes in trapped inflation / 2. Axion Dark Matter Induced Cosmic Microwave Background B-modes</td>
<td>Jan 27, 2017</td>
<td></td>
</tr>
<tr>
<td>Marco Bertolini</td>
<td>(0,2) hybrid models</td>
<td>Jan 31, 2017</td>
<td></td>
</tr>
<tr>
<td>Elena Sorokina</td>
<td>Theoretical Models for Hydrogen-poor Superluminous Supernovae</td>
<td>Feb 01, 2017</td>
<td></td>
</tr>
<tr>
<td>Yue-Bing Wu</td>
<td>Ultraluminous quasars with the most massive black holes at cosmic dawn</td>
<td>Feb 02, 2017</td>
<td></td>
</tr>
<tr>
<td>Qizheng Yin</td>
<td>Curves and cycles on K3 surfaces</td>
<td>Feb 07, 2017</td>
<td></td>
</tr>
<tr>
<td>Marco Chianese</td>
<td>Dark Matter interpretation of the IceCube diffuse neutrino flux</td>
<td>Feb 08, 2017</td>
<td></td>
</tr>
<tr>
<td>Kimyeong Lee</td>
<td>Higher Dimensional Quantum Theories</td>
<td>Feb 14, 2017</td>
<td></td>
</tr>
<tr>
<td>Arka Banerjee</td>
<td>Simulating nonlinear cosmological structure formation with massive neutrinos</td>
<td>Feb 15, 2017</td>
<td></td>
</tr>
<tr>
<td>Masahiko Yoshinaga</td>
<td>Characteristic polynomials of Linial arrangements</td>
<td>Feb 16, 2017</td>
<td></td>
</tr>
<tr>
<td>Susmita Adhikari</td>
<td>Splashback and outskirts of Dark Matter halos</td>
<td>Feb 16, 2017</td>
<td></td>
</tr>
<tr>
<td>Patricio Gallardo</td>
<td>On geometric invariant theory for hypersurfaces and their hyperplane sections</td>
<td>Feb 21, 2017</td>
<td></td>
</tr>
<tr>
<td>Yoshihisa Saito</td>
<td>On quantized elliptic algebras</td>
<td>Feb 21, 2017</td>
<td></td>
</tr>
<tr>
<td>Jack Kearney</td>
<td>A (The?) Higgs Vacuum Instability During Inflation</td>
<td>Feb 22, 2017</td>
<td></td>
</tr>
<tr>
<td>Igor Panov</td>
<td>Nucleosynthesis of heavy elements in the r-process</td>
<td>Feb 22, 2017</td>
<td></td>
</tr>
<tr>
<td>Ming-Chung Chu</td>
<td>The Degeneracy of Cosmic Neutrinos</td>
<td>Feb 23, 2017</td>
<td></td>
</tr>
<tr>
<td>Anupama Chakrapani</td>
<td>The Thirty Meter Telescope - India Perspective</td>
<td>Feb 23, 2017</td>
<td></td>
</tr>
<tr>
<td>Marc-Hubert Nicole</td>
<td>Algebraic Cycles and Modular Forms</td>
<td>Feb 24, 2017</td>
<td></td>
</tr>
<tr>
<td>Peiwen Wu</td>
<td>Top and Top-Charm Flavored Scalar Dark Matter with a Vector-like Fermion Partner</td>
<td>Feb 24, 2017</td>
<td></td>
</tr>
<tr>
<td>Michele Frigerio</td>
<td>Non-perturbative analysis of the spectrum of meson resonances in an ultraviolet-complete composite-Higgs model</td>
<td>Mar 01, 2017</td>
<td></td>
</tr>
<tr>
<td>Takahiro Nishinaka</td>
<td>Superconformal index of Argyres-Douglas theories of class S</td>
<td>Mar 07, 2017</td>
<td></td>
</tr>
<tr>
<td>Kohei Kamada</td>
<td>The interplay between the primordial magnetic fields and particle physics</td>
<td>Mar 08, 2017</td>
<td></td>
</tr>
</tbody>
</table>
Seminars

Dennis Gaitsgory (Harvard U)
Langlands conjecture for function fields via shtukas
Mar 13, 2017

Nick Battaglia (Princeton U)
Cosmology with Shadows in the Microwave Sky
Mar 13, 2017

Giulio Rosani (ARI Heidelberg)
The Influence of Galaxy Environment on the Stellar Initial Mass Function of Early-Type Galaxies
Mar 14, 2017

John Francis (Northwestern U)
Factorization homology and the cobordism hypothesis
Mar 14, 2017

Dennis Gaitsgory (Harvard U)
Langlands conjecture for function fields via shtukas
Mar 15, 2017

Anna Pasquali (ARI Heidelberg)
How environment chisels galaxy properties: the clusters galaxies’ outlook
Mar 16, 2017

Akishi Ikeda (Kavli iPmU)
Mass growth of objects and categorical entropy
Mar 16, 2017

Dennis Gaitsgory (Harvard U)
Langlands conjecture for function fields via shtukas
Mar 17, 2017

Tomohiro Fujita (Stanford U)
The new relationship between inflation and gravitational waves
Mar 21, 2017

Chris Lidman (Australian Astronomical Observatory)
OzDES - Spectroscopic follow-up of transients and other objects in the DES supernova fields
Mar 21, 2017

Kenichi Saikawa (DESY)
Axion dark matter in the post-inflationary Peccei-Quinn symmetry breaking scenario
Mar 22, 2017

Elena Popova (Moscow State U)
On magnetic field generation in stars
Mar 22, 2017

Alex Lazarian (U Wisconsin)
New Ways to Study Magnetic Fields and Turbulence using Observations
Mar 23, 2017

Valya Khoze (IPPP, Durham U)
Multiple Higgs production at very high energies (and meltdown of perturbation theory)
Mar 29, 2017

Sean Jason Weinberg (UCSB)
The Boundary Dual of a Local Bulk Operator
Mar 30, 2017

Khee-Gan Lee (LBL)
Mapping the z>2 Cosmic Web with IGM Tomography: Latest Results and Future Perspectives
Mar 30, 2017

Andrew Macpherson (Kavli iPmU)
Equations and derived manifolds
Mar 30, 2017

Hayato Shimabukuro (Observatoire de Paris)
Analysing the 21 cm signal from epoch of reionization with artificial neural networks
Mar 31, 2017
<table>
<thead>
<tr>
<th>Visitor Name</th>
<th>Institution</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaron Chan</td>
<td>Nagoya U</td>
<td>2016/09/05 - 09/08</td>
</tr>
<tr>
<td>Adrian Pritchard</td>
<td>U Liverpool</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Agnieszka Maria Bodzenta-Skibinska</td>
<td>U Edinburgh</td>
<td>2016/08/01 - 08/11, 11/13 - 12/03</td>
</tr>
<tr>
<td>Akihiro Suzuki</td>
<td>Kyoto U</td>
<td>2016/10/19 - 10/21</td>
</tr>
<tr>
<td>Akikazu Hashimoto</td>
<td>U Wisconsin, Madison</td>
<td>2016/05/18</td>
</tr>
<tr>
<td>Akiko Kawachi</td>
<td>Tokai U</td>
<td>2016/08/16 - 08/24</td>
</tr>
<tr>
<td>Akimichi Taketa</td>
<td>U Tokyo</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Akio Hosoya</td>
<td>Tokyo Tech</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Akio Inoue</td>
<td>Osaka Sangyo U</td>
<td>2016/09/22 - 08/27, 08/28 - 08/31</td>
</tr>
<tr>
<td>Akira Ishii</td>
<td>Hiroshima U</td>
<td>2016/11/15 - 11/16</td>
</tr>
<tr>
<td>Akira Konaka</td>
<td>TRIUMF</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Akira Konno</td>
<td>U Tokyo, ICRR</td>
<td>2016/08/22 - 08/26</td>
</tr>
<tr>
<td>Akira Takenaka</td>
<td>U Tokyo, ICRR</td>
<td>2017/02/13 - 02/15, 03/27 - 03/29</td>
</tr>
<tr>
<td>Akito Kusaka</td>
<td>Lawrence Berkeley National Laboratory</td>
<td>2016/04/18 - 04/26, 10/06 - 10/09</td>
</tr>
<tr>
<td>Alan Weinstein</td>
<td>UC Berkeley</td>
<td>2016/04/07 - 04/18</td>
</tr>
<tr>
<td>Alejandro Mora</td>
<td>U Tokyo</td>
<td>2017/03/27 - 03/29</td>
</tr>
<tr>
<td>Aleksey Cherman</td>
<td>U Washington</td>
<td>2016/12/11 - 12/18</td>
</tr>
<tr>
<td>Alessandro Bravar</td>
<td>U Geneva</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Alex Lazarian</td>
<td>U Wisconsin, Madison</td>
<td>2017/03/23 - 03/24</td>
</tr>
<tr>
<td>Alexander Getmanenko</td>
<td>Universidad de Los Andes</td>
<td>2016/12/12 - 12/16</td>
</tr>
<tr>
<td>Alexander Heger</td>
<td>Monash U</td>
<td>2017/01/08 - 01/21</td>
</tr>
<tr>
<td>Alexander Kusenko</td>
<td>UCLA</td>
<td>2016/10/05 - 12/20</td>
</tr>
<tr>
<td>Alexander Voronov</td>
<td>U Minnesota</td>
<td>2017/03/24 - 04/26</td>
</tr>
<tr>
<td>Alexey Rosly</td>
<td>ITEP</td>
<td>2016/10/30 - 11/17</td>
</tr>
<tr>
<td>Alexis Plascencia</td>
<td>Durham University</td>
<td>2017/03/21 - 04/17</td>
</tr>
<tr>
<td>Amanda Irene Karakas</td>
<td>Australian Natl U</td>
<td>2016/06/12 - 07/02</td>
</tr>
<tr>
<td>Amorim Cassio</td>
<td>Nagoya U</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Anatol N. Kirillov</td>
<td>Kyoto U</td>
<td>2016/04/07 - 04/24</td>
</tr>
<tr>
<td>Andrea D'Agnolo</td>
<td>Universita' di Padova</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Andreas Karch</td>
<td>U Washington, Seattle</td>
<td>2016/07/25 - 07/26</td>
</tr>
<tr>
<td>Andrei Ionov</td>
<td>HSE, National Research University</td>
<td>2016/11/13 - 11/27</td>
</tr>
<tr>
<td>Andrew Coates</td>
<td>U Nottingham</td>
<td>2016/08/03 - 08/25, 08/28 - 08/28</td>
</tr>
<tr>
<td>Andrew Cudd</td>
<td>Michigan State U</td>
<td>2016/05/30 - 06/01, 06/21 - 08/23</td>
</tr>
<tr>
<td>Andrew Kels</td>
<td>ANU</td>
<td>2016/07/11 - 07/15</td>
</tr>
<tr>
<td>Andrey Losev</td>
<td>HSE, National Research University</td>
<td>2016/09/04 - 09/10</td>
</tr>
<tr>
<td>Andrey Zhiglo</td>
<td>KIPT</td>
<td>2016/10/01 - 2018/03/31</td>
</tr>
<tr>
<td>Andrzej Rychter</td>
<td>Warsaw University of Technology</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Andy Gallagher</td>
<td>Observatoire de Paris</td>
<td>2016/11/16</td>
</tr>
<tr>
<td>Andy Goulding</td>
<td>Princeton U</td>
<td>2016/08/22 - 08/24</td>
</tr>
<tr>
<td>Anna Pasquali</td>
<td>U Heidelberg</td>
<td>2017/03/13 - 03/18</td>
</tr>
<tr>
<td>Annaya Golob</td>
<td>Saint Mary's University</td>
<td>2016/08/22 - 08/26</td>
</tr>
</tbody>
</table>
Anton Timur Jaelani
Tohoku U
2016/04/12 - 04/15, 2017/01/09 - 01/15

Antonio Paladino
INFN-Pisa
2016/10/22 - 12/14, 2017/02/24 - 05/05,
03/27 - 03/29

Antonio Sciarappa
KIAS
2017/01/27 - 01/30

Anupama Gadiyara Chakrapani
IIAP
2017/02/17 - 02/28

Arka Banerjee
U Illinois, Urbana
2017/02/13 - 02/17

Asa Skuladottir
MPI for Astronomy
2017/02/27

Asher Kaboth
Royal Holloway, University of London
2016/05/30 - 06/01

Atsuo Okazaki
Hokkai-Gakuen U
2016/08/15 - 08/19

Atsushi Kanazawa
Kyoto U
2016/11/28, 2017/01/04 - 01/10, 03/20 - 03/25

Atsushi Nishizawa
Nagoya U
2016/06/22, 08/22 - 08/26

Atsushi Shiho
U Tokyo, Math Sci
2017/01/23 - 01/27

Atsushi Takahashi
Osaka U
2016/06/06 - 06/10, 09/05 - 09/08,
2016/11/15 - 11/18

Benedikt Diemer
Harvard U
2016/04/06 - 04/22

Benjamin Hennion
MPI for Mathematics
2016/11/12 - 11/26

Benjamin Johnson
Harvard U
2016/07/11 - 07/15

Benjamin Luke Thorne
U Oxford
2016/08/22 - 08/25

Benjamin Pascal Jean-Marie Guillaume Quilain
Kyoto U
2017/02/13 - 02/15, 03/27 - 03/29

Benjamin Richards
QMUL
2017/02/13 - 02/15

Bernhard Mueller
QUB
2016/07/03 - 07/08

Blair Jamieson
U Winnipeg
2017/02/13 - 02/15

Bob Armstrong
Princeton U
2016/08/22 - 08/27

Bogdan Stoica
CERN
2016/05/25 - 05/27

Boris Pioline
INFN-Pisa
2016/10/22 - 12/14, 2017/02/24 - 05/05,
03/27 - 03/29

Boryana Tsvetanova Hadzhiyska
Princeton U
2016/07/03 - 08/27

Brian Fujikawa
LLB, Berkeley
2016/07/18 - 08/02

Bruno Le Floch
Princeton U
2017/03/17 - 03/31

Bryan Terrazas
U Michigan
2016/06/14

Callum Wilkinson
LHEP University of Bern
2016/05/30 - 06/01

Carlos Pena Garay
IFIC
2016/11/07 - 12/09

Carsten Rott
Sungkyunkwan U
2017/02/13 - 02/15

Celeste Pidcott
U Sheffield
2017/02/13 - 02/15

Chan Youn Park
Rutgers U, Piscataway
2016/07/05 - 07/08

Chang Dong Shin
Chonnam National U
2016/05/30 - 06/01

Changzheng Li
IBS, POSTECH
2016/06/05 - 06/10, 09/05 - 09/08

Charles Henry Simpson
U Oxford
2016/09/22 - 09/30

Charles Kirkham Rhodes
U Illinois at Chicago
2016/11/14 - 11/16

Cheng-Wei Chang
National Central University
2016/04/12 - 04/14, 08/06 - 09/11

Chengze Liu
Shanghai Jiao Tong U
2016/08/22 - 08/26

Chiaki Kobayashi
CAR, U of Hertfordshire
2016/03/27 - 04/29, 05/05, 05/26 - 06/03, 06/26 - 06/30, 07/08 - 07/15,
11/04 - 11/10, 12/26 - 2017/01/13

Chien-I Chang
UC Berkeley
2016/06/21 - 08/23

Chihiro Kozakai
U Tokyo, ICEPP
2017/03/27 - 03/29

Christian Irmler
HEPHY, Austrian Academy of Sciences
2016/06/15 - 06/16, 06/23 - 06/25, 2017/01/30 - 02/05

Christine Nielsen
U British Columbia
2016/05/30 - 06/01

Christopher Barry
U Liverpool
2016/05/30 - 06/01

Christopher W. Walter
Duke U
2016/06/22 - 07/02, 10/06 - 10/16

Ciro Riccio
University of Naples
2016/05/30 - 06/01

Clarence Wret
Imperial Coll. London
2016/05/30 - 06/01

Colin Ingalls
U New Brunswick
2016/06/29

Corina Nantais
U British Columbia
2017/02/13 - 02/15

Cosimo Bambi
Fudan U
2017/01/26 - 02/01

Cristovao Vilela
SUNY, Stony Brook
2016/05/30 - 06/01, 2017/02/13 - 02/15

Dai Tamaki
Shinshu U.
2016/09/05 - 09/08

Daichi Kashino
Nagoya U
2015/03/25 - 2016/09/30, 08/23 - 08/26,
08/29 - 08/31

Daisuke Honma
Tohoku U
2016/08/22 - 08/25

Daisuke Nakaiuchi
Tohoku U
2016/04/21
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daniel Cherdack</td>
<td>Colorado State U</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Daniel Hugues Sternheimer</td>
<td>Bourgogne U</td>
<td>2016/11/14, 11/16 - 11/18, 12/12 - 12/16, 2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Daniel Jafferis</td>
<td>Harvard U</td>
<td>2016/12/05 - 12/09</td>
</tr>
<tr>
<td>Daniel Murfet</td>
<td>The University of Melbourne</td>
<td>2016/09/05 - 09/08</td>
</tr>
<tr>
<td>Danilo Marchesini</td>
<td>Tufts U</td>
<td>2016/12/05 - 12/09</td>
</tr>
<tr>
<td>Dano Kim</td>
<td>Seoul Natl U</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Darcy Barron</td>
<td>UC Berkeley</td>
<td>2016/12/15 - 12/16</td>
</tr>
<tr>
<td>David Hadley</td>
<td>U Warwick</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>David L Wark</td>
<td>Rutherford Appleton Lab.</td>
<td>2016/02/13 - 02/15</td>
</tr>
<tr>
<td>David Nichols</td>
<td>Radboud U Nijmegen</td>
<td>2016/10/27 - 10/28</td>
</tr>
<tr>
<td>David R. Morrison</td>
<td>UC Santa Barbara</td>
<td>2016/08/21 - 08/26</td>
</tr>
<tr>
<td>David Sauzin</td>
<td>CNRS</td>
<td>2016/12/12 - 12/16</td>
</tr>
<tr>
<td>David van Dyk</td>
<td>Imperial Coll., London</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Davide Sgalaberna</td>
<td>U Geneva</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Dean Karlen</td>
<td>U Victoria</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Deepam Patel</td>
<td>Purdue University</td>
<td>2016/11/18 - 11/26</td>
</tr>
<tr>
<td>Dennis Gaitsory</td>
<td>Harvard U</td>
<td>2017/03/12 - 03/19</td>
</tr>
<tr>
<td>Devendra Kumar Sahu</td>
<td>IAP</td>
<td>2017/01/07 - 01/22</td>
</tr>
<tr>
<td>Djordje Radicevic</td>
<td>Stanford U</td>
<td>2016/08/10</td>
</tr>
<tr>
<td>Dmitry Budker</td>
<td>U Mainz</td>
<td>2017/01/06</td>
</tr>
<tr>
<td>Dmitry Khangulyan</td>
<td>Rikkyo U</td>
<td>2016/04/01 - 2016/10/27</td>
</tr>
<tr>
<td>Dmytro Shklyarov</td>
<td>Technische Universitt Chemnitz</td>
<td>2016/06/06 - 06/11</td>
</tr>
<tr>
<td>Domenico Orlando</td>
<td>University of Bern</td>
<td>2016/12/30 - 2017/01/20</td>
</tr>
<tr>
<td>Edgar Shaghoulian</td>
<td>UC Santa Barbara</td>
<td>2016/04/10 - 04/17</td>
</tr>
<tr>
<td>Edward T. Kearns</td>
<td>Boston U</td>
<td>2016/11/12 - 11/20, 2017/01/02 - 01/14</td>
</tr>
<tr>
<td>Edwin L Turner</td>
<td>Princeton U</td>
<td>2016/06/02 - 06/21, 2017/01/05 - 01/20</td>
</tr>
<tr>
<td>Eiichi Egami</td>
<td>U Arizona</td>
<td>2016/08/22 - 08/27</td>
</tr>
<tr>
<td>Eisuke Sonomoto</td>
<td>U Tokyo, ICRR</td>
<td>2017/03/27 - 03/29</td>
</tr>
<tr>
<td>Elder Pinzon</td>
<td>York University</td>
<td>2016/05/30 - 06/01, 10/03 - 10/31</td>
</tr>
<tr>
<td>Eleanor (Nell) Byler</td>
<td>U Washington, Seattle</td>
<td>2016/07/11 - 07/15</td>
</tr>
<tr>
<td>Elena Popova</td>
<td>MSU</td>
<td>2017/03/17 - 03/31</td>
</tr>
<tr>
<td>Elena Sorokina</td>
<td>Sternberg Astro. Inst.</td>
<td>2017/01/06 - 02/03</td>
</tr>
<tr>
<td>Elinor Medezinski</td>
<td>Princeton U</td>
<td>2016/08/21 - 08/26</td>
</tr>
<tr>
<td>Elisabeth Krause</td>
<td>Stanford University</td>
<td>2016/12/05 - 12/07</td>
</tr>
<tr>
<td>Elizabeth Worcester</td>
<td>BNL</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Emile Bouaziz</td>
<td>MPI for Mathematics</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Emilio Cuoffoli</td>
<td>Institute of Modern Physics, CAS</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Encieh Enfari</td>
<td>IASBS</td>
<td>2016/08/08 - 08/21</td>
</tr>
<tr>
<td>Enrico Brehm</td>
<td>LMU</td>
<td>2016/06/06 - 06/10</td>
</tr>
<tr>
<td>Eric Sharpe</td>
<td>Virginia Tech</td>
<td>2016/05/08 - 05/12</td>
</tr>
<tr>
<td>Erich Poppitz</td>
<td>U Toronto</td>
<td>2016/12/12 - 12/16</td>
</tr>
<tr>
<td>Erin OSullivan</td>
<td>Duke U</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Erwin Lau</td>
<td>Yale U</td>
<td>2017/01/11</td>
</tr>
<tr>
<td>Eugenio Noda</td>
<td>Universita Degli Studi PARMA</td>
<td>2017/02/01 - 03/31</td>
</tr>
<tr>
<td>Eunhyang Kwon</td>
<td>Seoul Natl U</td>
<td>2016/05/30 - 06/01, 2017/03/27 - 03/29</td>
</tr>
<tr>
<td>Evangelia Drakopoulos</td>
<td>U Edinburgh</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Ewa Rondio</td>
<td>NCBJ</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Ewen Gillies</td>
<td>Imperial Coll. London</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Fabio Henrique Iunes Sanches</td>
<td>UC Berkeley</td>
<td>2016/07/04 - 07/10</td>
</tr>
<tr>
<td>Federico Garcia</td>
<td>IAR</td>
<td>2016/12/26 - 2017/01/20</td>
</tr>
<tr>
<td>Felix Kahlehofer</td>
<td>DESY</td>
<td>2016/10/31 - 11/04</td>
</tr>
<tr>
<td>Francesca Di Lodovico</td>
<td>QMUL</td>
<td>2017/02/13 - 02/16</td>
</tr>
<tr>
<td>Francesco Belfiore</td>
<td>KICC</td>
<td>2016/07/11 - 07/15</td>
</tr>
<tr>
<td>Francesco Forti</td>
<td>INFN-Pisa</td>
<td>2016/10/12 - 10/22, 2017/01/31 - 02/05</td>
</tr>
<tr>
<td>Francisco Villaescusa-Navarro</td>
<td>INAF-OAT Trieste</td>
<td>2016/05/29 - 06/08</td>
</tr>
<tr>
<td>Frdric Fauvet</td>
<td>U Strasbourg</td>
<td>2016/12/12 - 12/16</td>
</tr>
<tr>
<td>Fredrik Bjorkereth</td>
<td>Southhampton U</td>
<td>2016/05/03 - 06/07</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
<td>Dates</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Fumi Yoshida</td>
<td>NAOJ</td>
<td>2016/08/22 - 08/26</td>
</tr>
<tr>
<td>Fumihiko Sanda</td>
<td>Nagoya U</td>
<td>2016/09/05 - 09/08</td>
</tr>
<tr>
<td>Gabriel Collin</td>
<td>MIT</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Gabriel Lopes Cardoso</td>
<td>UTL</td>
<td>2016/04/13 - 04/27</td>
</tr>
<tr>
<td>Gabriel Santucci</td>
<td>SUNY, Stony Brook</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Gabrielle Spada</td>
<td>SISSA</td>
<td>2016/12/12 - 12/16</td>
</tr>
<tr>
<td>Gary Hill</td>
<td>U Texas</td>
<td>2016/12/08</td>
</tr>
<tr>
<td>Gary Lowe</td>
<td>Montana State U</td>
<td>2016/12/27 - 2017/01/16</td>
</tr>
<tr>
<td>Gaston Folatelli</td>
<td>CONICET</td>
<td>2016/12/23 - 2017/01/16</td>
</tr>
<tr>
<td>Genoveva Micheva</td>
<td>U Michigan</td>
<td>2016/08/22 - 08/26</td>
</tr>
<tr>
<td>Georg Oberdieck</td>
<td>MIT</td>
<td>2017/03/15 - 03/25</td>
</tr>
<tr>
<td>Georgios Christodoulou</td>
<td>U Liverpool</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Gerald Dunne</td>
<td>U Connecticut</td>
<td>2016/12/11 - 12/17</td>
</tr>
<tr>
<td>Gianfranca De Rosa</td>
<td>INFN-Naples</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Giovanni Faonte</td>
<td>Yale Univ</td>
<td>2014/09/01 - 2016/08/31</td>
</tr>
<tr>
<td>Giuliana Rizzo</td>
<td>INFN-Pisa</td>
<td>2017/02/04 - 02/05</td>
</tr>
<tr>
<td>Giulio Rosani</td>
<td>U Heidelberg</td>
<td>2017/03/13 - 03/18</td>
</tr>
<tr>
<td>Gokce Basar</td>
<td>U Maryland</td>
<td>2016/12/12 - 12/16</td>
</tr>
<tr>
<td>Guillaume Patanchon</td>
<td>Laboratoire APC</td>
<td>2016/08/15 - 09/16</td>
</tr>
<tr>
<td>Guillaume Pronost</td>
<td>U Tokyo, ICRR</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Hal Tasaki</td>
<td>Gakushuin U</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Haoyu Hu</td>
<td>U Tokyo, Math Sci</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Harold Williams</td>
<td>U Texas</td>
<td>2016/10/19 - 10/23</td>
</tr>
<tr>
<td>Haruki Watanabe</td>
<td>U Tokyo</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Hassan Firouzjahi</td>
<td>IPM</td>
<td>2016/07/27 - 07/28</td>
</tr>
<tr>
<td>Hayato Arai</td>
<td>Kyoto U</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Hayato Chiba</td>
<td>Kyushu U</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Henry McCracken</td>
<td>IAP</td>
<td>2016/04/20 - 04/21</td>
</tr>
<tr>
<td>Henry W Sobel</td>
<td>UC Irvine</td>
<td>2016/05/24 - 05/28</td>
</tr>
<tr>
<td>Hide-Kazu Tanaka</td>
<td>U Tokyo, ICRR</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Hideaki Nishikawa</td>
<td>U Tokyo</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Hideki Matsumura</td>
<td>Keio U</td>
<td>2016/09/05 - 09/08</td>
</tr>
<tr>
<td>Hideki Umemata</td>
<td>U Tokyo, IoA</td>
<td>2016/08/29 - 08/30</td>
</tr>
<tr>
<td>Hikaru Ito</td>
<td>Nagoya U</td>
<td>2017/03/15 - 03/16</td>
</tr>
<tr>
<td>Hiroaki Kanai</td>
<td>YNU</td>
<td>2016/05/18</td>
</tr>
<tr>
<td>Hirohisa Tanaka</td>
<td>U Toronto</td>
<td>2017/02/03 - 02/16</td>
</tr>
<tr>
<td>Hiromasa Takaura</td>
<td>Tohoku U</td>
<td>2016/12/12 - 12/16</td>
</tr>
<tr>
<td>Hironao Miyatake</td>
<td>NASA JPL/Caltech</td>
<td>2016/08/18 - 09/02, 2016/10/10 - 11/04, 2017/01/10 - 01/14</td>
</tr>
<tr>
<td>Hiroshi Naruse</td>
<td>U Yamanashi</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Hiroshi Nunokawa</td>
<td>PUC-Rio</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Hiroshi Ohta</td>
<td>Nagoya U</td>
<td>2016/06/06 - 06/11, 09/05 - 09/08, 2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Hiroyasu Tajima</td>
<td>Nagoya U, ISEE</td>
<td>2016/08/04, 09/07, 11/24, 12/14</td>
</tr>
<tr>
<td>Hiroyuki Ikeda</td>
<td>NAOJ</td>
<td>2016/08/23 - 08/25</td>
</tr>
<tr>
<td>Hiroyuki Sekiya</td>
<td>U Tokyo, ICRR</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Hisakazu Uchiyama</td>
<td>NAOJ</td>
<td>2016/08/23 - 08/25</td>
</tr>
<tr>
<td>Hisanori Furusawa</td>
<td>NAOJ</td>
<td>2016/08/23 - 08/25</td>
</tr>
<tr>
<td>Hfn Ensaunt</td>
<td>Freie U, Berlin</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Hoang Duc Thuong</td>
<td>U Paris Diderot</td>
<td>2016/08/23 - 09/02</td>
</tr>
<tr>
<td>Hongyu Li</td>
<td>Chinese Academy of Sciences</td>
<td>2016/05/29 - 06/13</td>
</tr>
<tr>
<td>Hongyu Zhu</td>
<td>Carnegie Mellon U</td>
<td>2016/06/05 - 06/19</td>
</tr>
<tr>
<td>Houjun Mo</td>
<td>U Massachusetts, Amherst</td>
<td>2016/10/23 - 10/29</td>
</tr>
<tr>
<td>Hwanbee Park</td>
<td>Kyungpook National U</td>
<td>2016/07/24 - 07/27</td>
</tr>
<tr>
<td>Hyunkwan Seo</td>
<td>Seoul Natl U</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td>Dates</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>James Imber</td>
<td>Laboratoire Leprince-Ringuet</td>
<td>2017/02/13 - 02/16</td>
</tr>
<tr>
<td>Jason Lott Evans</td>
<td>KIAS</td>
<td>2016/09/06 - 09/13</td>
</tr>
<tr>
<td>Jason Xavier Prochaska</td>
<td>UC Santa Cruz</td>
<td>2016/08/29 - 09/02</td>
</tr>
<tr>
<td>Jean Etienne Coupon</td>
<td>University of Geneva</td>
<td>2016/04/12 - 05/10</td>
</tr>
<tr>
<td>Jean-Baptiste Teyssier</td>
<td>KU Leuven</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Jeanne Wilson</td>
<td>QMUL</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Ji Yeong CHOI</td>
<td>Chonnam National U</td>
<td>2017/03/27 - 03/29</td>
</tr>
<tr>
<td>Ji-Jia Tang</td>
<td>ASIAA</td>
<td>2016/08/23 - 08/27</td>
</tr>
<tr>
<td>Jia Liu</td>
<td>Princeton U</td>
<td>2016/02/22 - 08/27</td>
</tr>
<tr>
<td>Jin Min Yang</td>
<td>Tohoku U</td>
<td>2016/08/22 - 08/26</td>
</tr>
<tr>
<td>Jin Min Yang</td>
<td>Tohoku U</td>
<td>2017/01/12 - 01/19</td>
</tr>
<tr>
<td>Jin Soo Lim</td>
<td>Princeton U</td>
<td>2016/06/11 - 08/06</td>
</tr>
<tr>
<td>Joao Pedro Athayde Marcondes de Andre</td>
<td>Michigan State U</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Johannes Bergstrm</td>
<td>U Barcelona</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Johannes Walcher</td>
<td>Heidelberg University</td>
<td>2016/06/02 - 06/03</td>
</tr>
<tr>
<td>John Carlstrom</td>
<td>U Chicago</td>
<td>2016/05/12 - 05/13</td>
</tr>
<tr>
<td>John Ellis</td>
<td>Kings College London</td>
<td>2016/08/21 - 08/23</td>
</tr>
<tr>
<td>John Francis</td>
<td>Northwestern U</td>
<td>2017/03/10 - 03/17</td>
</tr>
<tr>
<td>Jordi MiraIlda Escude</td>
<td>U Barcelona</td>
<td>2016/08/29 - 08/31</td>
</tr>
<tr>
<td>Jose Manuel Marti Martinez</td>
<td>UV</td>
<td>2016/05/03 - 09/03</td>
</tr>
<tr>
<td>Jose Palomino</td>
<td>SUNY, Stony Brook</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Joshua AMEY</td>
<td>Imperial Coll. London</td>
<td>2016/05/30 - 06/01, 2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Jost Migenda</td>
<td>U Sheffield</td>
<td>2017/02/13 - 02/16</td>
</tr>
<tr>
<td>Johny Greco</td>
<td>Princeton U</td>
<td>2016/08/21 - 08/26</td>
</tr>
<tr>
<td>Jrg Schrmann</td>
<td>Universitt Mnster</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Jun Kameda</td>
<td>U Tokyo, ICRR</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Jun Toshikawa</td>
<td>NAOJ</td>
<td>2016/08/22 - 08/25</td>
</tr>
<tr>
<td>Justyna Lagoda</td>
<td>NCBJ</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Kaede Nakano</td>
<td>U Tokyo</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Kameswara Rao Kodali</td>
<td>Tata Inst</td>
<td>2016/04/03 - 05/21, 06/11 - 07/30, 09/11 - 10/19, 11/23 - 12/23, 2017/01/29 - 02/09</td>
</tr>
<tr>
<td>Kaoru Ono</td>
<td>Kyoto U</td>
<td>2016/09/05 - 09/08</td>
</tr>
<tr>
<td>Katsuro Nakamura</td>
<td>KEK</td>
<td>2016/06/14 - 08/02</td>
</tr>
<tr>
<td>Visitor Name</td>
<td>Affiliation</td>
<td>Dates</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Kazuhiro Shimasaku</td>
<td>U Tokyo</td>
<td>2016/08/22 - 08/25</td>
</tr>
<tr>
<td>Kazuhiro Suzuki</td>
<td>Nagoya U</td>
<td>2017/03/27 - 03/29</td>
</tr>
<tr>
<td>Kazuki Morimoto</td>
<td>Kobe U</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Kazuki Sakurai</td>
<td>Duham University</td>
<td>2016/07/28 - 08/06</td>
</tr>
<tr>
<td>Kazumin Suzuki</td>
<td>Tokyo U of Science</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Kazuya Okamura</td>
<td>Nagoya U</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Kazuyuki Ogura</td>
<td>Ehime</td>
<td>2016/08/29 - 08/31</td>
</tr>
<tr>
<td>Keigo Abe</td>
<td>Kobe U</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Keigo Nakamura</td>
<td>Kyoto U</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Keiichi Maeda</td>
<td>Kyoto U</td>
<td>2017/01/11 - 01/12</td>
</tr>
<tr>
<td>Keiichi Umemtsu</td>
<td>Academia Sinica</td>
<td>2016/08/22 - 08/26</td>
</tr>
<tr>
<td>Ken Chen</td>
<td>NAOJ</td>
<td>2016/10/13</td>
</tr>
<tr>
<td>Ken Osato</td>
<td>UTokyo, ICRR</td>
<td>2016/08/22 - 08/26</td>
</tr>
<tr>
<td>Ken Umeno</td>
<td>Kyoto U</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Ken'ichi Izawa</td>
<td>ISAS, UTokushima</td>
<td>2016/08/25 - 08/27</td>
</tr>
<tr>
<td>Ken'ichi Saikawa</td>
<td>Tokyo Tech</td>
<td>2017/03/21 - 03/27</td>
</tr>
<tr>
<td>Kenji Hasegawa</td>
<td>Nagoya U</td>
<td>2016/08/29 - 08/31</td>
</tr>
<tr>
<td>Kenji Iohara</td>
<td>U Lyon</td>
<td>2016/08/15 - 09/15</td>
</tr>
<tr>
<td>Kenneth Wong</td>
<td>NAOJ</td>
<td>2016/08/23 - 08/25</td>
</tr>
<tr>
<td>Kenta Ando</td>
<td>U Tokyo</td>
<td>2016/09/27, 2017/03/27 - 03/29</td>
</tr>
<tr>
<td>Kevin McGerty</td>
<td>U Oxford</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Khalid Gameil</td>
<td>UBC</td>
<td>2017/02/19 - 02/24</td>
</tr>
<tr>
<td>Khee-Gan Lee</td>
<td>LBL, Berkeley</td>
<td>2016/05/30 - 06/03, 08/24 - 08/28, 08/31, 2017/03/27 - 04/04</td>
</tr>
<tr>
<td>Kimihiro Okumura</td>
<td>U Tokyo, ICRR</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Kimyeong Lee</td>
<td>KIAS</td>
<td>2017/02/13 - 02/17</td>
</tr>
<tr>
<td>Kin-Wang Ng</td>
<td>Institute of Physics, Academia Sinica</td>
<td>2017/01/25 - 01/29</td>
</tr>
<tr>
<td>Kipp Cannon</td>
<td>U Tokyo, RESCEU</td>
<td>2016/06/29</td>
</tr>
<tr>
<td>Kiran Sridhara Kedlaya</td>
<td>UC San Diego</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Kiyoyo Nakuma</td>
<td>Tatsukuba</td>
<td>2017/01/21 - 01/27</td>
</tr>
<tr>
<td>Kodai Nobuhara</td>
<td>Ehime</td>
<td>2016/08/22 - 08/27</td>
</tr>
<tr>
<td>Kohei Hayashi</td>
<td>KIAA, Peking U</td>
<td>2017/03/01 - 03/13</td>
</tr>
<tr>
<td>Kohei Kamada</td>
<td>Arizona State U</td>
<td>2017/03/01 - 03/26</td>
</tr>
<tr>
<td>Kohei Kikuta</td>
<td>Osaka U</td>
<td>2016/09/05 - 09/08</td>
</tr>
<tr>
<td>Kohei Sato</td>
<td>NIT-Akita College</td>
<td>2016/09/05 - 09/08</td>
</tr>
<tr>
<td>Kohei Yahiro</td>
<td>U Tokyo, Math Sci</td>
<td>2016/09/05 - 09/08, 2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Kohsaku Tobioka</td>
<td>KEK</td>
<td>2016/06/22 - 06/24</td>
</tr>
<tr>
<td>KookHyun Kang</td>
<td>Kyungpook National U</td>
<td>2016/04/18 - 04/29, 05/29 - 08/13, 10/03 - 10/28, 11/06 - 12/30, 2017/03/15 - 05/31</td>
</tr>
<tr>
<td>Kooktae Kim</td>
<td>Soongsil University</td>
<td>2017/03/27 - 03/29</td>
</tr>
<tr>
<td>Kota Ogasawara</td>
<td>Rikkyo U</td>
<td>2016/04/22</td>
</tr>
<tr>
<td>Kouki Shinoda</td>
<td>U Hyogo</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Kouki Taro</td>
<td>Tokyo U of Science</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Kun Wan</td>
<td>U Tokyo</td>
<td>2017/03/27 - 03/29</td>
</tr>
<tr>
<td>Kunimoto Komatsu</td>
<td>Okayama U</td>
<td>2016/10/24 - 11/11, 11/29 - 12/09, 2017/02/06 - 03/03</td>
</tr>
<tr>
<td>Kyo Yoshida</td>
<td>U Tsukuba</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Kyoung-Seong Lee</td>
<td>KIAS</td>
<td>2017/03/20 - 03/25</td>
</tr>
<tr>
<td>Kyungmin Seo</td>
<td>IBS</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Lakshya Bhardwaj</td>
<td>Perimeter Institute</td>
<td>2016/08/06 - 10/16</td>
</tr>
<tr>
<td>Laura Zani</td>
<td>INFN-Pisa</td>
<td>2017/02/01 - 02/02</td>
</tr>
<tr>
<td>Lauren Anthony</td>
<td>U Liverpool</td>
<td>2017/02/13 - 02/15, 03/27 - 03/29</td>
</tr>
<tr>
<td>Lei Hao</td>
<td>SHAO</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Leila Haegel</td>
<td>U Geneva</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Li-Ting Hsu</td>
<td>ASIAA</td>
<td>2016/08/22 - 08/26</td>
</tr>
<tr>
<td>Liam Osullivan</td>
<td>U Sheffield</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Lihwai Lin</td>
<td>ASIAA</td>
<td>2016/08/22 - 08/26</td>
</tr>
<tr>
<td>Livia Ludhova</td>
<td>IKP-FZJ</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Lluis Marti Magro</td>
<td>U Tokyo, ICRR</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td>Dates</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Lorenzo Moneta</td>
<td>CERN</td>
<td>2017/03/27 - 03/29</td>
</tr>
<tr>
<td>Louis Lyons</td>
<td>U Oxford</td>
<td>2016/05/29 - 06/01, 2017/03/27 - 03/29</td>
</tr>
<tr>
<td>Louis Papin</td>
<td>Ecole Polytechnique</td>
<td>2017/03/27 - 08/17</td>
</tr>
<tr>
<td>Lu Lu</td>
<td>Chiba Univ</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Lucio Ludovici</td>
<td>INFN</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Luis Campusano</td>
<td>U Chile</td>
<td>2016/10/01 - 10/13</td>
</tr>
<tr>
<td>Luis Labarga</td>
<td>UAM</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Luis Narvez Macarro</td>
<td>University of Seville</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Luke Pickering</td>
<td>Imperial Coll. London</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Makiko Mase</td>
<td>Tokyo Metropolitan U</td>
<td>2017/02/01 - 01/27</td>
</tr>
<tr>
<td>Makoto Miura</td>
<td>U Tokyo, ICRR</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Makoto Takizawa</td>
<td>Showa Pharmaceutical U</td>
<td>2017/03/27 - 03/29</td>
</tr>
<tr>
<td>Malte Schramm</td>
<td>NAOJ</td>
<td>2016/08/29 - 08/31</td>
</tr>
<tr>
<td>Mana Niida</td>
<td>Ehime</td>
<td>2016/08/22 - 08/27</td>
</tr>
<tr>
<td>Mangesh Madhukar Kolwalkar</td>
<td>Tata Inst</td>
<td>2016/04/24 - 05/21</td>
</tr>
<tr>
<td>Manojit Ghosh</td>
<td>Tokyo Metropolitan U</td>
<td>2016/05/30 - 06/01, 2017/02/16</td>
</tr>
<tr>
<td>Manos Chatzopoulos</td>
<td>Louisiana State U</td>
<td>2016/12/12 - 12/15</td>
</tr>
<tr>
<td>Marat Khabibullin</td>
<td>INR RAS</td>
<td>2016/05/30 - 06/01, 2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Marc-Hubert Nicole</td>
<td>Institut mathematique de Marseille</td>
<td>2017/02/24</td>
</tr>
<tr>
<td>Marcin Sawicki</td>
<td>Saint Marys University</td>
<td>2016/08/22 - 08/26</td>
</tr>
<tr>
<td>Marcin Ziembicki</td>
<td>Warsaw University of Technology</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Marco Chianese</td>
<td>U Napoli</td>
<td>2017/02/04 - 02/12</td>
</tr>
<tr>
<td>Marco Klesiek</td>
<td>KIT</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Marco Zito</td>
<td>CEA-Saclay</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Marcus Christian Werner</td>
<td>Kyoto U</td>
<td>2016/11/07 - 11/08</td>
</tr>
<tr>
<td>Maria Antonova</td>
<td>INR RAS</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Maria Gabriella Catanesi</td>
<td>INFN Bari</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Marika Taylor</td>
<td>SOTON</td>
<td>2016/11/28 - 12/09</td>
</tr>
<tr>
<td>Mark K Mezei</td>
<td>Princeton U</td>
<td>2016/06/06</td>
</tr>
<tr>
<td>Mark Scott</td>
<td>TRIUMF</td>
<td>2017/02/04 - 02/17</td>
</tr>
<tr>
<td>Martin Bucher</td>
<td>U Paris 7, Denis Diderot</td>
<td>2016/11/14 - 11/25</td>
</tr>
<tr>
<td>Martin Gilles Bureau</td>
<td>U Oxford</td>
<td>2016/12/21 - 12/22</td>
</tr>
<tr>
<td>Masafusa Onoue</td>
<td>NAOJ</td>
<td>2016/08/23 - 08/25</td>
</tr>
<tr>
<td>Masahiko Yoshinaga</td>
<td>Hokkaido U</td>
<td>2017/02/15 - 02/18</td>
</tr>
<tr>
<td>Masahiro Futaki</td>
<td>Osaka Prefecture U</td>
<td>2016/09/05 - 09/09</td>
</tr>
<tr>
<td>Masahiro Hotta</td>
<td>Tohoku U</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Masahiro Nozaki</td>
<td>KCP</td>
<td>2017/01/09 - 01/13</td>
</tr>
<tr>
<td>Masaki Ishitsuka</td>
<td>Tokyo Tech</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Masaki Yamaguchi</td>
<td>U Tokyo, IoA</td>
<td>2016/08/22 - 08/26</td>
</tr>
<tr>
<td>Masanao Ozawa</td>
<td>Nagoya U</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Masanori Inoue</td>
<td>Osaka Prefecture U</td>
<td>2016/10/11 - 10/14, 11/30 - 12/02, 12/09 - 12/23</td>
</tr>
<tr>
<td>Masao Hayashi</td>
<td>NAOJ</td>
<td>2016/08/22 - 08/26</td>
</tr>
<tr>
<td>Masao Sako</td>
<td>U Pennsylvania</td>
<td>2016/08/22 - 08/26</td>
</tr>
<tr>
<td>Masaomi Tanaka</td>
<td>NAOJ</td>
<td>2016/08/23 - 08/25, 10/17 - 10/19</td>
</tr>
<tr>
<td>Masashi Chiba</td>
<td>Tohoku U</td>
<td>2016/08/22 - 08/26</td>
</tr>
<tr>
<td>Masashi Yokoyama</td>
<td>U Tokyo</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Masato Shiozawa</td>
<td>U Tokyo, ICRR</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Masato Shirasaki</td>
<td>NAOJ</td>
<td>2016/04/11 - 04/15, 05/09 - 05/11, 07/06 - 07/08, 08/22 - 08/26</td>
</tr>
<tr>
<td>Masatoshi Imanishi</td>
<td>NAOJ, Hawaii</td>
<td>2016/08/22 - 08/23</td>
</tr>
<tr>
<td>Masayuki Akiyama</td>
<td>Tohoku U</td>
<td>2016/08/22 - 08/25</td>
</tr>
<tr>
<td>Masayuki Nakahata</td>
<td>U Tokyo, ICRR</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Masayuki Tanaka</td>
<td>NAOJ</td>
<td>2016/08/22 - 08/26</td>
</tr>
<tr>
<td>Masayuki Umemura</td>
<td>U Tsukuba</td>
<td>2016/08/29 - 08/31</td>
</tr>
<tr>
<td>Massimo Pietroni</td>
<td>INFN Padova</td>
<td>2017/02/12 - 02/26</td>
</tr>
<tr>
<td>Massimo Porrat</td>
<td>New York Univ.</td>
<td>2016/06/15 - 07/11</td>
</tr>
<tr>
<td>Mathew Bullimore</td>
<td>U Oxford</td>
<td>2017/03/19 - 03/26</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td>Dates</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Mathew Madhavacheril</td>
<td>SUNY, Stony Brook</td>
<td>2016/04/09 - 04/19</td>
</tr>
<tr>
<td>Mathieu Lamoureux</td>
<td>CEA Saclay, IRFU</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Matias Zaldarriaga</td>
<td>IAS</td>
<td>2016/06/11 - 06/17</td>
</tr>
<tr>
<td>Mauricio Andres Romo</td>
<td>Jorquera</td>
<td>IAS 2017/03/19 - 03/31</td>
</tr>
<tr>
<td>Maxime Gabella</td>
<td>IAS</td>
<td>2017/03/20 - 03/25</td>
</tr>
<tr>
<td>Megan Lynn Friend</td>
<td>KEK</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Melina Bersten</td>
<td>CONICET</td>
<td>2016/12/12 - 2017/01/16</td>
</tr>
<tr>
<td>Melissa McIntosh</td>
<td>Harvard U</td>
<td>2016/03/31 - 05/29</td>
</tr>
<tr>
<td>Meng Gu</td>
<td>Harvard U</td>
<td>2016/07/11 - 07/15</td>
</tr>
<tr>
<td>Michael Betancourt</td>
<td>U Warwick</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Michael Brown</td>
<td>HCM, Bonn</td>
<td>2016/09/05 - 09/08</td>
</tr>
<tr>
<td>Michael Smy</td>
<td>UC Irvine</td>
<td>2016/05/30 - 06/01 , 2017/02/07 - 02/15</td>
</tr>
<tr>
<td>Michael Strauss</td>
<td>Princeton U</td>
<td>2016/08/23 - 08/27</td>
</tr>
<tr>
<td>Michael Wemyss</td>
<td>U Edinburgh</td>
<td>2016/03/31 - 04/10</td>
</tr>
<tr>
<td>Michel Gonin</td>
<td>Laboratoire Leprince-Ringuet</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Michele Frigerio</td>
<td>L2C</td>
<td>2017/02/13 - 03/17</td>
</tr>
<tr>
<td>Michiru Kaneda</td>
<td>Tokyo Tech</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Michitaro Koike</td>
<td>NAOJ</td>
<td>2016/08/23 - 08/25</td>
</tr>
<tr>
<td>Miguel Vazquez-Mozo</td>
<td>U Salamanca</td>
<td>2016/11/22 - 12/20</td>
</tr>
<tr>
<td>Milen Yakimov</td>
<td>Louisiana State U</td>
<td>2017/01/25 - 01/27</td>
</tr>
<tr>
<td>Min-Seek Seo</td>
<td>IBS</td>
<td>2016/04/11 - 04/16</td>
</tr>
<tr>
<td>Ming-Chung Chu</td>
<td>CUHK</td>
<td>2017/02/22 - 02/24</td>
</tr>
<tr>
<td>Minori Watanabe</td>
<td>National Institute of Technology, Asahikawa College</td>
<td>2016/08/16 - 08/19 , 2017/01/05 - 01/09 , 03/27 - 03/29</td>
</tr>
<tr>
<td>Misa Aoki</td>
<td>ICU</td>
<td>2016/11/08</td>
</tr>
<tr>
<td>Misako Yokoyama</td>
<td>Shizuoka U</td>
<td>2016/09/05 - 09/08</td>
</tr>
<tr>
<td>Mitchell Yu</td>
<td>York University</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Moegi Yamamoto</td>
<td>AMU</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Mohammad Sajjad Athar</td>
<td>AMU</td>
<td>2016/08/22 - 08/26</td>
</tr>
<tr>
<td>Monojit Gnosh</td>
<td>Tokyo Metropolitan U</td>
<td>2016/09/06</td>
</tr>
<tr>
<td>Morgan Wascko</td>
<td>Imperial Coll. London</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Motohiko Kusakabe</td>
<td>University of Notre Dame</td>
<td>2016/06/07</td>
</tr>
<tr>
<td>Motoki Seki</td>
<td>Waseda U</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Motoo Suzuki</td>
<td>U Tokyo</td>
<td>2017/03/27 - 03/29</td>
</tr>
<tr>
<td>Motoyasu Ikeda</td>
<td>U Tokyo, ICRR</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Mutsumi Saito</td>
<td>Hokkaido U</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Myeonghun Park</td>
<td>APCTP</td>
<td>2016/04/10 - 04/14</td>
</tr>
<tr>
<td>Nakwoo Kim</td>
<td>Kyung Hee U</td>
<td>2016/06/18 - 06/23</td>
</tr>
<tr>
<td>Naohito Nakasato</td>
<td>The University of Aizu</td>
<td>2017/02/08</td>
</tr>
<tr>
<td>Naomi Ota</td>
<td>Nara Womens U</td>
<td>2016/08/23 - 08/25</td>
</tr>
<tr>
<td>Naoyuki Shibata</td>
<td>U Tokyo</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Nassim Bozorgnia</td>
<td>U Amsterdam</td>
<td>2016/05/17 - 05/18</td>
</tr>
<tr>
<td>Natilda Samanso</td>
<td>Chulalongkorn U</td>
<td>2017/02/17 - 02/19</td>
</tr>
<tr>
<td>Neil McCauley</td>
<td>U Liverpool</td>
<td>2017/02/13 - 02/16</td>
</tr>
<tr>
<td>Nezhila Aghaei</td>
<td>University of Bern</td>
<td>2017/03/17 - 03/31</td>
</tr>
<tr>
<td>Nicholas Battaglia</td>
<td>Princeton U</td>
<td>2016/03/30 - 04/17 , 2017/03/12 - 03/14</td>
</tr>
<tr>
<td>Nicholas Salzetta</td>
<td>Lawrence Berkeley National Laboratory</td>
<td>2016/07/04 - 07/11</td>
</tr>
<tr>
<td>Nick Prouse</td>
<td>U London</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Nicole Czakon</td>
<td>ASIAA</td>
<td>2016/08/22 - 08/25</td>
</tr>
<tr>
<td>Nigel Smith</td>
<td>TRIUMF</td>
<td>2016/08/21 - 08/23</td>
</tr>
<tr>
<td>Nobuhiko Sato</td>
<td>KEK</td>
<td>2017/01/12</td>
</tr>
<tr>
<td>Nobuhiro Okabe</td>
<td>Hiroshima University</td>
<td>2016/08/22 - 08/25</td>
</tr>
<tr>
<td>Nobuhiro Shimizu</td>
<td>U Tokyo</td>
<td>2016/12/08</td>
</tr>
<tr>
<td>Nobuki Takayama</td>
<td>Kobe U</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Norimichi Hirakawa</td>
<td>Keio U</td>
<td>2016/12/12 - 12/16</td>
</tr>
<tr>
<td>Norisuke Sakai</td>
<td>Keio U</td>
<td>2016/12/12 - 12/16</td>
</tr>
<tr>
<td>Nova Federico</td>
<td>RAL</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td>Dates</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Nozomu Tominaga</td>
<td>Konan U</td>
<td>2016/08/22 - 08/26, 10/17 - 10/19, 2017/01/12</td>
</tr>
<tr>
<td>Olcyr De Lima Sumensari</td>
<td>Universite Paris-Sud</td>
<td>2016/10/13 - 11/12</td>
</tr>
<tr>
<td>Osamu Yasuda</td>
<td>Tokyo Metropolitan U</td>
<td>2016/04/27</td>
</tr>
<tr>
<td>Ovidiu Costin</td>
<td>Ohio State U</td>
<td>2016/12/12 - 12/16</td>
</tr>
<tr>
<td>Panasenko Serhii</td>
<td>V.N Karazin Kharkiv National University</td>
<td>2017/02/06 - 02/18</td>
</tr>
<tr>
<td>Paolo Rossi</td>
<td>U of Burgundy</td>
<td>2016/10/31 - 11/02</td>
</tr>
<tr>
<td>Patricio Gallardo</td>
<td>U of Georgia</td>
<td>2017/02/16 - 03/02</td>
</tr>
<tr>
<td>Patrick Decowski</td>
<td>U Amsterdam/GRAPPA</td>
<td>2016/11/06 - 11/16</td>
</tr>
<tr>
<td>Patrick Dunne</td>
<td>Imperial Coll. London</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Patrick Francois</td>
<td>Observatoire de Paris</td>
<td>2016/11/16</td>
</tr>
<tr>
<td>Patrick Stowell</td>
<td>U Sheffield</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Patrick Valageas</td>
<td>IPHT, CEA-Saclay</td>
<td>2016/04/11 - 04/15</td>
</tr>
<tr>
<td>Paul Martins</td>
<td>QMUL</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Paul Price</td>
<td>Princeton U</td>
<td>2016/08/21 - 08/27</td>
</tr>
<tr>
<td>Pavel Putrov</td>
<td>IAS</td>
<td>2016/12/12 - 12/16</td>
</tr>
<tr>
<td>Peiwen Wu</td>
<td>KIAS</td>
<td>2017/02/22 - 02/28</td>
</tr>
<tr>
<td>Peter Behroozi</td>
<td>Space Telescope Science Institute</td>
<td>2016/12/07 - 12/20</td>
</tr>
<tr>
<td>Petr Baklanov</td>
<td>ITEP</td>
<td>2016/10/11 - 11/10</td>
</tr>
<tr>
<td>Philipp Edelmann</td>
<td>HITS</td>
<td>2016/11/06 - 11/19</td>
</tr>
<tr>
<td>Phillip Litchfield</td>
<td>Imperial Coll. London</td>
<td>2016/05/30 - 06/01, 2017/02/13 - 02/16</td>
</tr>
<tr>
<td>Pierre Lasorak</td>
<td>QMUL</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Pietro Longhi</td>
<td>Uppsala U</td>
<td>2017/03/20 - 03/30</td>
</tr>
<tr>
<td>Po-Yen Tseng</td>
<td>Nati Tsing Hua U</td>
<td>2016/04/11 - 04/16</td>
</tr>
<tr>
<td>Posiadala-Zezula Magdalena</td>
<td>U Warsaw</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Prarit Agarwal</td>
<td>Seoul Natl. U.</td>
<td>2016/06/12 - 06/26</td>
</tr>
<tr>
<td>Qi Zheng Yin</td>
<td>BICMR</td>
<td>2017/02/06 - 02/10</td>
</tr>
<tr>
<td>Rachel Mandelbaum</td>
<td>Carnegie Mellon U</td>
<td>2016/08/22 - 08/26</td>
</tr>
<tr>
<td>Raj Shah</td>
<td>U Oxford</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Raje Thomas</td>
<td>Tata Inst</td>
<td>2016/11/24 - 12/19</td>
</tr>
<tr>
<td>Ran Li</td>
<td>Chinese Academy of Sciences</td>
<td>2016/05/29 - 06/03</td>
</tr>
<tr>
<td>Raphael Hirschi</td>
<td>Keele University</td>
<td>2016/06/19 - 06/28</td>
</tr>
<tr>
<td>Razieh Emami</td>
<td>HKUST</td>
<td>2016/04/05 - 04/30</td>
</tr>
<tr>
<td>Rene Meyer</td>
<td>SUNY, Stony Brook</td>
<td>2016/06/22 - 07/03, 12/01 - 12/02</td>
</tr>
<tr>
<td>Resmi Krishnankuttyelayath</td>
<td>Puthumanallam</td>
<td>2016/06/11 - 07/30</td>
</tr>
<tr>
<td>Rhythm Shimakawa</td>
<td>Sokendai</td>
<td>2016/08/29 - 08/31</td>
</tr>
<tr>
<td>Ricardo Schiappa</td>
<td>UTL</td>
<td>2016/12/12 - 12/16</td>
</tr>
<tr>
<td>Richard Stancilie</td>
<td>University of Bonn</td>
<td>2016/11/06 - 11/12</td>
</tr>
<tr>
<td>Robert Cousins</td>
<td>UCLA</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Robert Lw</td>
<td>KU Leuven</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Robert Michael Quimby</td>
<td>San Diego State University</td>
<td>2016/06/25 - 07/21</td>
</tr>
<tr>
<td>Robert Seddon</td>
<td>McGill University</td>
<td>2017/03/27 - 03/29</td>
</tr>
<tr>
<td>Roberto Franceschini</td>
<td>CERN</td>
<td>2016/06/30 - 07/02</td>
</tr>
<tr>
<td>Roberto Spina</td>
<td>INFN Bari</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Roderik Overzier</td>
<td>Observatorio Nacional Rio de Janeiro Brasil</td>
<td>2016/04/27</td>
</tr>
<tr>
<td>Rodrigo Alonso De Pablo</td>
<td>CERN</td>
<td>2017/03/02 - 04/30</td>
</tr>
<tr>
<td>Roger Alexandre Wendell</td>
<td>Kyoto U</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Roland Diehl</td>
<td>MPI for Extraterrestrial Physics</td>
<td>2016/06/02</td>
</tr>
<tr>
<td>Ronald Brujin</td>
<td>U Amsterdam</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Rui Sakano</td>
<td>U Tokyo</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Rupert Lawrence Coy</td>
<td>CNRS</td>
<td>2017/02/27 - 04/28</td>
</tr>
<tr>
<td>Ryo Higuchi</td>
<td>U Tokyo, ICRR</td>
<td>2016/08/23 - 08/25</td>
</tr>
<tr>
<td>Ryo Yamamoto</td>
<td>U Tokyo</td>
<td>2016/05/06</td>
</tr>
<tr>
<td>Ryoysuke Akutsu</td>
<td>U Tokyo, ICRR</td>
<td>2017/02/13 - 02/15, 03/27 - 03/29</td>
</tr>
<tr>
<td>Ryoysuke Imai</td>
<td>Waseda U</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Ryosuke Sato</td>
<td>Weizmann Inst</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
<td>Dates</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Sachiko Tsuruta</td>
<td>Montana State U</td>
<td>2016/05/30 - 06/06, 06/15 - 06/17, 2016/11/24 - 2017/01/17, 02/24</td>
</tr>
<tr>
<td>Sadanori Okamura</td>
<td>Hosei U</td>
<td>2016/08/22</td>
</tr>
<tr>
<td>Sadayoshi Kojima</td>
<td>Tokyo Tech</td>
<td>2016/08/22</td>
</tr>
<tr>
<td>Sakuroko Okamoto</td>
<td>KIAA, Peking U.</td>
<td>2016/12/07</td>
</tr>
<tr>
<td>Sampei Usui</td>
<td>Osaka U</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Samuel Jones</td>
<td>HITS</td>
<td>2016/11/06 - 11/19</td>
</tr>
<tr>
<td>Sandy Sihan Yuan</td>
<td>Princeton U</td>
<td>2016/08/22 - 08/26</td>
</tr>
<tr>
<td>Sanghoon Jeon</td>
<td>Sungkyunkwan U</td>
<td>2017/03/27 - 03/29</td>
</tr>
<tr>
<td>Sangmin Lee</td>
<td>Seoul Natl U</td>
<td>2016/12/12 - 12/16</td>
</tr>
<tr>
<td>Sanshiro Enomoto</td>
<td>U Washington, Seattle</td>
<td>2016/08/03 - 08/17</td>
</tr>
<tr>
<td>Sara Algeri</td>
<td>Imperial Coll., London</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Satoru Tokuda</td>
<td>U Tokyo</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Satoru Uozumi</td>
<td>Kyungpook National U</td>
<td>2016/04/27 - 04/29</td>
</tr>
<tr>
<td>Satoshi Kikuta</td>
<td>NAOJ</td>
<td>2016/08/23 - 08/27</td>
</tr>
<tr>
<td>Satoshi Kondo</td>
<td>The National Research University Higher School of Economics</td>
<td>2016/04/30 - 05/03, 05/13 - 05/14</td>
</tr>
<tr>
<td>Satoshi Miyazaki</td>
<td>NAOJ</td>
<td>2016/08/23 - 08/25</td>
</tr>
<tr>
<td>Satoshi Yamaguchi</td>
<td>Osaka U</td>
<td>2016/11/22</td>
</tr>
<tr>
<td>Satoshi Yamamoto</td>
<td>U Tokyo</td>
<td>2016/07/28</td>
</tr>
<tr>
<td>Scott Huai-Lei Carnahan</td>
<td>U Tsukuba</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Sean Jason Weinberg</td>
<td>UC Berkeley</td>
<td>2016/07/04 - 07/10, 2017/03/27 - 03/31</td>
</tr>
<tr>
<td>Sebastiano Cantalupo</td>
<td>ETH Zurich</td>
<td>2016/08/29 - 08/31</td>
</tr>
<tr>
<td>Sebastien Peirani</td>
<td>IAP</td>
<td>2016/01/10 - 11/09</td>
</tr>
<tr>
<td>Sei Ieki</td>
<td>U Tokyo, ICEPP</td>
<td>2017/03/27 - 03/29</td>
</tr>
<tr>
<td>Seidai Yasuda</td>
<td>Osaka U</td>
<td>2016/04/30 - 05/03</td>
</tr>
<tr>
<td>Seokhee Park</td>
<td>Yonsei U</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Seon-Hee Seo</td>
<td>Seoul Natl U</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Seongjin In</td>
<td>Sungkyunkwan U</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Sergii Suvorov</td>
<td>INR RAS</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Sergey Blinnikov</td>
<td>ITEP</td>
<td>2016/03/03 - 04/08, 10/02 - 11/29, 2017/01/07 - 01/14</td>
</tr>
<tr>
<td>Sergey Todorov Petcov</td>
<td>SISSA</td>
<td>2016/05/27 - 06/01, 11/04 - 11/18</td>
</tr>
<tr>
<td>Shamil Shakirov</td>
<td>Harvard U</td>
<td>2017/03/19 - 03/25</td>
</tr>
<tr>
<td>Sher Alam</td>
<td>Punjab University</td>
<td>2017/03/27 - 03/29</td>
</tr>
<tr>
<td>Sherry Suyu</td>
<td>MPI for Astrophysics</td>
<td>2016/08/21 - 09/02</td>
</tr>
<tr>
<td>Shien-Chieh Lin</td>
<td>Natl Taiwan U</td>
<td>2016/08/22 - 08/25</td>
</tr>
<tr>
<td>Shigetaka Moriyama</td>
<td>U Tokyo, ICRR</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Shingo Kamimoto</td>
<td>Hiroshima University</td>
<td>2016/06/30 - 07/01</td>
</tr>
<tr>
<td>Shingo Kazama</td>
<td>UZH</td>
<td>2017/03/27 - 03/29</td>
</tr>
<tr>
<td>Shinji Mukohyama</td>
<td>Kyoto U</td>
<td>2016/04/07 - 04/11, 04/28 - 05/05, 06/16 - 06/19, 07/29 - 08/01</td>
</tr>
<tr>
<td>Shioho Hosono</td>
<td>Gakushuin U</td>
<td>2016/11/14 - 11/15</td>
</tr>
<tr>
<td>Shinysa Wanojo</td>
<td>Sophia U</td>
<td>2017/01/20</td>
</tr>
<tr>
<td>Shiro Ikeda</td>
<td>ISM</td>
<td>2016/07/28</td>
</tr>
<tr>
<td>Shiro Mukae</td>
<td>U Tokyo, ICRR</td>
<td>2016/08/29 - 08/31</td>
</tr>
<tr>
<td>Sho Chimasu</td>
<td>Tokai U</td>
<td>2016/08/18 - 08/24</td>
</tr>
<tr>
<td>Sho Sugiiura</td>
<td>U Tokyo</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Sho Tanimoto</td>
<td>U Copenhagen</td>
<td>2016/07/26</td>
</tr>
<tr>
<td>Shohei Nakayama</td>
<td>U Tokyo, ICRR</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Shoichiro Miyashita</td>
<td>Waseda U</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Shoji Yokura</td>
<td>Kagoshima U</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Shota Imaki</td>
<td>Tokyo U of Science</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Shota Mizukami</td>
<td>Waseda U</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Shu Ebihara</td>
<td>U Tokyo</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Shuichi Iwata</td>
<td>Kitasato U</td>
<td>2017/03/27 - 03/29</td>
</tr>
<tr>
<td>Shuji Tanaka</td>
<td>KEK</td>
<td>2016/09/06</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td>Dates</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Shun Saito</td>
<td>MPI for Astrophysics</td>
<td>2016/08/15 - 08/21, 08/22 - 08/26, 2017/03/02 - 04/07</td>
</tr>
<tr>
<td>Shunichi Mine</td>
<td>UC Irvine</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Shutaro Ueda</td>
<td>JAXA</td>
<td>2016/08/23 - 08/25</td>
</tr>
<tr>
<td>Si Li</td>
<td>Tsinghua University</td>
<td>2016/09/04 - 09/09</td>
</tr>
<tr>
<td>Simon James Wood</td>
<td>ANU</td>
<td>2016/03/28 - 04/01</td>
</tr>
<tr>
<td>Simona Murgia</td>
<td>UC Irvine</td>
<td>2016/10/18 - 10/26</td>
</tr>
<tr>
<td>Sogo Mineo</td>
<td>NAOJ</td>
<td>2016/08/22 - 08/25</td>
</tr>
<tr>
<td>Son Cao</td>
<td>Kyoto U</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Soo-Bong Kim</td>
<td>Seoul Natl. U.</td>
<td>2016/06/01, 2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Sophie King</td>
<td>QMUL</td>
<td>2017/02/13 - 02/16</td>
</tr>
<tr>
<td>Stanley Yen</td>
<td>TRIUMF</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Stefano Bettarini</td>
<td>INFN-Pisa</td>
<td>2017/02/04 - 02/05</td>
</tr>
<tr>
<td>Stephane Zsoldos</td>
<td>QMUL</td>
<td>2017/02/13 - 02/15, 03/27 - 03/29</td>
</tr>
<tr>
<td>Stephen Dolan</td>
<td>U Oxford</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Steven Kahn</td>
<td>SLAC</td>
<td>2016/08/21 - 08/23</td>
</tr>
<tr>
<td>Sukant Narendra Mayekar</td>
<td>Tata Inst</td>
<td>2016/04/03 - 05/02, 06/11 - 07/30, 09/18 - 10/22, 11/26 - 12/27, 2017/01/30 - 02/05</td>
</tr>
<tr>
<td>Sunil Mukhi</td>
<td>Tata Inst</td>
<td>2016/07/28 - 07/29</td>
</tr>
<tr>
<td>Sunny Seo</td>
<td>Seoul Natl. U.</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Suresh Tanu Divekar</td>
<td>TIFR</td>
<td>2016/09/11 - 10/08</td>
</tr>
<tr>
<td>Susan Cartwright</td>
<td>U Sheffield</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Susanne Reffert</td>
<td>University of Bern</td>
<td>2016/12/30 - 2017/01/20</td>
</tr>
<tr>
<td>Susmita Adhikari</td>
<td>U Illinois, Urbana</td>
<td>2017/02/13 - 02/17</td>
</tr>
<tr>
<td>Svyatoslav Pimenov</td>
<td>Yale Univ</td>
<td>2014/09/01 - 2016/08/31</td>
</tr>
<tr>
<td>Syo Kamata</td>
<td>Fudan U</td>
<td>2016/12/12 - 12/16</td>
</tr>
<tr>
<td>Tadashi Okazaki</td>
<td>Natl. Taiwan U</td>
<td>2016/04/02 - 04/09</td>
</tr>
<tr>
<td>Tadeas Bilka</td>
<td>Charles U, Prague</td>
<td>2017/03/27 - 03/29</td>
</tr>
<tr>
<td>Takahiro Nishinaka</td>
<td>Kyoto U</td>
<td>2017/03/07 - 03/08</td>
</tr>
<tr>
<td>Takahiro Sagawa</td>
<td>U Tokyo</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Takahiro Saito</td>
<td>U Tsukuba</td>
<td>2016/09/05 - 09/08, 2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Takashi Aoki</td>
<td>Kindai</td>
<td>2016/12/12 - 12/15</td>
</tr>
<tr>
<td>Takashi Hamana</td>
<td>NAOJ</td>
<td>2016/08/22 - 08/26</td>
</tr>
<tr>
<td>Takashi Hosokawa</td>
<td>U Tokyo</td>
<td>2016/04/21</td>
</tr>
<tr>
<td>Takashi Kobayashi</td>
<td>KEK</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Takashi Moriya</td>
<td>NAOJ</td>
<td>2016/08/22 - 08/26, 11/17, 12/13</td>
</tr>
<tr>
<td>Takashi Nakamura</td>
<td>Kyoto U</td>
<td>2016/06/29 - 06/30</td>
</tr>
<tr>
<td>Takashi Otofuji</td>
<td>Nihon U</td>
<td>2016/12/12 - 12/16</td>
</tr>
<tr>
<td>Takatomi Yano</td>
<td>Kobe U</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Takeshi Saito</td>
<td>U Tokyo, Math Sci</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Taku Ishida</td>
<td>KEK</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Takuma Hayashi</td>
<td>U Tokyo, Math Sci</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Takumi Sumida</td>
<td>Nagoya U</td>
<td>2016/08/29 - 08/31</td>
</tr>
<tr>
<td>Takuo Matsuoka</td>
<td></td>
<td>2016/10/24 - 10/28, 12/26</td>
</tr>
<tr>
<td>Taku Abe</td>
<td>Kyushu U</td>
<td>2016/06/15 - 06/17</td>
</tr>
<tr>
<td>Takuro Mochizuki</td>
<td>Kyoto U</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Tao Tao Fang</td>
<td>Xiamen University</td>
<td>2016/08/28 - 08/31</td>
</tr>
<tr>
<td>Tatsuhiro Misumi</td>
<td>Akita Univ</td>
<td>2016/12/12 - 12/16</td>
</tr>
<tr>
<td>Teppel Katori</td>
<td>QMUL</td>
<td>2016/05/30 - 06/01, 2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Tetsuro Sekiguchi</td>
<td>KEK</td>
<td>2017/02/13 - 02/15, 03/27 - 03/29</td>
</tr>
<tr>
<td>Thomas CZANK</td>
<td>Tohoku U</td>
<td>2017/03/27 - 03/29</td>
</tr>
<tr>
<td>Thomas Daletry</td>
<td>U Oxford</td>
<td>2017/02/13 - 02/16</td>
</tr>
<tr>
<td>Thomas Lindner</td>
<td>TRIUMF</td>
<td>2017/01/31 - 02/15</td>
</tr>
<tr>
<td>Thomas Schaefer</td>
<td>NCSU</td>
<td>2016/12/12 - 12/16</td>
</tr>
<tr>
<td>Tilman Hartwig</td>
<td>Institut d'Astrophysique de Paris</td>
<td>2017/01/29 - 05/06</td>
</tr>
<tr>
<td>Tim Tait</td>
<td>UC Irvine</td>
<td>2016/10/18 - 10/26</td>
</tr>
<tr>
<td>Timothy Logvinenkov</td>
<td>Cardiff University</td>
<td>2016/11/10 - 11/20</td>
</tr>
<tr>
<td>Visitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Tin Sulejmanpasic**
NCSU
2016/12/12 - 12/16 |
| **Tobias Baldauf**
Princeton U
2016/06/13 - 06/16 |
| **Tobias Binder**
Goettingen U
2016/03/30 - 06/05, 2017/01/11 - 02/10 |
| **Tobias Dyckerhoff**
HCM
2016/09/05 |
| **Tohru Nagao**
Ehime
2016/08/22 - 08/27 |
| **Tomaso Treu**
UCLA
2016/10/17 - 10/21 |
| **Tomoaki Ishiyama**
NAOJ
2016/05/02 - 05/03 |
| **Tomoharu Suzuki**
Chubu University
2017/01/20, 02/07 |
| **Tomohide Terasoma**
U Tokyo, Math Sci
2017/01/23 - 01/27 |
| **Tomohiko Yokoyama**
U Tokyo
2016/09/27 |
| **Tomohiro Fujita**
Stanford University
2016/09/05 - 09/09, 2017/03/20 - 03/24 |
| **Tomohiro Horiguchi**
Tohoku U
2016/06/16 - 06/18, 2017/02/24 |
| **Tomomi Sunayama**
Yale U
2016/06/27 - 07/01 |
| **Tomoyo Yoshida**
Tokyo Tech
2016/05/30 - 06/01, 2017/02/13 - 02/15 |
| **Toru Misawa**
Shinshu U.
2016/08/29 - 08/30 |
| **Toru Tsuboyama**
KEK
2016/07/04, 09/06, 2017/03/05 |
| **Toshiaki Fujimori**
Keio U
2016/12/12 - 12/16 |
| **Toshiaki Yoshinobu**
Niigata U.
2016/04/06 - 04/09, 05/20 - 05/23 |
| **Toshinori Mori**
U Tokyo, ICEPP
2016/07/28 |
| **Toshiro Kuwabara**
U Tsukuba
2017/01/23 - 01/27 |
| **Toshiya Namikawa**
Stanford University
2016/10/19 - 10/20 |
| **Trevor Stewart**
Rutherford Appleton Lab.
2017/02/13 - 02/15 |
| **Tsukasa Tada**
RIKEN
2016/09/27 |
| **Tsunayuki Matsubara**
Tokyo Metropolitan U
2017/03/27 - 03/29 |
| **Tsuyoshi Nakaya**
Kyoto U
2017/02/13 - 02/15 |
| **Tzu-An Sheng**
Nati Taiwan U
2017/03/27 - 03/29 |
| **Vadim Schechtman**
U Paul Sabatier
2016/10/16 - 10/30 |
| **Valentin Tonita**
Humboldt U
2016/05/10 - 05/22, 12/07 - 12/10 |
| **Yasuhiro Nishimura**
U Tokyo, ICRR
2016/05/30 - 06/01, 2017/02/13 - 02/15, 03/27 - 03/29 |
| **Yasuuki Kawahigashi**
U Tokyo, Math Sci
2016/09/27 |
| **Yen-Ting Lin**
ASIAA
2016/04/06 - 04/28, 08/21 - 08/26 |
| **Yeongmin Jang**
Chonnam National U
2017/03/27 - 03/29 |
| **Yi-Kuan Chiang**
U Tokyo, ICRR
2016/08/22 - 08/26, 08/29 - 08/31 |
| **Yifan Jin**
U Tokyo
2017/03/27 - 03/29 |
| **Yinbang Lin**
Tsinghua U, Beijing
2017/03/18 - 03/26 |
| **Yong-Tung Chen**
ASIAA
2016/08/22 - 08/26 |
| **YIPENG JING**
Shanghai Jiao Tong U
2016/08/23 - 08/31 |
| **Yohei Itoh**
U Tokyo, Math Sci
2017/01/23 - 01/27 |
| **Yohei Kashima**
U Tokyo
2016/09/27 |
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yongbin Ruan</td>
<td>U Michigan</td>
<td>2016/04/02 - 04/09</td>
</tr>
<tr>
<td>Yoshi Uchida</td>
<td>Imperial Coll. London</td>
<td>2016/05/30 - 06/01, 2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Yoshiaki Goto</td>
<td>Otsu University of Commerce</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Yoshiaki Ono</td>
<td>U Tokyo, ICRR</td>
<td>2016/08/22 - 08/26</td>
</tr>
<tr>
<td>Yoshiaki Seino</td>
<td>Niihata U.</td>
<td>2016/06/23</td>
</tr>
<tr>
<td>Yoshihumi Hyakutake</td>
<td>Ibaraki U</td>
<td>2016/08/25</td>
</tr>
<tr>
<td>Yoshihiko Yamada</td>
<td>NAOJ</td>
<td>2016/08/23 - 08/25</td>
</tr>
<tr>
<td>Yoshihisa Saito</td>
<td>U Tokyo, Math Sci</td>
<td>2017/02/21</td>
</tr>
<tr>
<td>Yoshiki Matsuoka</td>
<td>NAOJ</td>
<td>2016/08/22 - 08/27</td>
</tr>
<tr>
<td>Yoshiki Toba</td>
<td>ASIAA</td>
<td>2016/08/22 - 08/27</td>
</tr>
<tr>
<td>Yoshihara Hayato</td>
<td>U Tokyo, ICRR</td>
<td>2016/05/31 - 06/01, 2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Yoshitaka Itow</td>
<td>Nagoya U</td>
<td>2017/02/13 - 02/16</td>
</tr>
<tr>
<td>Yoshihumi Takei</td>
<td>Kyoto U</td>
<td>2016/12/12 - 12/16</td>
</tr>
<tr>
<td>Yoshiyuki Onuki</td>
<td>U Tokyo, ICEPP</td>
<td>2016/06/13 - 06/17, 06/23 - 06/24, 06/30 - 07/01, 07/04 - 07/07 , 07/15, 07/18 - 07/20, 07/22, 07/26 - 07/27, 08/03</td>
</tr>
<tr>
<td>Yota Shamoto</td>
<td>Kyoto U</td>
<td>2016/09/05 - 09/08, 2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Young-Kee Kim</td>
<td>U Chicago</td>
<td>2016/08/19 - 08/23</td>
</tr>
<tr>
<td>Youngju Ko</td>
<td>CAU</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Yousuke Utsumi</td>
<td>Hiroshima U</td>
<td>2016/08/22 - 08/26</td>
</tr>
<tr>
<td>Yu-Chi Cheng</td>
<td>NCU</td>
<td>2016/08/22 - 08/26</td>
</tr>
<tr>
<td>Yu-Jing Qin</td>
<td>KIAA, Peking U.</td>
<td>2016/07/11 - 07/15</td>
</tr>
<tr>
<td>Yu-Wei Fan</td>
<td>Harvard U</td>
<td>2017/01/04 - 01/13</td>
</tr>
<tr>
<td>Yudai Suwa</td>
<td>Kyoto U</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Yue Wang</td>
<td>SUNY, Stony Brook</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Yue-Lin Sming Tsai</td>
<td>NCTS</td>
<td>2017/02/13 - 02/24</td>
</tr>
<tr>
<td>Yufeng Li</td>
<td>IHEP, CAS</td>
<td>2016/05/30 - 06/01</td>
</tr>
<tr>
<td>Yuichi Harikane</td>
<td>U Tokyo, ICRR</td>
<td>2016/08/23 - 08/31</td>
</tr>
<tr>
<td>Yuichi Higuchi</td>
<td>ASIAA</td>
<td>2016/08/22 - 08/28</td>
</tr>
<tr>
<td>Yuichi Ike</td>
<td>U Tokyo, Math Sci</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Yuichiro Hoshino</td>
<td>Waseda U</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Yuichiro Tanaka</td>
<td>U Tokyo, Math Sci</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Yuji Chinone</td>
<td>UC Berkeley</td>
<td>2016/09/20 - 09/21</td>
</tr>
<tr>
<td>Yuji Okajima</td>
<td>Tokyo Tech</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Yuji Shirasaki</td>
<td>NAOJ</td>
<td>2016/08/23 - 08/25</td>
</tr>
<tr>
<td>Yuji Urata</td>
<td>NCU</td>
<td>2016/08/23 - 08/25</td>
</tr>
<tr>
<td>Yuki Kimura</td>
<td>Tohoku U</td>
<td>2016/08/23 - 08/25</td>
</tr>
<tr>
<td>Yuki Okura</td>
<td>RIKEN</td>
<td>2016/08/22 - 08/26</td>
</tr>
<tr>
<td>Yukie Oishi</td>
<td>NAOJ</td>
<td>2016/08/23 - 08/25</td>
</tr>
<tr>
<td>Yukiko Konishi</td>
<td>Kyoto U</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Yuri Efremenko</td>
<td>U Tenneseee</td>
<td>2016/11/27 - 12/07</td>
</tr>
<tr>
<td>Yuri Kudenko</td>
<td>INR RAS</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Yuri Yatagawa</td>
<td>U Tokyo, Math Sci</td>
<td>2017/01/23 - 01/27</td>
</tr>
<tr>
<td>Yusuke Hayashi</td>
<td>NAOJ</td>
<td>2016/08/23 - 08/25</td>
</tr>
<tr>
<td>Yusuke Koshio</td>
<td>Okayama U</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Yuta Sekiguchi</td>
<td>University of Bern</td>
<td>2017/01/16 - 01/20</td>
</tr>
<tr>
<td>Yutaka Komiyama</td>
<td>NAOJ</td>
<td>2016/08/23 - 08/25</td>
</tr>
<tr>
<td>Yutaka Ushiroda</td>
<td>KEK</td>
<td>2016/04/01, 04/25, 06/29, 09/06, 11/18</td>
</tr>
<tr>
<td>Yutaro Sonoda</td>
<td>U Tokyo, ICRR</td>
<td>2017/02/13 - 02/15</td>
</tr>
<tr>
<td>Yuto Ichinohe</td>
<td>Tokyo Metropolitan U</td>
<td>2016/08/23 - 08/25</td>
</tr>
<tr>
<td>Yuuki Shiraishi</td>
<td>Kyoto U</td>
<td>2016/09/05 - 9/08, 11/14 - 11/18, 2017/03/13 - 03/17</td>
</tr>
<tr>
<td>Yuval Flicker</td>
<td>Ohio State U</td>
<td>2017/03/15 - 07/11</td>
</tr>
<tr>
<td>Yuya Dan</td>
<td>Matsuyama U</td>
<td>2016/09/27</td>
</tr>
<tr>
<td>Yuya Tanizaki</td>
<td>RIKEN BNL</td>
<td>2016/12/12 - 12/16</td>
</tr>
<tr>
<td>Zha Shuai</td>
<td>CUHK</td>
<td>2016/06/28 - 07/19, 11/07 - 11/22, 2017/02/23 - 02/24</td>
</tr>
<tr>
<td>Zheng Hua</td>
<td>HKU</td>
<td>2017/03/20 - 03/23</td>
</tr>
<tr>
<td>Zheng Zheng</td>
<td>U Utah</td>
<td>2016/08/29 - 09/01</td>
</tr>
</tbody>
</table>
Zoya Vallari
SUNY, Stony Brook
2016/05/30 - 06/01

Zvonimir Vlah
Stanford U
2016/11/04 - 11/15
1. Linear redshift space distortions for cosmic voids based on galaxies in redshift space
 Chuang, Ch; Kitaura, FS; Liang, Y; Font-Ribera, A; Zhao, C; McDonald, P; Tao, C
 PHYSICAL REVIEW D 95 (2017) 63528

2. Note on reheating in G inflation
 Moghaddam, HB; Brandenberger, R; Yokoyama, J
 PHYSICAL REVIEW D 95 (2017) 63529

3. On longevity of l-ball/oscillon
 Mukaida, K; Takimoto, M; Yamada, M
 JOURNAL OF HIGH ENERGY PHYSICS (2017) 122

4. Constraints on $L_{\mu} - L_{\tau}$ gauge interactions from rare kaon decay
 Ibe, M; Nakano, W; Suzuki, M
 PHYSICAL REVIEW D 95 (2017) 55022

5. Three-dimensional Explosion Geometry of stripped-envelope core-collapse supernovae. II. Modeling of Polarization
 Tanaka, M; Maeda, K; Mazzali, PA; Kawabata, KS; Nomoto, K
 AstroPHYSICAL JOURNAL 837 (2017) 105

6. A chemical signature from Fast-rotating Low-metallicity Massive stars: RoA 276 in omega Centauri
 Yong, D; Norris, JE; Da Costa, GS; Stanford, LM; Karakas, AI; Shingles, LJ; Hirschi, R; Pignatari, M
 AstroPHYSICAL JOURNAL 837 (2017) 176

7. Where does curvation reside? Differences between bulk and brane frames
 Larroufurou, F; Mukohyama, S; Namba, R; Watanabe, Y
 PHYSICAL REVIEW D 95 (2017) 63509

8. Polytopal spherical harmonic decomposition of galaxy correlators in redshift space: Toward testing cosmic rotational symmetry
 Shiraishi, M; Sugiyama, NS; Okumura, T
 PHYSICAL REVIEW D 95 (2017) 63508

9. SU(5) unification with TeV-scale leptoquarks
 Cox, P; Kusenko, A; Sumensari, O; Yanagida, TT
 JOURNAL OF HIGH ENERGY PHYSICS. (2017) 35

10. Cornering compressed gluino at the LHC
 Nagata, N; Otono, H; Shirai, S
 JOURNAL OF HIGH ENERGY PHYSICS. (2017) 25

11. From path integrals to tensor networks for the AdS/CFT correspondence
 Miyaji, M; Takayanagi, T; Watanabe, K
 PHYSICAL REVIEW D 95 (2017) 66004

12. Graviton Mass Might Reduce Tension between Early and Late Time Cosmological Data
 De Felice, A; Mukohyama, S
 PHYSICAL REVIEW LETTERS 118 (2017) 91104

13. Supersymmetry breaking and Nambu-Goldstone fermions with cubic dispersion
 Sannomiya, N; Katsura, H; Nakayama, Y
 PHYSICAL REVIEW D 95 (2017) 65001

14. SN2015bh: NGC2770’s 4th supernova or a luminous blue variable on its way to a Wolf-Rayet star?
 Thone, CC; Postigo, AD; Leloudas, G; Gall, C; Cano, Z; Maeda, K; Schulze, S; Campagna, S; Wiersma, K; Groh, J; de la Rosa, J; Bauer, FE; Malesani, D; Maund, J; Morrell, N; Beletsky, Y
 ASTRONOMY & ASTROPHYSICS 599 (2017) A129

15. Energy conditions in Starobinsky supergravity
 Addazi, A; Ketrov, SV
 JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2017) 61

16. AMS-02 positron excess and indirect detection of three-body decaying dark matter
 Cheng, HC; Huang, WC; Huang, XY; Low, I; Tsai, YLS; Yuan, Q
 JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2017) 41

17. Stable solutions of inflation driven by vector fields
 Emami, R; Mukohyama, S; Namba, R; Zhang, YL
 JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2017) 58

18. The SEEDS High-Contrast Imaging Survey of Exoplanets Around Young Stellar Objects
 Uyama, T; Hashimoto, J; Kuzuhara, M; Mayama, A; Sakiya, E; Currie, T; Livingston, J; Kudo, T; Kusakabe, N; Abe, L; Brandner, W; Brandt, TD; Carson, JC; Egner, S; Feldt, M; Goto, M; Grady, CA; Guyon, O; Hayano, Y; Hayashi, M; Hayashi, SS; Henning, T; Hodapp, KW; Ishii, M; Iye, M; Janson, M; Kandori, R; Knapp, GR; Kwon, J; Matsuo, T; McElwain, MW; Mukiyama, S; Morino, J; Moro-Martín, A; Nishimura, T; Pyo, TS; Serafin, E; Suenaga, T; Suto, H; Suzuki, R; Takahashi, YH; Takami, M; Takato, N; Terada, H; Thalmann, C; Turner, EL; Watanabe, M; Wisniewski, J; Yamada, T; Takami, H; Usuda, T; Tamura, M
 ASTRONOMICAL JOURNAL 153 (2017) 106

19. Future constraints on angle-dependent non-Gaussianity from large radio surveys
 Raccanelli, A; Shirai, H; Bartolo, N; Bertacca, D; Liguori, M; Matarrese, S; Norris, RP; Parkinson, D

20. SDSS IV MaNGA: Discovery of an Ha Blob Associated with a Dry Galaxy Pair-Ejected Gas or a “Dark” Galaxy Candidate?
 Lin, L; Lin, JH; Hsu, CH; Fu, H; Huang, S; Sanchez, SF; Gwyn, S; Gelfand, JD; Cheung, E; Masters, K; Peirani, S; Rujopakarn, W; Stark, DW; Belfiore, F; Bothwell, MS; Bundy, K; Hagen, A; Hao, L; Huang, S; Law, D; Li, C; Lintott, C; Malinolino, R; Roman-Lopes, A; Wang, WH; Xiao, T; Yuan, FT; Bizyaev, D; Malanushenko, E; Drory, N; Fernandez-Trincado, JG; Pace, Z; Pan, K; Thomas, D
 ASTRONOMICAL JOURNAL 837 (2017) 32

21. Broad-lined Supernova 2016coi with a Helium Envelope
 Yamanaka, M; Nakaoka, T; Tanaka, M; Maeda, K; Honda, S; Hanayama, H; Morokuma, T; Imai, K; Kinugasa, K; Murata, KL; Nishimori, T; Hashimoto, O; Gima, H; Hosoya, K; Ito, A; Karita,
43. Inferring physical properties of galaxies from their emission-line spectra
Ucci, G; Ferrara, A; Gallai, S; Pallottini, A

44. The Belle II silicon vertex detector assembly and mechanics
Adamczyk, K; Aihara, H; Angelini, C; Aziz, T; Babu, V; Bacher, S; Bahinipati, S; Barberio, E; Barocelli, T; Barocelli, T; Basist, A; Batignani, G; Bauer, A; Behera, PK; Bergauer, T; Bettarini, S; Bhuyan, B; Bilka, T; Bosi, F; Bosso, L; Bozek, A; Buchsteiner, F; Bulla, L; Casarosa, G; Ceccanti, M; Cercenov, D; Chdvankar, SR; Dash, N; DIVEK, ST; DOEZEL, Z; Dutta, D; Forti, F; Friedl, M; Hara, K; Higuchi, T; Horiguchi, T; IMLER, C; Ichikawa, A; Jeon, HB; Joo, CW; KANDRA, J; KANG, KH; KATO, E; KAWASAKI, T; KODYS, P; KOHRIKI, T; KOIKE, S; KOLWALKAR, MM; Kvasnicka, P; LANCERI, L; LETTENBICHER, J; LUECK, T; MAI, M; MAKIMI, P; MAYEKAY, SN; MONT The origin of meteoritic stardust unveiled by a revised proton-capture rate of \(^{17}O\)
Lugaro, M; Karakas, AI; Bruno, CG; Aliotta, M; Nittler, LR; BEMMERER, D; BEST, A; BOELTING, A; BROGGINI, C; CAIOLI, A; CAVANA, F; CIANI, GF; CORVISIERO, P; DAVISON, T; DEPAOLO, D; DI LEVA, A; ELLEKES, Z; FERRARO, T; FORMICOLA, A; FULOP, Z; GERVINO, G; GUGLIELMETTI, A; GURKY, G; IMBRIANI, G; JUNKER, M; MENEZZA, A; MASSON, M; MONT; PANTALEO, O; PONTI, D; PRATTI, D; PRATTI, SC; STRANIERO, D; STRIOZIO, D; TAYLOR, CS; THOMAS, R; TSUYOBAYAMA, T; Uozumi, S; URQUIJO, P; VEN, D; WATANUKI, S; WATSON, UI; WEBB, J; WIECHCZYNSKI, J; WILLIAMS, A; WURKNER, B; YAMAUCHI, T; YOSHIKAE, A; YOSHIKAWA, T;

45. The Belle II SVD data readout system
Thalmeier, J; Adamczyk, K; Aihara, H; Angelini, C; Aziz, T; Babu, V; Bacher, S; Bahinipati, S; Barberio, E; Barocelli, T; Barocelli, T; Basist, A; Batignani, G; Bauer, A; Behera, PK; Bergauer, T; Bettarini, S; Bhuyan, B; Bilka, T; Bosi, F; Bosso, L; Bozek, A; Buchsteiner, F; Bulla, L; Casarosa, G; Ceccanti, M; Cercenov, D; Chdvankar, SR; Dash, N; DIVEK, ST; DOEZEL, Z; Dutta, D; Forti, F; Friedl, M; Hara, K; Higuchi, T; Horiguchi, T; IMLER, C; Ichikawa, A; Jeon, HB; Joo, CW; KANDRA, J; KANG, KH; KATO, E; KAWASAKI, T; KODYS, P; KOHRIKI, T; KOIKE, S; KOLWALKAR, MM; Kvasnicka, P; LANCERI, L; LETTENBICHER, J; LUECK, T; MAI, M; MAKIMI, P; MAYEKAY, SN; MONT The origin of meteoritic stardust unveiled by a revised proton-capture rate of \(^{17}O\)
Lugaro, M; Karakas, AI; Bruno, CG; Aliotta, M; Nittler, LR; BEMMERER, D; BEST, A; BOELTING, A; BROGGINI, C; CAIOLI, A; CAVANA, F; CIANI, GF; CORVISIERO, P; DAVISON, T; DEPAOLO, D; DI LEVA, A; ELLEKES, Z; FERRARO, T; FORMICOLA, A; FULOP, Z; GERVINO, G; GUGLIELMETTI, A; GURKY, G; IMBRIANI, G; JUNKER, M; MENEZZA, A; MASSON, M; MONT; PANTALEO, O; PONTI, D; PRATTI, D; PRATTI, SC; STRANIERO, D; STRIOZIO, D; TAYLOR, CS; THOMAS, R; TSUYOBAYAMA, T; Uozumi, S; URQUIJO, P; VEN, D; WATANUKI, S; WATSON, UI; WEBB, J; WIECHCZYNSKI, J; WILLIAMS, A; WURKNER, B; YAMAUCHI, T; YOSHIKAE, A; YOSHIKAWA, T;

46. ALMA [C II] 158 μm detection of a Redshift 7 Lensed Galaxy behind RXJ1347.1-1145
Bradac, M; Garcia-Appadoo, D; Huang, KH; Vallini, L; Finney, EQ; Hoag, A; Lemaux, BC; Schmidt, KB; Treu, T; Carilli, C; Dijkstra, M; Ferrara, A; Fontana, A; Jones, T; Ryan, R; Wagt, J; Gonzalez, AH
ASTROPHYSICAL JOURNAL LETTERS 836 (2017) L2

47. The Synthesis of Ti-44 and Ni-56 in Massive Stars
Chieff, A; Limongi, M
ASTROPHYSICAL JOURNAL 836 (2017) 79

48. Testing the Presence of Multiple Photometric Components in Nearby Early-type Galaxies Using SDSS
Oh, S; Greene, JE; Lackner, CN
ASTROPHYSICAL JOURNAL 836 (2017) 115

49. Revisiting gravitino dark matter in thermal leptogenesis
Ibe, M; Suzuki, M; Yanagida, TT
JOURNAL OF HIGH ENERGY PHYSICS (2017) 63

50. On the IceCube result on \(\bar{\nu}_e \rightarrow \bar{\nu}_e\) oscillations
Petcov, ST
INTERNATIONAL JOURNAL OF MODERN PHYSICS A 32 (2017) 1750018

51. Dark matter in axion landscape
Daido, R; Kobayashi, T; Takahashi, F
PHYSICS LETTERS B 765 (2017) pp.299-323

52. Black hole singularity, generalized (holographic) c-theorem and entanglement negativity
Banerjee, S; Paul, P
JOURNAL OF HIGH ENERGY PHYSICS (2017) 43

53. Affleck-Dine leptonogenesis with varying Peccei-Quinn scale
Bae, KJ; Baer, H; Hamaguchi, K; Nakayama, K
JOURNAL OF HIGH ENERGY PHYSICS (2017) 17

54. Origin of meteoritic stardust unveiled by a revised proton-capture rate of \(^{17}O\)
Lugaro, M; Karakas, AI; Bruno, CG; Aliotta, M; Nittler, LR; BEMMERER, D; BEST, A; BOELTING, A; BROGGINI, C; CAIOLI, A; CAVANA, F; CIANI, GF; CORVISIERO, P; DAVISON, T; DEPAOLO, D; DI LEVA, A; ELLEKES, Z; FERRARO, T; FORMICOLA, A; FULOP, Z; GERVINO, G; GUGLIELMETTI, A; GURKY, G; IMBRIANI, G; JUNKER, M; MENEZZA, A; MASSON, M; MONT; PANTALEO, O; PONTI, D; PRATTI, D; PRATTI, SC; STRANIERO, D; STRIOZIO, D; TAYLOR, CS; THOMAS, R; TSUYOBAYAMA, T; Uozumi, S; URQUIJO, P; VEN, D; WATANUKI, S; WATSON, UI; WEBB, J; WIECHCZYNSKI, J; WILLIAMS, A; WURKNER, B; YAMAUCHI, T; YOSHIKAE, A; YOSHIKAWA, T;

55. Cosmic Galaxy-IGM HI Relation at z similar to 2-3 Probed in the COSMOS/UltraVISTA 1.6 Deg2 Field
Mukae, S; Ouchi, M; Kakiichi, K; Suzuki, N; Ono, Y; Cai, Z; Inoue, N; Chang, YK; Shibuya, Y; Matsuda, Y
ASTROPHYSICAL JOURNAL 835 (2017) 281

56. The Origin of the Near-infrared Excess in SN Ia 2012dn: Circumstellar Dust around the Super-Chandrasekhar Supernova Candidate
Nagao, T; Maeda, K; Yamazaki, M
ASTROPHYSICAL JOURNAL 835 (2017) 143

57. Pulsational Pair-instability Model for Superluminous Supernova PTF12dam: Interaction and Radioactive Decay Tolstov, A; Nomoto, K; Blinnikov, S; Sorokina, E; Quimby, R; Baklanov, P
ASTROPHYSICAL JOURNAL 835 (2017) 266

58. Violent preheating in inflation with nonminimal coupling
Ema, Y; Jinno, R; Mukae, K; Nakayama, K
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2017) 45

59. Squeezed bispectrum in the \(\delta N\) formalism: local observer effect in field space
Tada, Y; Vennin, V
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2017) 21

60. Extremely Red Submillimeter Galaxies: New z >= 4-6 Candidates Discovered Using ALMA and Jansky VLA
Ikarashi, S; Ivison, RJ; Caputi, KI; Nakanishi, K; Lagos, CDP; Ashby, MLI; Arellaga, I; Dunlop, JS; Hatzukade, B; Hughes, DH; Iono, D; Iriyama, T; Kawabe, R; Kohno, K; Motohara, K; Ohta, K; Tamura, Y; Umehata, H; Wilson, GW; Yamada, Y; Kun, Y
ASTROPHYSICAL JOURNAL 835 (2017) 286
61. Belle II Silicon Vertex Detector
Dutta, D; Adamczyk, K; Alhara, H; Angelini, C; Aziz, T; Babu, V; Bacher, S; Bahinipati, S; Barberio, E; Baronecelli, T; Baronecelli, T; Basist, AK; Batignani, G; Bauer, A; Behera, PK; Bergauer, T; Bettarini, S; Bhuyan, B; Bilka, T; Bosi, F; Bosio, L; Bozeck, A; Buchsteiner, F; Bulla, L; Caria, G; Casarosa, G; Ceccanti, M; Cervenkov, D; Chendevankar, SR; Dash, N; De Pietro, G; Divekar, ST; Dolezal, Z; Forti, F; Friedl, M; Hara, K; Higuchi, T; Horiguchi, T; Imiler, C; Ishikawa, A; Jeon, HB; Joo, C; Kanda, Y; Ken, K; Kawabata, K; Kawabata, KS; Kawabata, K; Kondo, K; Kopylov, A; Kormos, LL; Korzenek, A; Kosio, Y; Kropp, W; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Lamont, I; Larerossi, P; Leshin, A; Leszczynski, J; Williams, S; Wepener, B; Yamamoto, H; Yin, H; Yoshinobu, T; Zani, F;
JOURNAL OF INSTRUMENTATION 12 (2017) C02074

62. Interpreting the Strongly Lensed Supernova iPTF16geu: Time Delay Predictions, Microlensing, and Lensing Rates
More, A; Suyu, SH; Oguri, M; More, S; Lee, CH;
ASTROPHYSICAL JOURNAL LETTERS 835 (2017) L25

63. Galaxy Zoo: morphological classifications for 120 000 galaxies in HST legacy imaging
Willett, KW; Galloway, MA; Bamford, SP; Lintott, CJ; Masters, KL; Scarlata, C; Simmons, BD; Beck, M; Cardamone, CN; Cheung, E; Edmondson, EM; Fortson, LF; Griffith, RL; Haussler, B; Han, A; Hart, R; Melvin, T; Parrish, M; Schawinski, K; Smethurst, RJ; Smith, AM; Monthly Notices of the Royal Astronomical Society 464 (2016) pp.4176-4203

64. Projected axis ratios of galaxy clusters in the Horizon-AGN simluation: Impact of baryon physics and comparison with observations
Suto, D; Peirani, S; Dubois, Y; Kitayama, T; Nishimichi, T; Sasaki, S; Suto, Y; PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN 69 (2017) 14

65. J-GEM follow-up observations of the gravitational wave source GW151226
Yoshida, M; Utsumi, Y; Tominaga, N; Morokuma, T; Tanaka, M; Asakura, Y; Matsubayashi, K; Ohta, K; Abe, F; Chimasu, S; Furusawa, H; Itoh, R; Itoh, Y; Kanda, Y; Kawabata, KS; Kawabata, M; Koshida, S; Koshimoto, N; Kuroda, D; Moritani, Y; Motohara, K; Murata, KL; Nagayama, T; Nakaoka, T; Nakata, F; Nishikawa, T; Saito, Y; Terai, T; Tristram, PJ; Yanagisawa, K; Yasuda, N; Doi, M; Fujisawa, K; Kawachi, A; Kawai, N; Tamura, Y; Uemura, M; Yatsu, Y; PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN 69 (2017) 9

66. Modular Categories, Crossed S-matrices, and Shintani Descent
Deshpande, T; INTERNATIONAL MATHEMATICS RESEARCH NOTICES (2017) pp.367-399

67. Stability conditions on C\textsc{ny} categories associated to A\textsc{a}-quivers and period maps
Ikeda, A; MATHEMATICALE ANNALES 367 (2017) pp.1-49

68. Photometric properties of intermediate-redshift Type Ia supernovae observed by the Sloan Digital Sky Survey-II Supernova Survey
Takanashi, NH; Doi, M; Yasuda, N; Kuncarayakti, H; Konishi, K; Schneider, CN; Cinabro, D; Marriner, J; MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 465 (2016) pp.1274-1288

69. Lyx emitters with very large Lyx equivalent widths, EW0(LYx) = 200-400 Å, at z ~ 2
Hashimoto, T; Ouchi, M; Shimasaki, K; Schauer, D; Nakajima, K; Shibuya, T; Ono, Y; Rauch, M; Goto, R; MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 465 (2017) pp.1543-1562

70. Radio light curve of the galaxy possibly associated with FRB 150418
Johnston, S; Keane, EF; Bhandari, S; Macquart, JP; Tingay, SJ; Barr, E; Bassa, CG; Beswick, R; Burgay, M; Chandra, P; Honma, M; Kramer, M; Petroff, E; Possenti, A; Stappers, BW; Sugai, H; MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 465 (2017) pp.2143-2150

71. SDSS-IV MGaNU: bulge-disc decomposition of IFU data cubes (BUDDI)
Johnston, EH; Haussler, B; Aragon-Salamanca, A; Merrifield, MR; Bamford, S; Bershady, MA; Bundy, K; Drory, N; Fu, H; Law, D; Nitschelm, C; Thomas, D; Lopes, AR; Wake, D; Yan, RB; MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 465 (2017) pp.2371-2381

72. Merger-driven evolution of the effective stellar initial mass function of massive early-type galaxies
Sonnensfeld, A; Nipoti, C; Treu, T; MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 465 (2017) pp.2397-2401

73. A new quadruple gravitational lens from the Hyper Suprime-Cam Survey: the puzzle of HSC J11522+004733
More, A; Lee, CH; Oguri, M; Ono, Y; Suyu, SH; Chan, JHH; Silverman, JD; More, S; Schulze, A; Komiya, Y; Matsuo, Y; Miyazaki, S; Nagao, T; Ouchi, M; Tait, PJ; Tanaka, MM; Tanaka, M; Usuda, N; PUBLICATIONS OF THE ROYAL ASTRONOMICAL SOCIETY 465 (2017) pp.2411-2419

74. Tagging a monopt signature in natural SUSY
Goncalves, D; Sakurai, K; Takeuchi, M; PHYSICAL REVIEW D 95 (2017) 15030

75. First measurement of the muon neutrino charged current single pion production cross section on water with the T2K near detector
Abe, K; Andreopoulos, C; Antonova, M; Ariga, A; Askibylekov, S; Autiero, D; Ban, S; Barbieri, G; Barker, G; Bartelt-Friburg, P; Bartkiewicz, M; Bay, F; Berardi, V; Berkman, S; Bharda, S; Bienstock, S; Bird, M; Bisesi, S; Bordoni, S; Boyd, S; Brailsford, D; Bravar, A; Bronner, C; Avanzini, MB; Calland, RG; Campbell, T; Caou, S; Cartwright, SL; Castillo, R; Catenese, MG; Cervera, A; Cherdack, D; Chikuma, N; Christoudoulou, G; Clifton, A; Coleman, J; Collazuol, G; Coplowe, D; Cremone, L; Darbrowska, A; De Rosa, G; Deleaty, T; Denner, PF; Dennis, SR; Densham, C; Dwehurst, D; Dodi, D; Duarte, D; DiLuise, S; Dolan, S; Draper, D; Duffy, KE; Dumm, J; Dymian, S; Dzieziewicki, M; Emery-Schrenk, S; Ereditato, A; Feuets, T; Finch, AJ; Fiorentini, GA; Friend, M; Fuji, H; Fukuda, F; Fukuda, Y; Furmanski, AP; Galymov, V; Garcia, A; Giffen, SG; Giganti, C; Gilej, K; Gizzarelli, F; Gion, M; Grant, N; Hadley, DR; Haegel, L; Haigh, MD; Hamilton, P; Hansen, D; Harada, J; Harra, T; Hartz, M; Hasegawa, T; Hastings, NC; Hayashino, T; Hayato, Y; Helmer, BL; Hierholzer, M; Hillairet, A; Himel, A; Hiraki, T; Hirota, S; Hogan, M; Holeczek, J; Horikawa, S; Hosoml, F; Huang, K; Ichikawa, AK; Ikci, K; Ikeda, Y; Imberger, J; Insler, J; Intonti, RA; Ivyne, TJ; Ishida, T; Isihl, T; Iwai, E; Iwamoto, K; Izmaylov, A; Jacob, A; Jameson, B; Jianger, M; Johnson, S; Jos, JH; Jonsson, P; Jung, CK; Kabirzewzad, M; Kalbath, AC; Kajita, T; Kakuno, H; Kameda, J; Karlen, D; Karpikov, L; Katori, T; Kears, E; Khabsibullin, M; Khotantsev, A; Kielczewska, D; Kikawa, T; Kim, K; King, J; Kissel, J; Knight, A; Knox, A; Kobayashi, T; Koch, L; Koga, T; Konaka, A; Kondo, K; Kopylov, A; Kosmos, LL; Korzenek, A; Kosio, Y; Kropp, W; Kudenko, Y; Kurjata, R; Kutser, T; Lagoda, T; Lamont, I; Larkin, E; Lasorak, P; Laveder, M; Lawe, M; Lazos, M; Lindner, T;
81. Shortening anomalies in supersymmetric theories
Gomis, J; Komargodski, Z; Ooguri, H; Seiberg, N; Wang, Y
JOURNAL OF HIGH ENERGY PHYSICS (2017) 67

82. Quark-gluon discrimination in the search for gluino pair production at the LHC
Bhattacherjee, B; Mukhopadhyay, S; Nojiri, MM; Sakaki, Y; Webber, BR
JOURNAL OF HIGH ENERGY PHYSICS (2017) 44

83. Discovery of a Very Bright and Intrinsically Very Luminous, Strongly Lensed ly Alpha Emitting Galaxy at z=2.82 in the BOSS Emission-Line Lens Survey
Marques-Chaves, R; Perez-Fournon, I; Shu, YP; Martinez-Navajas, PL; Bolton, AS; Kochanek, CS; Oguri, M; Zheng, Z; Mao, SD; Montero-Dorta, AD; Comamache, MA; Brownstein, JR
ASTROPHYSICAL JOURNAL LETTERS 834 (2017) L18

84. BULGE-FORMING GALAXIES WITH AN EXTENDED ROTATING DISK AT z similar to 2
Tadaki, K; Genzel, R; Kodama, T; Wuyts, S; Wisnioski, E; Schreiber, NMF; Burkert, A; Lang, P; Tacconi, LJ; Lust, D; Belli, S; Davies, RJ; Hatsukade, B; Hayashi, M; Herrera-Camus, R; Ikari, S; Inoue, S; Kohno, K; Koyama, Y; Mendel, JT; Nakanishi, K; Shimasaku, K; Suzuki, TL; Tamura, Y; Tanaka, I; Ubler, H; Wilson, DJ
ASTROPHYSICAL JOURNAL 834 (2017) 135

85. SCSAO AND GPI Y JH BAND PHOTOMETRY AND INTEGRAL FIELD SPECTROSCOPY OF THE YOUNG BROWN DWARF COMPANION TO HD 1160
Garcia, EV; Currie, T; Guyon, O; Stassun, KG; Jovanovic, N; J; Kudo, T; Dougherty, D; Schlieder, J; Kwon, J; Uyama, T; Kuzuhara, M; Caron, JC; Nakagawa, T; Hashimoto, J; Kusakabe, N; Abe, L; Brandner, W; Brandt, TD; Feldt, M; Goto, M; Grady, CA; Hayama, Y; Hayashi, M; Hayashi, SS; Henning, T; Hodapp, KW; Ishii, M; Iye, M; Janson, MJ; Kandori, R; Knap, GR; Matsuo, T; McElwain, MW; Miyama, S; Morino, JT; Moro-Martin, A; Nishimura, T; Poy, TS; Serabyn, E; Suenaga, T; Suto, H; Suzuki, R; Takahashi, YH; Takami, H; Takami, M; Terada, H; Thalmann, C; Turner, EL; Watanabe, M; Wisniewski, J; Yamada, T; Usuda, T; Tamura, M
ASTROPHTSY 834 (2017) 162

86. CP violating phase from minimal texture neutrino mass matrix: Test of the phase relevant to leptogenesis
Fukugita, M; Kaneta, Y; Shimizu, Y; Taniguchi, Y; Gomis, J; Komargodski, Z; Ooguri, H; seiberg, n; Wang, Y
JOURNAL OF HIGH ENERGY PHYSICS (2017) 27

87. Lower limit on the gravitino mass in low-scale gauge mediation with m_{3/2} ≃ 125 GeV
Ibe, M; Yanagida, TY
PHYSICS LETTERS B 764 (2017) pp.163-166

88. ISOPHOTE SHAPES OF EARLY-TYPE GALAXIES IN MASSIVE CLUSTERS AT z similar to 1 AND 0
Mitsuda, K; Doi, M; Morokuma, T; Suzuki, N; Yasuda, N; Perlmutter, S; Aldering, G; Meyers, J
ASTROPHTSY 834 (2017) 109

89. Identifying a new particle with jet substructures
Han, CC; Kim, D; Kim, M; Kong, KC; Lim, SH; Park, M
JOURNAL OF HIGH ENERGY PHYSICS (2017) 27

90. Consistency relations for large-scale structures with primordial non-Gaussianities
Valageas, P; Dasgupta, P; Taruya, A; Nishimuta, T; Aghanim, N; Pelcat, R; Alekseev, P; Vissers, T; Hikage, T; Adhikari, K;宝贵的; Matsubara, Y; Terasaki, Y; Terasawa, Y; Kasahara, Y; Takeda, M; Takeda, K; Abe, K; Haga, Y; Hayato, Y; ikeda, M; iyogi, K; Kameda, J; Kishimoto, Y; Miura, M; Moriyama, S; Nakahata, M; Nakajima, T; Nakano, Y; Nakayama, S; Orii, A; Sekiya, H; Shimozawa, M;...
Kavli IPMU
Annual Report 2016

84

110.
108.
112.
111.
111.
110.
110.
108.
108.
112.
112.
111.
111.
110.
110.
112.
112.
111.
111.
110.
110.
112.
112.
111.
111.
110.
110.
112.
112.
111.
111.
110.
110.
112.
112.
111.
111.
110.
110.
112.
112.
111.
111.
110.
110.
112.
112.
111.
111.
110.
110.
112.
112.
111.
111.
110.
110.
112.
112.
111.
111.
110.
110.
112.
112.
111.
111.
110.
110.
112.
112.
111.
111.
110.
110.
112.
112.
111.
111.
110.
110.
112.
112.
111.
111.
110.
110.
112.
112.
111.
111.
110.
110.
112.
112.
111.
111.
110.
110.
112.
112.
111.
111.
110.
110.
112.
112.
111.
111.
110.
110.
112.
112.
111.
111.
110.
110.
112.
112.
111.
111.
110.
110.
112.
112.
111.
111.
110.
110.
112.
112.
111.
111.
110.
110.
112.
112.
111.
111.
110.
110.
112.
112.
111.
111.
110.
110.
112.
112.
111.
111.
110.
126. VLA AND ALMA IMAGING OF INTENSE GALAXY-WIDE STAR FORMATION IN z similar to 2 GALAXIES Rujopakarn, W; Dunlop, JS; Rieke, GH; Vison, RJ; Cibinel, A; Nyland, K; Jagnanathan, P; Silverman, JD; Alexander, DM; Biggs, AD; Bhatnagar, S; Ballantyne, DR; Dickinson, M; Elbaz, D; Geach, JE; Hayward, CC; Kirkpatrick, A; McLure, RJ; Michalowski, MJ; Miller, NA; Narayanan, D; Owen, FN; Pannella, M; Papovich, C; Pope, A; Rau, U; Robertson, BE; Scott, D; Swinbank, AM; van der Werf, P; van Kampen, E; Weiner, BJ; Windhorst, RA

127. Spacetime equals entanglement Nomura, Y; Salzetta, N; Sanches, F; Weinberg, SJ
PHYSICS LETTERS B 763 (2016) pp.370-374

128. SUPERNOVAE POWERED BY MAGNETARS THAT TRANSFORM INTO BLACK HOLES Moriya, TJ; Metzger, BD; Blinnikov, SI
ASTROPHYSICAL JOURNAL 833 (2016) 64.

129. CONSTRAINT ON THE INFLOW/OUTFLOW RATES IN STAR-FORMING GALAXIES AT z similar to 1.4 FROM MOLECULAR GAS OBSERVATIONS Seko, A; Ohta, K; Yabe, K; Hatsukade, B; Akiyama, M; Tamura, N; Iwamuro, F; Dalton, G

130. Angular power spectrum of the diffuse gamma-ray emission as measured by the Fermi Large Area Telescope and constraints on its dark matter interpretation Formosa, M; Cuoco, A; Zavala, J; Gaskins, JM; Sanchez-Conde, MA; Gomez-Vargas, G; Komatsu, E; Linden, T; Prada, F; Zandanel, F; Morelli, A
PHYSICAL REVIEW D 94 (2016) 123005

131. Monopole operators from the 4-epsilon expansion Chester, SM; Mezei, M; Pufu, SS; Vaayk, I
JOURNAL OF HIGH ENERGY PHYSICS (2016).

132. SDSS-IV MaNGA IFS GALAXY SURVEY-SURVEY DESIGN, EXECUTION, AND INITIAL DATA QUALITY Yan, RB; Bundy, K; Law, DR; Bershady, MA; Andrews, B; Cherinka, B; Diamond-Stanic, AM; Drory, N; MacDonald, N; Sanchez-Gallego, JR; Thomas, D; Wake, DA; Weijmans, AM; Westfall, KB; Zhang, K; Aragon-Salamanca, A; Belfiore, F; Bizyaev, D; Blanc, GA; Blanton, MR; Brownstein, J; Cappellari, M; D’Souza, R; Emsellem, E; Fu, H; Gaulme, P; Graham, MT; Goddard, D; Gunn, JE; Harding, P; Jones, A; Kinemuchi, K; Li, C; Li, HY; Maoilinó, R; Mao, SD; Maraston, C; Masters, K; Merrifield, MR; Oravetz, D; Pan, K; Parejko, JK; Sanchez, SF; Schlegel, D; Simmons, A; Thanjavur, K; Tinker, J; Tremonti, C; van den Bosch, R; Zheng, Z
ASTRONOMICAL JOURNAL 152 (2016) 197.

133. Transit timing variation and transmission spectroscopy analyses of the hot Neptune GJ3470b Awiphan, S; Kerins, E; Pichade, S; Komornjinda, S; Dhillon, VS; Rujopakarn, W; Poshyachinda, S; Marsh, TR; Reichart, DE; Ivarsen, KM; Haislip, JB
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 463 (2016) pp.2574-2582

134. Gravitational collapse and the thermal evolution of low-metallicity gas clouds in the early Universe Chiaki, G; Yoshida, N; Hirano, S
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 463 (2016) pp.2781-2798

135. Type Ia supernovae within dense carbon- and oxygen-rich envelopes: a model for ‘Super-Chandrasekhar’ explosions? Noebauer, UM; Taubenberger, S; Blinnikov, S; Sorokina, E; Hillebrandt, W

136. Empowering line intensity mapping to study early galaxies Comaschi, P; Ferrara, A

137. Observational challenges in Lyc intensity mapping Comaschi, P; Yue, B; Ferrara, A

138. The HORIZON-AGN simulation: morphological diversity of galaxies promoted by AGN feedback Dubois, Y; Peirani, S; Pichon, C; Devriendt, J; Gavazzi, R; Welker, C; Volonteri, M

139. LoCuSS: exploring the selection of faint blue background galaxies for cluster weak-lensing Ziparo, F; Smith, GP; Okabe, N; Haines, CP; Pereira, MJ; Egami, E

140. Uncertainties in the production of p nuclei in massive stars obtained from Monte Carlo variations Rauscher, T; Nishimura, N; Hirschi, R; Cescutti, G; Murphy, AS; Heger, A

141. Gravitational positive energy theorems from information inequalities Lashkari, N; Lin, J; Ooguri, H; Stoica, B; Van Raamsdonk, M

142. W'-Algebra constraints and topological recursion for A2-singularity (with an Appendix by Danilo Lewanski) Milanov, T; Lewanski, D

143. A substellar companion to Pleiades Hill 3441 Konishi, M; Matsu, T; Yamamoto, K; Samland, M; Sudo, J; Shibai, H; Itoh, Y; Fukagawa, M; Sumi, T; Kudo, T; Hashimoto, J; Kuzuhara, M; Usuda, K; Abe, L; Akiyama, E; Brandner, W; Brandt, TD; Carson, J; Feldt, M; Goto, M; Grady, CA; Guyon, O; Hayano, Y; Hayashi, M; Hayashi, SS; Henning, T; Hodapp, KW; Ishii, M; Iye, M; Janson, M; Kandori, R; Knapp, GR; Kwon, J; McLwain, MW; Mede, K; Miyama, S; Morino, J; Moro-Martin, A; Nishimura, T; Oh, D; Pyo, TS; Serabyn, E; Schleier, JE; Suenaga, T; Suto, H; Suzuki, T; Takahashi, YH; Takami, M; Takato, N; Terada, H; Thalmann, C; Turner, EL; Watanabe, M; Wisniewski, JP; Yamada, T; Takami, H; Usuda, T; Tamura, M

144. Machine-learning selection of optical transients in the Subaru/Hyper Suprime-Cam survey Morii, M; Ikeda, S; Tomimaga, N; Tanaka, M; Morokuma, T; Ishiguro, K; Yamato, J; Ueda, N; Suzuki, N; Yasuda, N; Yoshida, N

145. Evolution and statistics of non-sphericity of dark matter halos from cosmological N-body simulation Suto, D; Kitayama, T; Nishimichi, T; Sasaki, S; Suto, Y

Kavli IPMU Annual Report 2016
176. Principal shapes and squeezed limits in th effective field theory of large scale structure
Bertolini, D; Solon, MP
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2016) 39

177. Matter power spectrum in hidden neutrino interacting dark matter models: a closer look at the collision term
Binder, T; Covi, L; Kamada, A; Murayama, H; Takahashi, T; Yoshida, N
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2016) 43

178. Solving puzzles of GW150914 by primordial black holes
Blinnikov, S; Dolgov, A; Porayko, NK; Postnov, K
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2016) 36

179. SUSY effects in Higgs production at high energy e+e– colliders
Cao, J; Han, CC; Ren, J; Wu, L; Yang, JM; Zhang, Y
CHINESE PHYSICS C 40 (2016) 113104

180. High contrast imaging of epsilon Eridani with ground-based instruments
Mizuki, T; Yamada, T; Carson, JC; Kuzuhara, M; Nakagawa, T; Nishikawa, J; Sitko, M; Abe, L; Brandner, W; Brandt, TD; Currie, T; Feldt, M; Goto, M; Grady, CA; Guyon, O; Hayano, Y; Hayashi, M; Hayashi, SS; Henning, T; Hodapp, KW; Ishii, M; Iye, M; Jovanovic, MD; Kandori, R; Knapp, GR; Kurosu, Y; Matsuo, T; Mcelwain, MW; Miyama, S; Morino, J; Moro-Martín, A; Nishimura, T; Pyo, T; Serabyn, E; Suenaga, T; Suto, H; Suzuki, R; Takahashi, YH; Takami, M; Takato, N; Terada, H; Thalmann, C; Turner, EL; Watanabe, M; Wisniewski, J; Takami, H; Usuda, T; Tamura, M
ASTRONOMY & ASTROPHYSICS 595 (2016) A79

181. A measurement of the time profile of scintillation induced by Monotop signature from the supersymmetric
Kobayashi, K; Koba mayashi, M; Moriyama, S; Nakahata, M; Norita, T; Ogawa, H; Sekiya, H; Takachio, O; Takeda, A; Tasaka, S; Yamashita, M; Yang, BS; Kim, NY; Kim, YD; Itow, Y; Kegasa, R; Kobayashi, K; Koga, K; Fushimi, K; Martens, K; Suzuki, Y; Fujita, R; Hosokawa, K; Miuchi, K; Oka, N; Onishi, Y; Takeuchi, Y; Kim, YH; Lee, JS; Lee, KB; Lee, MK; Fukuda, Y; Nishijima, K; Nakamura, S
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 834 (2016) pp.192-196

182. The HYDRODYNAMIC FEEDBACK OF COSMIC REIONIZATION
The REIONIZATION ERA?
Arkharov, AA; Bachev, R; Benitez, E; Borman, GA; Carosati, D; Hiriart, D; Hu, SM; Itoh, R; Jableka, D; Jorstad, S; Jovanovic, MD; Kandori, R; Takato, N; Terada, H; Thalmann, C; Turner, EL; Watanabe, M; Wisniewski, J; Takami, H; Usuda, T; Tamura, M
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2016) 92

183. Primordial black holes as dark matter in supergravity inflation models
Kawasaki, M; Kusenko, A; Tada, Y; Yanagida, TT
PHYSICAL REVIEW D 94 (2016) 83523

184. A pseudo-spectrum analysis of galaxy-galaxy lensing
Hikage, C; Oguri, M

185. A measurement of the time profile of scintillation induced by low energy gamma-rays in liquid xenon with the XMASS-I detector
Takai, H; Abe, K; Hiraide, K; Ichimura, K; Kishimoto, Y; Kobayashi, K; Kobayashi, M; Moriyama, S; Nakahata, M; Norita, T; Ogawa, H; Sekiya, H; Takachio, O; Takeda, A; Tasaka, S; Yamashita, M; Yang, BS; Kim, NY; Kim, YD; Itow, Y; Kegasa, R; Kobayashi, K; Koga, K; Fushimi, K; Martens, K; Suzuki, Y; Fujita, R; Hosokawa, K; Miuchi, K; Oka, N; Onishi, Y; Takeuchi, Y; Kim, YH; Lee, JS; Lee, KB; Lee, MK; Fukuda, Y; Nishijima, K; Nakamura, S
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 834 (2016) pp.192-196

186. The FATE OF ACCRETING SUPERMASSIVE STARS
Umeda, H; Hosokawa, T; Omukai, K; Yoshida, N
ASTRONOMICAL LETTERS 830 (2016) L34

187. The CHANDRA COSMOS-LEGACY SURVEY: SOURCE X-RAY SPECTRAL PROPERTIES
Marchesi, S; Lanzuisi, G; Civano, F; Iwasawa, K; Suh, H; Comastri, A; Zamorani, G; Allevato, V; Griffiths, R; Miyaji, T; Ranalli, P; Salvadori, M; Schawinski, K; Silverman, J; Treister, E; Urry, CM; Vignali, C
ASTRONOMICAL LETTERS 830 (2016) 100

188. DO THE MOST MASSIVE BLACK HOLES AT z=2 GROW VIA MAJOR MERGERS?
Mehrtley, M; Jahnke, K; Windhorst, RA; Andrae, R; Cisternas, M; Cohen, SH; Hewlett, P; Koekemoer, AM; Schramm, M; Schulze, A; Silverman, JD; Villforth, C; van der Wel, A; Wisotzki, L
ASTRONOMICAL LETTERS 830 (2016) 156

189. Monoprot signature from the supersymmetric rH channel
Goncalves, D; Sakurai, K; Takeuchi, M
PHYSICAL REVIEW D 94 (2016) 75009

190. The growth of the central region by acquisition of counterrotating gas in star-forming galaxies
Chen, YM; Shi, Y; Tremonti, CA; Bershady, M; Merrifield, M; Emsellem, E; Jin, YF; Huang, S; Fu, H; Wake, DA; Bundy, K; Stark, D; Lin, LW; Argudo-Fernandez, M; Bergmann, TS; Bizyaev, D; Brownstein, J; Bureau, M; Chisholm, J; Drory, N; Guo, Q; Hao, L; Hu, J; Li, C; Li, R; Lopes, AR; Pan, KC; Riffel, RA; Thomas, D; Wang, L; Westfall, K; Yan, RB
NATURE COMMUNICATIONS 7 (2016) 13269

191. Bulk local states and crossings in holographic CFT
Nakayama, Y; Ooguri, H
JOURNAL OF HIGH ENERGY PHYSICS (2016) 85

192. Hofstadter's butterfly in quantum geometry
Hatsuda, Y; Katsura, H; Tachikawa, Y
NEW JOURNAL OF PHYSICS 18 (2016) 103023
206. Angular dependence of primordial trispectra and CMB spectral distortions
Shiraishi, M; Bartolo, N; Liguori, M
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, (2016) 15

207. A SEARCH FOR ELECTRON ANTI NEUTRINOS ASSOCIATED WITH GRAVITATIONAL-WAVE EVENTS GW150914 AND GW151226 USING KAMLAND
Gando, A; Gando, Y; Hachiyi, T; Hayashi, A; Hayashida, S; Ikeda, H; Inoue, K; Ishidoshirio, K; Karino, Y; Koga, M; Matsuda, S; Mitsui, T; Nakamura, K; Obara, S; Ora, T; Ozaki, H; Shimizu, I; Shirahata, Y; Shirai, J; Suzuki, A; Takai, T; Tamae, K; Teraoka, Y; Ueshima, K; Watanabe, H; Kozlov, A; Takemoto, Y; Yoshida, S; Fushimi, K; Piepe, A; Banks, T; Berger, B; Fujikawa, BK; K'Onnell, T; Learched, JG; Sakai, M; Winslow, LA; Krupczak, E; Ouellet, J; Efremenko, Y; Karwowski, HJ; Markoff, DM; Tornov, N; Dewtiver, JA; Enomoto, S; Decowski, MP
ASTROPHYSICAL JOURNAL LETTERS 829 (2016) L34

208. REVIEW OF PARTICLE PHYSICS PARTICLE Data Group
Patrignani, C; Agashe, K; Alioli, G; Alsmiller, C; Antonelli, M; Asner, DM; B ahr, E; Banerjee, S; Barnett, RM; Basaglia, T; Bauer, CW; Beaty, JJ; Belousof, V; Beringer, J; Betheke, S; Bichsel, H; Biebel, O; Blucher, E; Brooijmans, G; Buchmueller, O; Burkert, V; Bychkov, MA; Cahn, RN; Carena, M; Cecchiuzzo, A; Cerri, A; Chakraborty, N; Chen, MC; Chivukula, RS; Chukanov, VV; Chuprikov, A; Ciocci, M; Cribier, M; Cui, MC; Czyz, M; Davier, M; Drees, M; Dreiner, HK; Dürr, M; Eberhardt, M; Eidelman, S; Ellis, J; Erler, J; Esch, Y; Fetscher, W; Fields, BD; Foster, B; Freitas, A; Gallagher, H; Gerber, H; Gershon, T; Godizov, AA; Goodman, M; Grant, C; Groth, A; Groote, J; Gu, J; Hall, M; Hanhart, C; Hashimoto, S; Heinrich, T; Hillyar, S; Hocker, A; Holder, J; Holtkamp, A; Hundt, H; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; Hocker, A; Holder, J; Holtkamp, A; Hundt, J; Hyodo, T; Irwin, K; Jackson, J; Johnson, KF; Kado, JJ; Hikasa, K; Hisano, J; H}
216. Light yield of an undoped CsI crystal coupled directly to a photomultiplier tube at 77 Kelvin
Liu, J; Yamashita, M; Soma, AK
JOURNAL OF INSTRUMENTATION 11 (2016) P10003

217. Toward the detection of gravitational waves under non-Gaussian noises II. Independent component analysis
Morisaki, S; Yokoyama, J; Eda, K; Itoh, Y

218. The Effect of Detector Nonlinearity on WFIRST PSF Profiles for Weak Gravitational Lensing Measurements
Plazas, AA; Shapiro, C; Kannawadi, A; Mandelbaum, R; Rhodes, J; Smith, R
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC 128 (2016) 104001

219. The Sunyaev-Zel'dovich effect at 5 '': RX J1347.5-1145 imaged
the data reduction pipeline for the SDss-IV ManGAifu
211. 234. SXDF-AlMA 2 arcmin(2) deep survey: Resolving and
Predictions for the Majorana cP violation phases
toward the detection of gravitational waves under non-
Gaussian noises II. Independent component analysis
Morisaki, S; Yokoyama, J; Eda, K; Itoh, Y

220. LoCuSS: weak-lensing mass calibration of galaxy clusters
Oka, N; Smith, GP

221. Modelling Lyman α forest cross-correlations with LyMAS
Locchhaas, C; Weinberg, DH; Peirani, S; Dubois, Y; Colombi, S; Blazot, J; Font-Ribera, A; Pichon, C; Devriendt, J

222. Theoretical re-evaluations of the black hole mass bulge mass relation – I. Effect of seed black hole mass
Shirakata, H; Kawaguchi, T; Matsuoka, R; Ishiyama, T; Matsuoka, Y; Nagashima, M; Enoki, M; Ooi, T; Kobayashi, M

223. SIMP from a strong U(1) gauge theory with a monopole condensation
Kamada, A; Yamada, M; Yanagida, TT; Yonekura, K
PHYSICAL REVIEW D 94 (2016) 55035

224. A scenario of heavy but visible baryonic dark matter
Huo, R; Matsumoto, S; Tsai, YLS; Yanagida, TT
JOURNAL OF HIGH ENERGY PHYSICS (2016) 162

225. Effective theory of WIMP dark matter supplemented by simplified models: Singlet-like Majorana fermion case
Matsumoto, S; Mukhopadhyay, S; Tsai, YLS
JOURNAL OF HIGH ENERGY PHYSICS 94 (2016) 65034

226. Belle II silicon vertex detector
Adams, P; Aihara, H; Angellini, C; Aziz, T; Babu, V; Bacher, S; Bahinipati, S; Barberio, E; Barone, C; Barontini, T; Basist, AK; Batignani, G; Bauer, A; Berera, PK; Bergauer, T; Bettarini, S; Bhuyan, B; Bilka, T; Biswas, N; Bosisio, L; Buchsteiner, E; Capotondi, A; Casarosa, G; Ceccanti, M; Cervenkov, D; Chendvankar, SR; Dash, N; Dikev, ST; Dolezel, Z; Dutta, D; Enami, K; Forti, F; Friedl, M; Hara, H; Higuchi, T; Horihuchi, T; Imler, C; Ishikawa, K; Jeon, H; Joo, C; Kandra, J; Klang, KH; Kato, E; Kawakatsu, K; Kody, P; Kohriki, T; Koike, S; Kolwalkar, MM; Krasznica, P; Lanceri, L; Lettenbicher, J; Maki, M; Mammin, P; Mayekar, SN; Mohanty, GB; Mohanty, S; Morii, T; Nakamura, KR; Nakatani, Z; Negishi, K; Nisa, NK; Onuki, Y; Ostrowicz, W; Paladino, A; Paoloni, E; Park, H; Pilo, P; Profeti, A; Rashkyskaya, I; Rao, KK; Rizzo, G; Rozanska, M; Sandilya, S; Sasaki, J; Sato, N; Schultzschik, S; Schwanda, C; Seino, Y; Shimizu, N; Stypula, J; Suzuki, J; Tanaka, S; Tanida, K; Taylor, GN; Thalmeier, R; Thomas, R; Tsuobayama, T; Uozumi, S; Urquijo, P; Vitale, I; Volpi, M; Watanuki, S; Watson, U; Webb, I; Wlchczynski, J; Williams, S; Wurkner, B; Yamamoto, H; Yih, H; Yoshinobu, T
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 831 (2016) pp.80-84

227. A bonding study toward the quality assurance of Belle-II silicon vertex detector modules
Angelini, C; Aziz, T; Babu, V; Bacher, S; Bahinipati, S; Barberio, E; Barone, C; Barontini, T; Basist, AK; Batignani, G; Bauer, A; Berera, PK; Bergauer, T; Bettarini, S; Bhuyan, B; Bilka, T; Biswas, N; Bosisio, L; Buchsteiner, E; Capotondi, A; Casarosa, G; Ceccanti, M; Cervenkov, D; Chendvankar, SR; Dash, N; Dikev, ST; Dolezel, Z; Dutta, D; Enami, K; Forti, F; Friedl, M; Hara, H; Higuchi, T; Horihuchi, T; Imler, C; Ishikawa, K; Jeon, H; Joo, C; Kandra, J; Klang, KH; Kato, E; Kawakatsu, K; Kody, P; Kohriki, T; Koike, S; Kolwalkar, MM; Krasznica, P; Lanceri, L; Lettenbicher, J; Maki, M; Mammin, P; Mayekar, SN; Mohanty, GB; Mohanty, S; Morii, T; Nakamura, KR; Nakatani, Z; Negishi, K; Nisa, NK; Onuki, Y; Ostrowicz, W; Paladino, A; Paoloni, E; Park, H; Pilo, P; Profeti, A; Rashkyskaya, I; Rao, KK; Rizzo, G; Rozanska, M; Sandilya, S; Sasaki, J; Sato, N; Schultzschik, S; Schwanda, C; Seino, Y; Shimizu, N; Stypula, J; Suzuki, J; Tanaka, S; Tanida, K; Taylor, GN; Thalmeier, R; Thomas, R; Tsuobayama, T; Uozumi, S; Urquijo, P; Vitale, I; Volpi, M; Watanuki, S; Watson, U; Webb, I; Wlchczynski, J; Williams, S; Wurkner, B; Yamamoto, H; Yih, H; Yoshinobu, T
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 831 (2016) pp.80-84

228. Exploring photometric redshifts as an optimization problem: an ensemble MCMC and simulated annealing-driven
template-fitting approach
Speagle, JS; Capak, PL; Eisenstein, DJ; Masters, DC; Steinhardt, CL
228. Causal evolutions of bulk local excitations from CFT
Goto, K; Miyaji, M; Takayanagi, T
JOURNAL OF HIGH ENERGY PHYSICS (2016) 130

229. Dark matter annihilation and decay from non-spherical dark halos in galactic dwarf satellites
Hayashi, K; Ichikawa, K; Matsumoto, S; Ibe, M; Ishigaki, MN; Sugah, H

230. SDSS IV MaNGA - spatially resolved diagnostic diagrams: a proof that many galaxies are liERS
Belfiore, F; Maiolino, R; Maraston, C; Emsellem, E; Bershady, MA; Masters, KL; Yan, RB; Bizyaev, D; Boquien, M; Brownstein, JR; Bundy, K; Drory, N; Heckman, TM; Lawrence, DR; Roman-Lopes, A; Pan, K; Stellin, L; Thomas, D; Weijmans, AM; Westfall, KB

231. Necessary Condition for Emergent Symmetry from the Conformal Bootstrap
Nakayama, Y; Ohtsuki, T
PHYSICAL REVIEW LETTERS 117 (2016) 131601

232. TYPE I SUPERLUMINOUS SUPERNOVAE AS EXPLOSIONS INSIDE NON-HYDROGEN CIRCUMSTELLAR ENVELOPES
Sorokina, E; Blinnikov, S; Nomoto, K; Quimby, R; Tolstov, A
ASTROPHYSICAL JOURNAL 829 (2016) pp.17

233. CALET UPPER LIMITS ON X-RAY AND GAMMA-RAY COUNTERPARTS OF GW151226
Adriani, O; Akaishi, Y; Asano, K; Asaoka, Y; Bagliesi, MG; Bigongiari, G; Binns, WR; Bonechi, S; Bongi, M; Brogi, P; Buckley, JH; Cannady, N; Castellini, G; Checchia, C; Cherry, NL; Collazuol, G; Di Felice, V; Eshaba, K; Fuke, H; Gualco, T; Hams, T; Hareyama, M; Hasebe, N; Hibi, K; Ichimura, M; Ioka, K; Ishizaki, W; Israel, MH; Javaid, A; Kasahara, K; Kataoka, J; Kishimoto, Y; Krawczynski, HS; Krizmanic, JF; Kuramata, S; Maraston, C; Emsellem, E; Bershady, MA; Masters, KL; Yan, RB; Bizyaev, D; Boquien, M; Brownstein, JR; Bundy, K; Drory, N; Heckman, TM; Lawrence, DR; Roman-Lopes, A; Pan, K; Stellin, L; Thomas, D; Weijmans, AM; Westfall, KB

234. Solar neutrino measurements in Super-Kamiokande-IV
Abe, K; Haga, Y; Hayato, Y; Ikeda, M; Iyogi, K; Kameda, J; Kishimoto, Y; Marti, L; Miura, M; Moriyama, S; Nakahata, M; Nakajima, T; Nakayama, S; Orii, A; Sekiya, H; Shiozawa, M; Sonoda, Y; Takeda, A; Tanaka, H; Takenaga, Y; Tsakata, S; Tomura, T; Ueno, K; Yokozawa, T; Akutsu, R; Irvine, T; Kaji, H; Kajita, T; Katamori, T; Kameyuki, K; Lee, KP; Nishimura, Y; McLaughlan, T; Okamura, K; Richard, E; Labarga, L; Fernandez, P; Blaszczynski, FDM; Gustafson, J; Kachulis, C; Kearns, E; Raab, JL; Stone, JL; Sulak, LR; Berkman, S; Tobayama, S; Goldhaber, M; Bays, K; Carminati, G; Griskevich, NJ; Kropp, WR; Mine, S; Renshaw, A; Smy, MB; Sobel, HW; Takhistov, V; Weatherly, P; Ganezer, KS; Harthel, BL; Hill, J; Keig, WE; Hong, N; Kim, JJ; Lim, IT; Park, RG; Akiri, T; Albert, JB; Himmel, A; Li, Z; O’Sullivan, E; Scholberg, K; Walter, CW; Wonnir, A; Ishizuka, T; Nakamura, T; Jang, JS; Choi, K; Learned, JG; Matsuoka, S; Smith, SN; Friend, M; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Nishikawa, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Nakano, Y; Suzuki, AT; Takeuchi, Y; Yano, T; Cao, SW; Hayashino, T; Hiraki, T; Hirota, S; Huang, K; Ieki, K; Jiang, M; Kikawa, T; Minamino, A; Murakami, A; Nakaya, T; Patel, ND; Suzuki, K; Takahashi, S; Wendell, RA; Fukuda, Y; Itow, Y; Mitsuka, G; Muto, F; Suzuki, T; Mijakowski, P; Frankiewicz, K; Hignight, J; Imber, J; Jung, CK; Li, X; Palomino, JL; Santucci, G; Taylor, I; Vilela, C; Wilking, MJ; Yanagisawa, C; Fukuda, D; Ishino, H; Kayano, T; Kobayashi, A; Koshiba, Y; Mori, T; Sakuda, M; Takeuchi, J; Yamaguchi, R; Kuno, Y; Takac, R; Kim, SB; Okazawa, H; Choi, Y; Ito, K; Nishijima, K; Koshiba, M; Totsuka, Y; Suda, Y; Yokoyama, M; Bronner, C; Calland, GR; Hertz, M; Martens, K; Obayashi, Y; Suzuki, Y; Vagins, MR; Nattain, CM; Martin, JF; de Perio, P; Tanaka, HA; Konaka, A; Chen, S; Sui, HW; Wan, L; Yang, Z; Zhang, H; Zhang, Y; Connolly, K; Dziomba, M; Wilkes, RJ
PHYSICAL REVIEW D 94 (2016) 52010

235. Cosmological constraints on dark matter annihilation and decay: Cross-correlation analysis of the extragalactic γ-ray background and cosmic shear
Shirasaki, M; Macias, O; Horuchi, S; Shirai, S; Yoshida, N
PHYSICAL REVIEW D 94 (2016) 63522

236. On 4d rank-one N=3 superconformal field theories
Nishinaka, T; Takahikawa, Y
JOURNAL OF HIGH ENERGY PHYSICS (2016) 116

237. Nambu-Goldstone boson hypothesis for squarks and sleptons in pure gravity mediation
Yanagida, TT; Yin, W; Yokozaki, N
JOURNAL OF HIGH ENERGY PHYSICS (2016) 86

238. Gravitational particle production in oscillating backgrounds and its cosmological implications
Ema, Y; Jinno, R; Mukaida, K; Nakayama, K
ASTROPHYSICAL JOURNAL 826 (2016) 17

239. Recursion relations for conformal blocks
Penedones, J; Trevisani, E; Yamazaki, M
JOURNAL OF HIGH ENERGY PHYSICS (2016) 60

240. X-RAY AND OPTICAL CORRELATION OF TYPE I SEYFERT NGC 3516 STUDIED WITH SUZAKU AND JAPANESE GROUND-BASED TELESCOPES
Noda, H; Minezaki, T; Watanabe, M; Koboku, M; Kawaguchi, K; Itoh, R; Morihana, K; Saito, Y; Nakao, H; Imai, M; Moritani, T; Takaki, K; Kawabata, M; Nakaoka, T; Uemura, M; Kawabata, K; Yoshida, M; Arai, A; Takagi, Y; Morokuma, T; Doi, M; Itoh, Y; Yamada, S; Nakazawa, K; Fukazawa, Y; Makishima, K
ASTROPHYSICAL JOURNAL 828 (2016) 78

241. Renormalization group improved Higgs inflation with a running kinetic term
Takahashi, F; Takahashi, R
PHYSICS LETTERS B 760 (2016) pp.329-334

242. Diphoton excess from hidden U(1) gauge symmetry with large kinetic mixing
Takahashi, F; Yamada, M; Yokozaki, N
PHYSICS LETTERS B 760 (2016) pp.486-493

243. Upper bound on the gluino mass in supersymmetric models with extra matters
Moroi, T; Yanagida, TT; Yokozaki, N
PHYSICS LETTERS B 760 (2016) pp.681-688
244. Apparent unitarity violation in high mass region of $\text{M}_{\nu \nu}$ from a "hidden" top partner at high energy colliders
Han, CC; Nojiri, MM; Park, M
PHYSICS LETTERS B 760 (2016) pp.775-779

245. Algebra of the infrared and secondary polytopes
Kapranov, M; Kontsevich, M; Soibelman, Y
ADVANCES IN MATHEMATICS 300 (2016) pp.616-671

246. Simple cosmological solution to the Higgs field instability problem in chaotic inflation and the formation of primordial black holes
Kawasaki, M; Mukaida, K; Yanagida, TT
PHYSICAL REVIEW D 94 (2016) 63509

247. Dai-Freed theorem and topological phases of matter
Yonekura, K
JOURNAL OF HIGH ENERGY PHYSICS (2016) 22

248. Measurements of the atmospheric neutrino flux by Super-Kamiokande: Energy spectra, geomagnetic effects, and solar modulation
Yonekura, Kc; Kearns, E; Raaf, Jl; stone, Jl; sulak, lR; berkman, s; nantais, Wendell, RA; Akutsu, R; irvine, t; Kajita, t; Kaneyuki, K; Kawasaki, M; Mukaida, K; Yanagida, tt
JOUmAL oF HiGH EnERGY PHYsics (2016) 22

249. GUT zilla dark matter
Han, cc; nojiri, MM; Park, M
AstRoNoMY & AstRoPHYsics 593 (2016) A79

250. Adaptive Optics at Optical Wavelengths: Test Observations of Kyoto 3DII Connected to Subaru Telescope AO188
Matsubayashi, K; Sugai, H; Shimono, A; Akita, A; Hattori, T; Hayano, Y; Minowa, Y; Takeyama, N
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC 128 (2016) 95003

251. ASASSN-15lh: A SUPERLUMINOUS ULTRAVIOLET REBRIGHTENING OBSERVED BY SWIFT AND HUBBLE
Brown, PJ; Yang, Y; Cooke, J; Olaes, M; Quimby, RM; Baade, D; Gehrels, N; Hofchool, P; Maund, J; Mould, J; Wang, LF; wheeler, JC
ASTROPHYSICAL JOURNAL 828 (2016) 3

252. SUBARU HIGH-z EXPLORATION OF LOW-LUMINOSITY QUASARS (SHELLQs). I. DISCOVERY OF 15 QUASARS AND BRIGHT GALAXIES AT 5.7 < z < 6.9
Matsuoka, Y; Onoue, M; Kashiwaw, N; Iwasawa, K; Strauss, MA; Nagao, T; Imanishi, M; Niida, M; Toba, Y; Akiyama, M; Asami, N; bosch, J; Foucaud, S; Furusawa, H; Goto, T; Gunn, JE; Harikane, Y; Iida, H; Kawaguchi, T; Kikuta, S; Komiya, Y; Lupton, RH; Minezaki, T; Miyazaki, S; Morokuma, T; Murayama, H; Nakahata, M; Shizawa, M; Takeda, A; Takei, H; Ono, Y; Ouchi, M; Price, PA; Sameshima, H; Silverman, JD; Sugiyama, N; Tait, PJ; Takada, M; Takata, T; Tanaka, M; Tang, JJ; Utsumi, Y
ASTROPHYSICAL JOURNAL 828 (2016) 26

253. First stars, hypernovae, and superluminous supernovae
Nomoto, K
INTERNATIONAL JOURNAL OF MODERN PHYSICS D 25 (2016) 1630025

254. Low energy ghosts and the Jeans’ instability
Gumnukcuoglu, AE; Mukohyama, s; Sotiriou, TP
PHYSICAL REVIEW D 94 (2016) 64001

255. Hidden global conformal symmetry without Virasoro extension in theory of elasticity
Nakayama, Y

256. Threshold corrections to dimension-six proton decay operators in non-minimal SUSY SU(5) GUTS
Bajc, B; Hisano, H; Kuwahara, T; Omura, Y

257. Thermal relic dark matter beyond the unitarity limit
Hanigaya, K; Ibe, M; Kaneta, K; Nakano, W; Suzuki, M
JOURNAL OF HIGH ENERGY PHYSICS. (2016) 151

258. Supersymmetry breaking and Nambu-Goldstone fermions in an extended Nicolai model
Sannomiya, N; Katsura, H; Nakayama, Y

259. Reheating magnetogenesis in the kinetic coupling model
Fujita, T; Namba, R
PHYSICAL REVIEW D 94 (2016) 43523

260. Optical photometry and spectroscopy of the 1987A-like supernova 2009mw
Takats, K; Pignata, G; Bersten, M; Kaufmann, MLR; Anderson, FP; Folatelli, G; Hamuy, M; Stritzinger, M; Haislip, JB; LaCluye,
266. Galaxy And Mass Assembly (GAMA): understanding the wavelength dependence of galaxy structure with bulge-disc decompositions
Kennedy, R; Bamford, SP; Haussler, B; Baldry, I; Bremer, M; Brough, S; Brown, MUL; Driver, S; Duncan, K; Graham, AW; Holwerda, BW; Hopkins, AM; Kelvin, LS; Lange, R; Phillipps, S; Vika, M; Vulcani, B
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 460 (2016) pp.3447-3457

267. Nontrivial center dominance in high temperature QCD
Isikawa, KI; Iwasaki, Y; Nakayama, Y; Yoshie, T
MODERN PHYSICS LETTERS A 31 (2016) 1650150

280. OBSERVATION AND CONFIRMATION OF SIX STRONG-LENSING SYSTEMS IN THE DARK ENERGY SURVEY SCIENCE VERIFICATION DATA
Nord, B; Buckley-Geer, E; Lin, H; Diehl, HT; Helsby, J; Kuropatkin, N; Amara, A; Collett, T; Allam, S; Caminha, GB; De Bom, C; Desai, S; Dumet-Montoya, H; Pereira, MED; Finley, DA; Flaugher, B; Furlanetto, SC; Gaitics, H; Gill, M; Merritt, KW; More, A; Tucker, D; Saro, A; Rykoff, ES; Roso, E; Birrer, S; Abdalla, FB; Agnello, A; Auger, M; Brunner, RJ; Kind, MC; Castander, FJ; Cunha, CE; da Costa, LN; Foley, RJ; Gerdes, DW; Glazebrook, K; Gschwend, J; Hartley, W; Kessler, R; Lagattuta, D; Lewis, G; Maiya, MAG; Makler, M; Menanteau, E; Niemerg, A; Scolnic, D; Verde, JD; Gramm, A; Abbott, TM; Bencini, LN; Berti, F; Bershady, MA; Betoule, MB; Blake, CS; Bovy, J; Carretero, G; Carron, T; Cardiel, AH; Carnero Rosell, A; Castander, FJ; Cunha, C; da Costa, LN; Davis, CO; Desai, S; Diehl, H; D'Andrea, K; Doel, P; Dhawan, K; Dodelson, S; Drlica-Wagner, A; Eifler, TF; Evrard, AE; Flaugher, B; Frieman, JA; Gao, Y; Gaztanaga, E; Gerdes, DW; Gruen, D; Gutierrez, AE; Hamann, B; Honscheid, K; Huang, YW; James, DJ; Jeltema, T; Johnson, RJ; Karcher, S; Kido, S; Kuehn, K; Luo, YF; Marinacci, F; Massardi, F; Melchior, P; Menanteau, E; Miquel, R; Niemeyer, JC; Niemiro, W; Nichol, R; Ogando, R; Plazas, AA; Romer, AK; Sako, M; Sanchez, E; Scarpine, V; Schubnell, M; Secco, A; Suchyta, E; Swanson, KE; Tarle, G; Thaler, J; Walker, AR; Wechsler, R; Zhang, Y
ASTROPHYSICAL JOURNAL 827 (2016) 30

281. Testing statistics of the cMB -mode polarization toward unambiguously establishing quantum fluctuation of the vacuum
Shiraishi, M; Hikage, C; Namba, R; Namikawa, T; Hazumi, M
PHYSICAL REVIEW D 94 (2016) 43506

282. Topological defects and nano-Hz gravitational waves in aligned axion models
Higaki, T; Jeong, KS; Kitajima, N; Sekiguchi, T; Takahashi, F
JOURNAL OF HIGH ENERGY PHYSICS 2016 (2016) 34

283. On SUSY restoration in single-superfield inflationary models of supergravity
Ketov, SV; Terada, T
EUROPEAN PHYSICAL JOURNAL C 76 (2016) 438

284. TeV-scale pseudo-Dirac seesaw mechanisms in an E6 inspired model
Cai, Y; Clarke, JD; Volkas, RR; Yanagida, TT
PHYSICAL REVIEW D 94 (2016) 33003

285. Weak-lensing mass calibration of the Atacama Cosmology Telescope equatorial Sunyaev-Zeldovich cluster sample with the Canada-France-Hawaii telescope stripe 82 survey
Kavli IPMU Annual Report 2016 93
302. LiteBIRD: Mission Overview and Focal Plane Layout
Matsumura, T; Akiba, Y; Arnold, K; Borrell, J; Chendra, R; Chicone, Y; Cukierman, A; de Haan, T; Dobbs, M; Domijon, A; Elleflof, T; Ernad, J; Fujino, T; Fuke, H; Goeckner-wald, N; Halverson, N; Harvey, P; Hasegawa, M; Hattori, K; Hattori, M; Hazumi, M; Hill, C; Hilton, G; Holzapfel, V; Hori, Y; Hurbaym, I; Ichiki, K; Inoue, J; Inoue, M; Inoue, Y; Irn, F; Irwin, K; Ishino, H; Ishitsuka, H; Jeong, K; Katashima, S; Kawai, M; Kawano, I; Keating, J; Kiba, Y; Kimura, K; Kimura, N; Kohri, K; Komatsu, E; Kuo, C; Kuromiya, S; Kusaka, A; Lee, A; Linder, E; Matsufuru, H; Matsuoka, S; Matsuura, S; Mima, S; Mitsuoka, K; Mizukami, M; Morii, H; Morishima, T; Naigai, M; Nagasaki, T; Nagata, R; Nakajima, M; Nakamura, S; Namikawa, T; Naruse, M; Natkaniec, M; Nishihori, T; Nishijo, K; Nishino, H; Nitta, T; Noda, A; Noguchi, T; Ogawa, H; Oguri, S; Ohta, I; Otani, O; Okada, N; Okamoto, A; Okamoto, A; Okamura, T; Rebeiz, G; Richards, P; Sakai, S; Sato, N; Sato, Y; Segawa, Y; Sekiguchi, S; Sekimoto, Y; Sekine, M; Sljajk, U; Sherwin, B; Shinozaki, K; Shu, S; Stompor, R; Sugita, H; Suzuki, T; Suzuki, A; Tajima, O; Takada, S; Takakura, S; Takano, K; Takei, Y; Tomaru, T; Tomita, N; Turner, J; Utsunomiya, S; Uzawa, Y; Wada, T; Watanabe, H; Westbrook, B; Whitehorn, N; Yamada, Y; Yamashita, T; Yoshida, M; Yoshida, T; Yotsuyomoto, Y
JOURNAL OF LOW TEMPERATURE PHYSICS 184 (2016) pp.805-810

303. From the 750 GeV diphoton resonance to multilepton excesses
Bae, KJ; Chen, CR; Hamaguchi, K; Low, I
PHYSICAL REVIEW D 94 (2016) 15035

304. Taming supersymmetric defects in 3d-3d correspondence
Gang, DM; Kim, N; Romo, M; Yamazaki, M
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL 49 (2016) 30LT02

305. The KMOS Redshift One Spectroscopic Survey (KROSS): the Tully-Fisher relation at z ~ 1
Tiley, AL; Stott, JP; Swithinbank, AM; Bureau, M; Harrison, CM; Bower, R; Johnson, HL; Bunker, AJ; Jarvis, MJ; Magdis, G; Sharples, R; Smail, I; Sobral, D; Best, P
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 460 (2016) pp.103-129

306. Exploring the SSIS photometric galaxies with clustering redshifts
Rahman, M; Mendez, AJ; Menard, B; Scranton, R; Schmidt, SJ; Morrison, CB; Budavari, T

307. Reconstruction of CMB temperature anisotropies with primordial CMB induced polarization in galaxy clusters
Liu, GC; Ichiki, K; Tashiro, H; Sugiyama, N
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 460 (2016) pp.1-10

308. MONTE CARLO POPULATION SYNTHESIS OF POST-COMMON-ENVELOPE WHITE DWARF BINARIES AND TYPE la SUPERNOVA RATE
Abdilimit, I; Maeda, K; Li, XD
ASTROPHYSICAL JOURNAL 826 (2016) 53

309. WHERE ARE THE LOW-MASS POPULATION III STARS?
Ishiyama, T; Sudo, K; Yokoi, S; Hasegawa, K; Tominaga, N; Susa, H
ASTROPHYSICAL JOURNAL 826 (2016) 9

310. Is the DBI scalar field as fragile as other k-essence fields?
Mukohyama, S; Namba, R; Watanabe, Y
PHYSICAL REVIEW D 94 (2016) 23514

311. The galaxy luminosity function in groups and clusters: the faint-end upturn and the connection to the field luminosity function
Lan, TW; Menard, B; Mo, HJ

312. Revealing the jet substructure in a compressed spectrum of new physics
Han, C; Park, M
PHYSICAL REVIEW D 94 (2016) 11502

313. Belle II SVD ladder assembly procedure and electrical qualification
Adamczyk, K; Alhara, H; Angelini, C; Aziz, T; Babu, B; Bacher, S; Bahinipati, S; Barberio, E; Baronecelli, T; Basish, AK; Batignani, G; Bauer, A; Behera, PK; Bergauer, T; Bettarini, S; Bhuyan, B; Bil, T; Bosi, F; Bosio, L; Bozek, A; Buchsteiner, F; Casarosa, G; Ceccanti, M; Cervenkov, D; Chen, J; Diamond, S; Dietrich, N; Divecova, S; Dolezal, Z; Dore, D; Forti, F; Friedl, M; Hara, H; Higuchi, T; Horuguchi, T; Immer, C; Ishikawa, A; Joon, HB; Joon, C; Kandra, D; Kang, KH; Kato, E; Kawasaki, T; Kody, P; Koyama, C; Koike, S; Kolwarkar, MM; Kraslicka, P; Lanceit, L; Lettenbicher, J; Mammini, P; Mayekar, SN; Mohanty, G; Mohanty, S; Morii, T; Nakamura, KR; Natkaniec, Z; Negishi, K; Nish, NK; Onuki, Y; Ostrowicz, W; Paladino, A; Paoloni, E; Park, H; Pilu, F; Profeti, A; Rao, KK; Rashevskaya, I; Rizzo, G; Rozanska, M; Sandilya, S; Sasaki, J; Sato, N; Schulzschik, S; Schwanda, C; Seino, Y; Shimizu, N; Stypula, J; Tanaka, S; Tanaka, K; Taylor, GN; Thalmeier, R; Thomas, R; Tsuobayama, T; Uozumi, S; Urquijo, P; Vittale, L; Volpi, M; Watanuki, S; Watson, U; Webb, J; Wiechczynski, J; Williams, S; Wurker, B; Yamamoto, H; Yin, H; Yoshinobu, T

314. The silicon vertex detector of the Belle II experiment
Adamczyk, K; Alhara, H; Angelini, C; Aziz, T; Babu, B; Bacher, S; Bahinipati, S; Barberio, E; Baronecelli, T; Basish, AK; Batignani, G; Bauer, A; Behera, PK; Bergauer, T; Bettarini, S; Bhuyan, B; Bil, T; Bosi, F; Bosio, L; Bozek, A; Buchsteiner, F; Casarosa, G; Ceccanti, M; Cervenkov, D; Chen, J; Diamond, S; Dietrich, N; Divecova, S; Dolezal, Z; Dore, D; Forti, F; Friedl, M; Hara, H; Higuchi, T; Horuguchi, T; Immer, C; Ishikawa, A; Joon, HB; Joon, C; Kandra, D; Kang, KH; Kato, E; Kawasaki, T; Kody, P; Koyama, C; Koike, S; Kolwarkar, MM; Kraslicka, P; Lanceit, L; Lettenbicher, J; Mammini, P; Mayekar, SN; Mohanty, G; Mohanty, S; Morii, T; Nakamura, KR; Natkaniec, Z; Negishi, K; Nish, NK; Onuki, Y; Ostrowicz, W; Paladino, A; Paoloni, E; Park, H; Pilu, F; Profeti, A; Rao, KK; Rashevskaya, I; Rizzo, G; Rozanska, M; Sandilya, S; Sasaki, J; Sato, N; Schulzschik, S; Schwanda, C; Seino, Y; Shimizu, N; Stypula, J; Tanaka, S; Tanaka, K; Taylor, GN; Thalmeier, R; Thomas, R; Tsuobayama, T; Uozumi, S; Urquijo, P; Vittale, L; Volpi, M; Watanuki, S; Watson, U; Webb, J; Wiechczynski, J; Williams, S; Wurker, B; Yamamoto, H; Yin, H; Yoshinobu, T
316. HIGH-CONTRAST IMAGING OF INTERMEDIATE-MASS GIANTS WITH LONG-TERM RADIAL VELOCITY TRENDS
Ryu, Y; Sato, B; Kuzuhara, M; Nariai, T; Takahashi, YH; Uyama, T; Kudo, T; Kusakabe, N; Hashimoto, J; Oriya, M; Harakawa, H; Abe, L; Ando, H; Brandner, W; Brandt, TD; Carson, JC; Currie, T; Egner, S; Feldt, M; Goto, M; Grady, CA; Guyon, O; Hayano, Y; Hayashi, M; Hayashi, SS; Helmi, NG; Hennig, K; Hidding, T; Hodapp, KW; Ida, S; Ishii, M; Iye, M; Izumi, H; Janson, M; Kambe, K; Kandori, H; Knapp, GR; Kubo, K; Kwon, J; Matsuo, T; Mayama, S; McElwan, MW; Mege, K; Miyama, S; Morino, J; Moro-Martin, A; Nishimura, T; Pyy, TS; Serabyn, E; Suenaga, T; Suto, H; Suzuki, R; Takami, M; Takato, N; Takeda, Y; Terao, H; Thalmann, C; Turner, EL; Watanabe, M; Wisniewski, J; Yamada, T; Yoshida, M; Takami, Y; Usuda, T; Tamura, M
ASTROPHYSICAL JOURNAL 825 (2016) 127

317. 2D RADIATION-HYDRODYNAMIC SIMULATIONS OF SUPERNOVA SHOCK BREAKOUT IN BIPOLAR EXPLOSIONS OF A BLUE SUPERGIANT PROGENITOR
Suzuki, A; Maeda, K; Shigeyama, T
ASTROPHYSICAL JOURNAL 825 (2016) 92

318. Search for primordial symmetry breakings in CMB
Shiraiishi, M
MODERN PHYSICS LETTERS A 31 (2016) 164003

319. DISAPPEARANCE OF THE PROGENITOR OF SUPERNOVA iPTF13bvn
Folatelli, G; Van Dyk, SD; Kuncarayakti, H; Maeda, K; Bersten, MC; Nomoto, K; Pignata, G; Harmuy, M; Quimby, RM; Zheng, WK; Filippenko, AV; Clubb, KF; Smith, N; Elias-Rosa, N; Foley, RJ; Miller, AA
ASTROPHYSICAL JOURNAL LETTERS 825 (2016) L22

320. Enhancement of new physics signal sensitivity with mistagged charm quarks
Kim, D; Park, M
PHYSICS LETTERS B 758 (2016) pp.190-194

321. Why three generations?
Ibe, M; Kusenko, A; Yanagida, T
PHYSICS LETTERS B 758 (2016) pp.365-369

322. Separating the Universe into real and fake energy densities
Hu, W; Chiang, CT; Li, Y; LoVerde, M
PHYSICAL REVIEW D 94 (2016) 236002

323. Detecting black-hole binary clustering via the second-generation gravitational-wave detectors
Namikawa, T; Nishiizawa, A; Tanaya, A
PHYSICAL REVIEW D 94 (2016) 24013

324. Constructing perturbation theory kernels for large-scale structure in generalized cosmologies
Tanaya, A
PHYSICAL REVIEW D 94 (2016) 23504

325. DETECTION OF THE SPLASHBACK RADIUS AND HALO ASSEMBLY BIAS OF MASSIVE GALAXY CLUSTERS
More, S; Miyatake, H; Takada, M; Diemer, B; Kravtsov, AV; Dalal, NK; More, A; Murata, R; Mandelbaum, R; Roso, E; Rykoff, ES; Oguri, M; Spergel, DN
ASTROPHYSICAL JOURNAL 825 (2016) 39

326. Testing chirality of primordial gravitational waves with Planck and future CMB data: no hope from angular power spectra
Gerbino, M; Gruppuso, A; Nutku, P; Sola, M; Melchiorri, A
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2016) 44

327. Point splitting renormalization of Schwinger induced current in de Sitter spacetime
Hayashinaka, T; Yokoyama, J
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2016) 12

328. Fermionic Schwinger effect and induced current in de Sitter space
Hayashinaka, T; Fujita, T; Yokoyama, J
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2016) 10

329. Understanding redshift space distortions in density-weighted peculiar velocity
Sugiyama, NS; Okumura, T; Spergel, DN
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2016) 1

330. Planar Lithographed Superconducting LC Resonators for Frequency-Domain Multiplexed Readout Systems
Romer, M; Barr, K; lemon, A; Bender, AN; Cukierman, A; de Haan, T; Dobbs, M; Elleflot, T; Hasegawa, M; Hazumi, M; Holzapfel, W; Hori, Y; Keating, B; Kusaka, A; Lee, A; Montgomery, J; Romer, M; Shirley, L; Suzuki, A; Tran, C
JOURNAL OF LOW TEMPERATURE PHYSICS 184 (2016) pp.486-491

331. Development of Readout Electronics for POLARBEAR-2 Cosmic Microwave Background Experiment
Hattori, K; Akiba, Y; Arnold, K; barron, D; Bender, AN; Cukierman, A; de Haan, T; Dobbs, M; Elleflot, T; Hasegawa, M; Hazumi, M; Holzapfel, W; Hori, Y; Keating, B; Kusaka, A; Lee, A; Montgomery, J; Romer, M; Shirley, L; Suzuki, A; Whitehorn, N

332. Massive gravitons as dark matter and gravitational waves
Aoki, K; Mukohyama, S
PHYSICAL REVIEW D 94 (2016) 24001

333. Search for a Minimal $N = 1$ Superconformal Field Theory in 4D
Xie, D; Yonekura, K
PHYSICAL REVIEW LETTERS 117 (2016) 11604

334. Classification of differential symmetry breaking operators for differential forms
Kobayashi, Y; Kubo, T; Pevzner, M
COMPTES RENDUS MATHEMATIQUE 354 (2016) pp.671-676

335. Establishing atmospheric neutrino oscillations with Super-Kamiokande
Kajita, T; Kumegawa, M

336. Theory prospective on lepton CP violation
Petcov, ST
NUCLEAR PHYSICS B 908 (2016) pp.279-301

337. The energy spectrum of cosmic rays above $10^{17.2}$ eV measured by the fluorescence detectors of the Telescope Array experiment in seven years
Abbasi, RU; Abe, M; Abu-Zayyad, T; Allen, M; Azuma, R; Barckowski, E; Belz, JW; Bergman, DR; Blake, SA; Cady, R; Cheon, BG; Chiba, J; Chikawa, M; Cho, WR; Fujita, T; Fukushima, M; Goto, T; Hanlon, W; Hayashi, Y; Hayashida, N; Hibino, K; Honda, K; Ikeda, D; Inoue, N; Ishii, T; Ishimori, R; Ito, H; Ivanov, D; Jui, CCH; Kadota, K; Kakimoto, F; Kalashev, O; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kawata, K; Kido, E; Kim, HB; Kim, JH; Kim, JH; Kitamura, S; Kitamura, Y; Kuzmin, V; Kwon, YJ; Lan, J; Lundquist, JP; Machida, K; Martens, K; Matsuda, T;
349. CIRCUMSTELLAR AND EXPLOSION PROPERTIES OF TYPE IbN SUPERNOVAE
Morii, Y; Maeda, K
ASTROPHYSICAL JOURNAL 824 (2016) 100

350. THE BOSS EMISSION-LINE LENS SURVEY. III. STRONG LENSING OF Lyx EMITTERS BY INDIVIDUAL GALAXIES
Shu, YP; Bolton, AS; Kochanek, CS; Oguri, M; Perez-Fournon, I; Zheng, Z; Mao, SD; Montero-Dorta, AD; Brownstein, JR; Marques-Chaves, R; Menard, B
ASTROPHYSICAL JOURNAL 824 (2016) 86

351. THE ROLE OF QUENCHING TIME IN THE EVOLUTION OF THE MASS-SIZE RELATION OF PASSIVE GALAXIES FROM THE WISP SURVEY
Zanella, A; Scarlata, C; Corsini, EM; Bedregal, AG; Dalla Bonta, E; Atek, H; Bunker, AJ; Colbert, J; Dai, YS; Henry, A; Malkan, M; Martin, C; Rafelski, M; Rutkowski, MJ; Siana, B; Teplitz, H
ASTROPHYSICAL JOURNAL 824 (2016) 68

352. Spectral sum rules for confining large-N theories
Cherman, A; McGady, DA; Yamazaki, M
JOURNAL OF HIGH ENERGY PHYSICS (2016) 95

353. How much radioactive nickel does ASASSN-15lh require?
Kozyreva, A; Hirsch, R; Blinov, S; den Hartogh, J

354. THE IMPOSSIBLY EARLY GALAXY PROBLEM
Steinhardt, CL; Capak, P; Masters, D; Speagle, JS
ASTROPHYSICAL JOURNAL 824 (2016) 21

355. Viable chaotic inflation as a source of neutrino masses and leptogenesis
Nakayama, K; Takahashi, Y; Yanagida, TT
PHYSICS LETTERS B 757 (2016) pp.32-38

356. Diphonon excess and running couplings
Bae, KJ; Endo, M; Hamaguchi, K; Moroi, T
PHYSICS LETTERS B 757 (2016) pp.493-500

357. Leptogenesis via the 750 GeV pseudoscalar
Kusenko, A; Pearce, L; Yang, L
PHYSICAL REVIEW D 93 (2016) 115005

358. Planck constraints on scalar-tensor cosmology and the variation of the gravitational constant
Ooba, J; Ichiki, K; Chiba, T; Sugiyama, N
PHYSICAL REVIEW D 93 (2016) 122002

359. Cosmological constraint on the light gravitino mass from CMB lensing and cosmic shear
Osato, K; Sekiguchi, T; Shirasaki, M; Kamada, A; Yoshida, N
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2016) 4

360. THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES
Laigle, C; McCracken, HJ; Ilbert, O; Hsieh, BC; Davidson, I; Capak, P; Hasinger, G; Silverman, JD; Pichon, C;Coupon, J; Aussel, H; Le Borgne, D; Caputi, K; Cassata, P; Chang, YX; Olivano, F; Dunlop, J; Fynbo, J; Kartaltepe, JS; Koekemoer, A; Le Fevre, O; Le Floc'h, E; Leauthaud, A; Lilly, S; Lin, L; Marchesi, S; Milvang-Jensen, B; Salvato, M; Sanders, DB; Scoville, N; Smolcic, V; Stockmann, M; Taniguchi, Y; Tasca, L; Toft, S; Vaccari, M; Zabl, J
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES 224 (2016) 24

361. Occam's razor in lepton mass matrices: The sign of the universe's baryon asymmetry
Kaneta, Y; Shimizu, Y; Taninoto, M; Yamagida, TT
PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS (2016) 063B03

362. Contractions of 3-folds: Deformations and invariants
Donovan, W
INTERNATIONAL JOURNAL OF MATHEMATICS 27 (2016) 1640004

363. Cosmology in generalized Proca theories
De Felice, A; Heisenberg, L; Kase, R; Mukohyama, S; Tsujikawa, S; Zhang, YL
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2016) 48

364. Cosmology with a heavy Polonyi field
Harigaya, K; Hayakawa, T; Kawasaki, M; Yamada, M
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2016) 15

365. THE COMPOSITE SPECTRUM OF BOSS QUASARS SELECTED FOR STUDIES OF THE LyC FOREST
Harris, DW; Jensen, TW; Suzuki, N; Bautista, JE; Dawson, KS; Vivek, M; Brownstein, JR; Ge, J; Hamann, F; Herbst, H; Jiang, LH; Moran, SE; Myers, AD; Olmstead, MD; Schneider, DP
ASTRONOMICAL JOURNAL 151 (2016) 155

366. Polarization angle swings in blazars: The case of 3C 279
Kiehlmann, S; Savolainen, T; Horst, SG; Sokolovsky, RY; Schinzel, FK; Marscher, AP; Larirov, VM; Agudo, I; Akita, H; Benitez, E; Berdyugin, A; Blinov, DA; Bockkarev, NG; Borman, GA; Burenkov, AN; Casadio, C; Doroshenko, VT; Efimova, NV; Fukazawa, Y; Gomez, J; Grishina, TS; Hagen-Thorn, VA; Heidt, J; Hirani, D; Itoh, R; Joshi, M; Kawabata, KS; Kimeridze, GN; Kopatskaya, EN; Korobtsev, IV; Kraji, T; Kurtanidze, OM; Kurtanidze, SO; Larirov, EG; Larirov, LV; Lindfors, E; Lopez, JM; McHardy, IM; Molina, SN; Moritani, Y; Morozova, DA; Nazarov, SV; Nikolashvili, MG; Nilsson, K; Putilova, NG; Reinthaler, R; Sadun, A; Sasada, M; Savchenko, SS; Sergeev, SG; Sigua, LA; Smith, PS; Sorcia, M; Spiridonova, OL; Takaki, K; Takalo, LO; Taylor, B; Troitsky, IS; Uemura, M; Ugolkova, LS; Ui, T; Yoshida, M; Zensus, JA; Zhdanova, VE
ASTRONOMY & ASTROPHYSICS 590 (2016) A10

367. LINE-OF-SIGHT VELOCITY AND METALLICITY MEASUREMENTS OF THE PALOMAR S TIDAL STREAM
Ishigaki, MN; Hwang, N; Chiba, M; Aoki, W
ASTROPHYSICAL JOURNAL 823 (2016) 157

368. EXTINCTION LAWS TOWARD STELLAR SOURCES WITHIN A DUSTY CIRCUMSTELLAR MEDIUM AND IMPLICATIONS FOR TYPE IA SUPERNOVAE
Nagao, T; Maeda, K; Nozawa, T
ASTROPHYSICAL JOURNAL 823 (2016) 104

369. Positive Casimir and Central Characters of Split Real Quantum Groups
Ip, ICH
COMMUNICATIONS IN MATHEMATICAL PHYSICS 344 (2016) pp.857-888

370. Moduli spaces of torsion sheaves on K3 surfaces and derived equivalences
Addington, N; Donovan, W; Meachan, C

371. SXDF-ALMA 2-arcmin(2) deep survey: 1.1-mm number counts
Hatsukade, B; Kohno, K; Umehata, H; Aretxaga, I; Caputi, KI; Dunlop, JS; Ikarashi, S; Ionon, D; Ivison, RJ; Lee, M; Makay, R; Matsuda, Y; Motohara, K; Nakamitsu, K; Ohta, K; Tadaki, KI; Tamura, Y; Wang, WH; Wilson, GW; Yamagishi, Y; Yun, MS
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN 68 (2016) 36

372. An effective selection method for low-mass active black holes and first spectroscopic identification
Morokuma, T; Tominaga, N; Tanaka, M; Yasuda, N; Furusawa, H; Taniguchi, Y; Kato, T; Jiang, J; Nagao, T; Kuncarayakti, H;
373. The Subaru FMOS galaxy redshift survey (FastSound). II. The emission line catalog and properties of emission line galaxies
Okada, H; Totani, T; Tonnegawa, M; Akiyama, M; Dalton, G; Glazebrook, K; Iwamura, F; Otto, K; Takato, N; Tamura, N; Yabe, K; Bunke, A; Goto, T; Hikage, C; Ishikawa, T; Okumura, T; Shimizu, I
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN 68 (2016) 47

374. The Subaru FMOS galaxy redshift survey (FastSound). IV. New constraint on gravity theory from redshift space distortions at z ~ 1.4
Okumura, T; Hikage, C; Totani, T; Tonnegawa, M; Okada, H; Glazebrook, K; Blake, C; Ferreira, PG; More, S; Taruya, A; Tsujikawa, S; Akiyama, M; Dalton, G; Goto, T; Ishikawa, T; Iwamura, F; Matsubara, T; Nishimichi, T; Ohta, K; Shimizu, I; Takahashi, R; Takato, N; Tamura, N; Yabe, K; Yoshida, N
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN 68 (2016) 38

375. CONSTRAINTS ON PHOTONIZATION FEEDBACK FROM NUMBER COUNTS OF ULTRA-FAINT HIGH-REDSHIFT GALAXIES IN THE FRONTIER FIELDS
Castellano, M; Yue, B; Ferrara, A; Merlin, E; Fontana, A; Amorin, R; Grazian, A; Marmol-Queralto, E; Michalowski, MJ; Mortlock, A; Paris, D; Parsa, S; Piloy, S; Santini, P
PHYSICAL REVIEW LETTERS 823 (2016) L40

376. HIDE-AND-SEEK WITH THE FUNDAMENTAL METALLICITY RELATION
Kashino, D; Renzini, A; Silverman, JD; Daddi, E
ASTROPHYSICAL JOURNAL LETTERS 823 (2016) L24

377. Detecting high-z galaxies in the near-infrared background
Yue, B; Ferrara, A; Helgason, K

378. Constraining higher-order parameters for primordial non-Gaussianities from power spectra and bispectra of imaging surveys
Hashimoto, I; Taruya, A; Matsubara, T; Namikawa, T; Yokoyama, S
PHYSICAL REVIEW D 93 (2016) 103537

379. Suppressing star formation in quiescent galaxies with supermassive black hole winds
Cheung, E; Bundy, K; Cappellari, M; Peirani, S; Rujopakarn, W; Drory, N; Law, DR; Masters, KL; Thomas, D; Wake, DA; Zhang, K; Gelfand, JD; Bizyaev, D; Roman-Lopes, A; Schneider, DP
NATURE 533 (2016) pp.504-+

380. 750 GeV diphoton resonance in a visible heavy QCD axion model
Chiang, CW; Fukuda, H; Ibe, M; Yanagida, TT
PHYSICAL REVIEW D 93 (2016) 95016

381. Measuring subhalo mass in redMaPPer clusters with CHT Stripe 82 Survey
Li, R; Shan, HY; Kleine, JP; Mo, HJ; Rozo, E; Leauthaud, A; Moustakas, J; Xie, LZ; Erben, T; Van Waerbeke, L; Makler, M; Rykoff, E; Moraes, B

382. DETECTION OF LENSING SUBSTRUCTURE USING ALMA OBSERVATIONS OF THE DUSTY GALAXY SDP. 81
Hezaveh, YD; Dalal, N; Marrone, DP; Mao, YY; Morningstar, W; Wen, D; Blandford, RD; Carlstrom, JE; Fassnacht, CD; Holder, GP; Kemball, A; Marshall, PJ; Murray, N; Levasseur, LP; Vieira, JD; Wechsler, RH
ASTROPHYSICAL JOURNAL 823 (2016) 37

383. BRIGHT AND FAINT ENDS OF LyC LUMINOSITY FUNCTIONS AT z=2 DETERMINED BY THE SUBARU SURVEY: IMPLICATIONS FOR AGNs, MAGNIFICATION BIAS, AND ISM H I EVOLUTION
Konno, A; Ouchi, M; Nakajima, K; Duval, F; Kusakabe, H; Ono, Y; Shimakawa, K
ASTROPHYSICAL JOURNAL 823 (2016) 20

384. MEASUREMENTS OF THE SOFT GAMMA-RAY EMISSION FROM SN2014J WITH SUZUKI
Terada, Y; Maeda, K; Fukazawa, Y; Bamba, A; Ueda, Y; Katsuda, S; Enoto, T; Takahashi, T; Tamagawa, T; Ropke, FK; Summa, A; Diehl, R
ASTROPHYSICAL JOURNAL 823 (2016) 43

385. RG flow and thermodynamics of causal horizons in higher-derivative AdS gravity
Banerjee, S; Bhattacharyya, A
JOURNAL OF HIGH ENERGY PHYSICS (2016). 126

386. Bethe subalgebras in affine Birman-Murakami-Wenzl algebras and flat connections for q-KZ equations
Isaev, AP; Kirillov, AN; Tarasov, VO
JOURNAL OF PHYSICS A-MATHMATICAL AND THEORETICAL 49 (2016) 204002

387. SIMP spectroscopy
Hochberg, Y; Kuflik, E; Murayama, H
JOURNAL OF HIGH ENERGY PHYSICS (2016). 90

388. Knapp-Stein type intertwining operators for symmetric pairs
Moliers, J; Orsted, B; Oshima, Y
ADVANCES IN MATHEMATICS 294 (2016) pp.256-306

389. Revisiting scalar quark hidden sector in light of 750-GeV diphoton resonance
Chiang, CW; Ibe, M; Yanagida, TT
JOURNAL OF HIGH ENERGY PHYSICS (2016). 84

390. Structure of Kähler potential for D-term inflationary attractor models
Nakayama, K; Saiwaka, K; Terada, T; Yamaguchi, M
JOURNAL OF HIGH ENERGY PHYSICS (2016). 67

391. The scale-dependence of halo assembly bias
Sunayama, T; Hearin, AP; Padmanabhan, N; Leauthaud, A

392. Evolving into a remnant: optical observations of SN 1978K at three decades
Kuncarayakti, H; Maeda, K; Anderson, JP; Hamuy, M; Nomoto, K; Galbany, L; Doh, M

393. Revisiting the minimal chaotic inflation model
Harigaya, K; Ibe, M; Kawasaki, M; Yanagida, TT
PHYSICS LETTERS B 756 (2016) pp.113-117

394. CMB constraint on dark matter annihilation after Planck 2015
Kawasaki, M; Nakayama, K; Sekiguchi, T

395. Spontaneous baryogenesis from asymmetric inflaton
Takahashi, F; Yamada, M
PHYSICS LETTERS B 756 (2016) pp.216-220

396. Beyond the dark matter effective field theory and a simplified model approach at colliders
Baek, S; Ko, P; Park, M; Park, WI; Yu, C
PHYSICS LETTERS B 756 (2016) pp.289-294
410. Testing charged current quasi-elastic and multinucleon interaction models in the NEUT neutrino interaction generator with published datasets from the MiniBooNE and MINERvA experiments
Wilkinson, C; Terri, R; Andreopoulos, C; Bercellie, A; Bronner, C; Cartwright, S; de Perio, P; Dobson, J; Duffy, K; Furmanski, AP; Haegel, L; Hayato, Y; Kaboth, A; Manh, K; McFarland, KS; Nowak, J; Redd, A; Rodrigues, P; Sanchez, F; Schwehr, JD; Sinclair, P; Sobczyzk, JT; Stamoilus, P; Stowell, P; Tacik, R; Thompson, L; Tobayama, S; Wascko, M; Zmuda, J PHYSICAL REVIEW D 93 (2016) 72010

411. Comparative analysis of SN 2012dn optical spectra: days-14 to +114
Parent, JT; Howell, DA; Fesen, RA; Parker, S; Bianco, FB; Dilday, B; Sand, D; Valenti, S; Vinko, J; Berlind, P; Challis, P; Milisavljevic, D; Sanders, N; Marion, GH; Wheeler, JC; Brown, P; Calkins, ML; Friesen, B; Kirshner, R; Pritchard, T; Quimby, R; Roming, P MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 457 (2016) pp.3702-3723

412. Exploring the 2MASS extended and point source catalogues with clustering redshifts
Rahman, M; Menard, B; Scranston, R MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 457 (2016) pp.3912-3921

413. The Stripe 82 Massive Galaxy Project - II. Stellar mass completeness of spectroscopic galaxy samples from the Baryon Oscillation Spectroscopic Survey
Leauthaud, A; Bundy, K; Saito, S; Tinker, J; Maraston, C; Tojeiro, R; Huang, S; Brownstein, JR; Schneider, DP; Emslie, J MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 457 (2016) pp.4021-4037

414. A COHERENT STUDY OF EMISSION LINES FROM BROADBAND PHOTOMETRY: SPECIFIC STAR FORMATION RATES AND O III/H β RATIO AT 3 < z < 6 Faisst, AL; Capak, P; Hsieh, BC; Laigle, C; Salvato, M; Tasca, L; Cassata, P; Davidson, I; Ilbert, O; Le Fevre, O; Masters, D; McCracken, HJ; Steinhardt, C; Silverman, JD; De Barros, S; Hasinger, G; Scoville, NZ ASTROPHYSICAL JOURNAL 821 (2016) 122

415. EVOLUTION OF STELLAR-TO-HALO MASS RATIO AT z=0-7 IDENTIFIED BY CLUSTERING ANALYSIS WITH THE HUBBLE LEGACY IMAGING AND EARLY SUBARU/HYPER SUPRISE-CAM SURVEY DATA
Harikane, Y; Ouchi, M; Ono, Y; More, S; Saito, S; Lin, YT; Coupon, J; Shimasaku, K; Shibuya, T; Price, PA; Lin, LW; Hsieh, BC; Ishigaki, M; Komiyama, Y; Silverman, J; Takata, T; Tamazawa, H; Toshikawa, J ASTROPHYSICAL JOURNAL 821 (2016) 123

416. THE CARNEGIE-IRVINE GALAXY SURVEY IV. A METHOD TO DETERMINE THE AVERAGE MASS RATIO OF MERGERS THAT BUILT MASSIVE ELLIPTICAL GALAXIES
Huang, S; Ho, LC; Peng, CY; Li, ZY; Barth, AJ ASTROPHYSICAL JOURNAL 821 (2016) 114

417. MORPHOLOGIES OF ~ 190,000 GALAXIES AT z=0-10 REVEALED WITH HST/LEGACY DATA. II. EVOLUTION OF CLUMPSY GALAXIES Shibuya, T; Ouchi, M; Kubo, M; Harikane, Y ASTROPHYSICAL JOURNAL 821 (2016) 72

418. MULTICOLOR LIGHT CURVE SIMULATIONS OF POPULATION III CORE-COLLAPSE SUPERNOVAE: FROM SHOCK BREAKOUT TO 56CO DECAY Tolsot, A; Nomoto, K; Tominaga, N; Ishigaki, MI; Blinnnikov, S; Suzuki, T ASTROPHYSICAL JOURNAL 821 (2016) 124

419. On p-form theories with gauge invariant second order field equations Deffayet, C; Mukohyama, S; Sivanesan, V PHYSICAL REVIEW D 93 (2016) 85027

420. Dark matter direct detection with accelerometers Graham, PW; Kaplan, DE; Mardon, J; Rajendran, S; Terrano, WA PHYSICAL REVIEW D 93 (2016) 75029

421. Affleck-Dine baryogenesis just after inflation Yamada, M PHYSICAL REVIEW D 93 (2016) 83516

422. Level crossing between the QCD axion and an axionlike particle Daido, R; Kitajima, N; Takahashi, F PHYSICAL REVIEW D 93 (2016) 75027

423. Measuring the distance-redshift relation with the cross-correlation of gravitational wave standard sirens and galaxies Oguri, M PHYSICAL REVIEW D 93 (2016) 83511

424. Statistical properties of diffuse Lyα haloes around star-forming galaxies at z ~ 2 Momose, R; Ouchi, M; Nakajima, K; Ono, Y; Shibuya, T; Shimasaku, K; Yuma, S; Mori, M; Umemura, M MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 457 (2016) pp.2318-2330

425. Detection of stacked filament lensing between SDSS luminous red galaxies Clampitt, J; Miyatake, H; Jain, B; Takada, M MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 457 (2016) pp.2391-2400

427. Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing Mandelbaum, R; Wang, WT; Zu, Y; White, S; Henriques, B; More, S MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 457 (2016) pp.3200-3218

428. The QCD axion from aligned axions and diphoton excess Hijikoki, T; Jeong, KS; Kitajima, N; Takahashi, F PHYSICS LETTERS B 753 (2016) pp.13-16

429. The diphoton resonance as a gravity mediator of dark matter Han, CC; Lee, HM; Park, M; Sanz, V PHYSICS LETTERS B 755 (2016) pp.371-379

430. Interpreting the 750 GeV diphoton excess by the singlet extension of the Manohar-Wise model Cao, JJ; Han, CC; Shang, LL; Su, W; Yang, JM; Zhang, Y PHYSICS LETTERS B 755 (2016) pp.456-463

431. Toward verification of electroweak baryogenesis by electric dipole moments Fuyuto, K; Hisano, J; Senaha, E PHYSICS LETTERS B 755 (2016) pp.491-497

432. THE CRITICAL MASS RATIO OF DOUBLE WHITE DWARF BINARIES FOR VIOLENT MERGER-INDUCED TYPE Ia SUPERNOVA EXPLOSIONS Sato, Y; Nakasato, N; Tanikawa, A; Nomoto, K; Maeda, K; Hachisu, I ASTROPHYSICAL JOURNAL 821 (2016) 67
433. Bootstrapping Critical Ising Model on Three Dimensional Real Projective Space
Nakayama, Y
PHYSICAL REVIEW LETTERS 116 (2016) 141602

434. G2HDM: Gauged Two Higgs Doublet Model
Huang, WC; Tsai, YLS; Yuan, TC
JOURNAL OF HIGH ENERGY PHYSICS (2016) 19

435. Enhanced Higgs mass in Compact Supersymmetry
Tobioka, K; Kitano, R; Murayama, H
JOURNAL OF HIGH ENERGY PHYSICS (2016) 25

436. Measurement of the muon neutrino inclusive charged-current cross section in the energy range of 1-3 GeV with the T2K INGRID detector
Abe, K; Andreopoulos, C; Antonova, M; Aoki, S; Ariga, A; Assylbekov, S; Autiero, D; Barbieri, G; Barker, GP; Barr, G; Bartelt-Friburg, P; Batkiewicz, M; Bay, F; Berardi, V; Berkman, S; Bhadra, S; Blondel, A; Bolognesi, S; Bondini, S; Boyd, SB; Brailsford, D; Bravar, A; Bronner, C; Calland, RG; Cao, S; Rodriguez, JC; Cartwright, SL; Castillo, R; Catanesi, MG; Cervera, A; Cherdack, F; Cherepeshov, N; Yokoyama, M; Yoo, J; Yoshida, K; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, ED; Zito, M; Zmuda, J
PHYSICAL REVIEW D 93 (2016) 72002

437. Phenomenology in minimal theory of massive gravity
De Felice, A; Mukohyama, S
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2016) 28

438. Time-delay cosmography: increased leverage with angular diameter distances
Jee, I; Komatsu, E; Suyu, SH; Huterer, D
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2016) 31

Kobayashi, T; Pevzner, M
SELECTA MATHEMATICA-NEW SERIES 22 (2016) pp.801-845

440. Differential symmetry breaking operators: II. Rankin-Cohen operators for symmetric pairs
Kobayashi, T; Pevzner, M
SELECTA MATHEMATICA-NEW SERIES 22 (2016) pp.847-911

441. Neutron excess number and nucleosynthesis of heavy elements in a type Ia supernova explosion
Panov, IV; Korneev, IV; Blinnikov, ST; Rofe, F
JETP LETTERS 103 (2016) pp.431-434

442. Design and Performance of a Prototype Polarization Modulator Rotational System for Use in Space Using a Superconducting Magnetic Bearing
Kobayashi, T; Kuch, L; Koga, T; Konaka, A; Konno, K; Koplyov, A; Kormos, LL; Korzenev, A; Koshti, Y; Kropf, W; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Larkin, E; Laveder, M; Lawe, M; Lazos, M; Lindner, T; Liptak, ZJ; Litchfield, RP; Maruyama, T; Matveev, V; Mavrokoridis, K; Ma, WY; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, KS; McGrew, C; Melfodie, A; Mezzetto, M; Mijakowski, P; Miller, CA; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Moniwa, S; Mueller, TA; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, KG; Nakamura, K; Nakamura, KD; Nakayama, S; Nakayama, T; Nayakshi, K; Nantas, C; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; Nowak, J; O’Keeffe, HM; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, SM; Ovsyannikova, T; Owen, RA; Oyama, Y; Palladino, V; Palomino, JL; Paolone, V; Payne, D; Perkin, JD; Petrov, Y; Pickard, L; Pickering, J; Guerra, ESP; Pistillo, C; Popov, B; Posada-Dezulzo, M; Poutissou, JM; Poutissou, R; Puzzolci, P; Quilain, B; Radicioni, E; Ratoff, PN; Ravonel, M; Rayner, MAM; Redij, J; Reinherz-Aronis, E; Riccio, C; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Rycher, A; Sacco, R; Sakashita, K; Sanchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schweh, JD; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalabera, D; Shah, R; Shalikhev, A; Shaker, F; Shaw, D; Shiozawa, M; Shirahige, T; Short, S; Smy, M; Sobczyk, JT; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Stewart, T; Suda, Y; Suvorov, S; Suzuki, A; Suzuki, K; Suzuki, SY; Suzuki, Y; Tack, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, HK; Tanaka, HA; Terhorst, D; Terri, R; Thompson, LF; Tobayama, S; Toki, W; Tomura, T; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vallani, Z; Vasseur, G; Wachala, T; Wakamatsu, K; Walter, CW; Wark, D; Warzych, W; Wasclo, MO; Weber, A; Wendell, R; Wilkes, RJ; Wilking, MJ; Wilkinson, C; Wilson, JR; Wilson, RJ; Yamada, Y; Yamamoto, K; Yamamoto, M; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yoo, J; Yoshida, K; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, ED; Zito, M; Zmuda, J
PHYSICAL REVIEW D 93 (2016) 72002

443. Near-infrared imaging polarimetry of LkCa 15: A possible warped inner disk
Oh, D; Hashimoto, J; Tamura, M; Wsiewniacki, J; Akiyama, E; Currie, T; Mayama, S; Takami, M; Thalmann, C; Kudo, T; Kusakabe, N; Abe, L; Brandner, W; Brandt, TD; Carson, JC; Egner, S; Feldt, M; Goto, MD; Grady, CA; Guyon, O; Hayano, Y; Hayashi, H; Hayashi, SS; Henning, T; Hodapp, KW; Ichii, M; Iye, H; Mason, J; Mankovich, N; Knapp, GR; Kuzuhara, M; Kwon, J; Matsuo, T; McElwain, MW; Miyama, S; Morino, JT; Moro-Martín, A; Nishimura, T; Psaltis, DS; Rebbi, A; Riefler, A; Sakai, T; Sakumoto, A; Sato, F; Shao, X; Schellberg, E; Schuitema, J; Schubert, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalabera, D; Shah, R; Shalikhev, A; Shaker, F; Shaw, D; Shiozawa, M; Shirahige, T; Short, S; Smy, M; Sobczyk, JT; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Stewart, T; Suda, Y; Suvorov, S; Suzuki, A; Suzuki, K; Suzuki, SY; Suzuki, Y; Tack, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, HK; Tanaka, HA; Terhorst, D; Terri, R; Thompson, LF; Tobayama, S; Toki, W; Tomura, T; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vallani, Z; Vasseur, G; Wachala, T; Wakamatsu, K; Walter, CW; Wark, D; Warzych, W; Wasclo, MO; Weber, A; Wendell, R; Wilkes, RJ; Wilking, MJ; Wilkinson, C; Wilson, JR; Wilson, RJ; Yamada, Y; Yamamoto, K; Yamamoto, M; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yoo, J; Yoshida, K; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, ED; Zito, M; Zmuda, J
PHYSICAL REVIEW D 93 (2016) 72002

444. AGN host galaxy mass function in COSMOS is AGN feedback responsible for the mass-quenching of galaxies?
Bongiorno, A; Schulze, A; Merloni, A; Zamorani, G; Ilbert, O; La Franca, F; Peng, Y; Piconcelli, E; Mainieri, V; Silverman, JD; Brusa, M; Fiore, F; Salvato, M; Scoville, N
ASTRONOMY & ASTROPHYSICS 588 (2016) A78
447. SN. 2012cg: EVIDENCE FOR INTERACTION BETWEEN A NORMAL SN Ia AND A NON-DEGENERATE BINARY COMPANION
Marion, GH; Brown, PJ; Vinko, J; Silverman, JM; Sand, DJ; Challis, P; Kirshner, RP; Wheeler, JC; Berlind, P; Brown, WR; Calkins, ML; Camacho, Y; Dhungana, G; Foley, RJ; Friedman, AS; Graham, ML; Howell, DA; Hsiao, EY; Irwin, JM; Jha, SW; Kehoe, R; Macri, LM; Maeda, K; Mandel, K; McCully, C; Pandya, V; Rines, KJ; Wilhelmy, S; Zheng, WK
ASTROPHYSICAL JOURNAL 820 (2016) 92

448. Pure gravity mediation and spontaneous B-L breaking from strong dynamics
Babu, KS; Schmitz, K; Yanagida, TT
NUCLEAR PHYSICS B 905 (2016) pp.73-95

449. Bethe's quantum numbers and rigged configurations
Kirillov, AN; Sakamoto, R
NUCLEAR PHYSICS B 905 (2016) pp.359-372
<table>
<thead>
<tr>
<th>Preprints</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPMU16-0065</td>
</tr>
<tr>
<td>IPMU16-0066</td>
</tr>
<tr>
<td>Pu Cao, Chen Jiang</td>
</tr>
<tr>
<td>IPMU16-0067</td>
</tr>
<tr>
<td>IPMU16-0068</td>
</tr>
<tr>
<td>IPMU16-0069</td>
</tr>
<tr>
<td>IPMU16-0070</td>
</tr>
<tr>
<td>IPMU16-0071</td>
</tr>
<tr>
<td>Jin-beom Bae, Dongmin Gang, Jaehoon Lee</td>
</tr>
<tr>
<td>IPMU16-0072</td>
</tr>
<tr>
<td>IPMU16-0073</td>
</tr>
<tr>
<td>IPMU16-0074</td>
</tr>
<tr>
<td>IPMU16-0075</td>
</tr>
<tr>
<td>IPMU16-0076</td>
</tr>
<tr>
<td>IPMU16-0077</td>
</tr>
<tr>
<td>IPMU16-0078</td>
</tr>
<tr>
<td>IPMU16-0079</td>
</tr>
</tbody>
</table>
Preprints

IPMU16-0115
The Euler characteristic correction to the Kaehler potential - revisited
Federico Bonetti, Matthias Weissenbacher

IPMU16-0116
Lower limit on the gravitino mass in low-scale gauge mediation with mν = 125GeV
Masahiro Ibe

IPMU16-0117
Cosmological Perturbations of Axion with a Dynamical Decay Constant
Takeshi Kobayashi, Fuminobu Takahashi
JCAP 1608 (2016) no.08, 056, arXiv:1609.01736

IPMU16-0118
Leptogenesis after chaotic sneutrino inflation and its implications for the SUSY breaking scale
Fredrik Bjorkeroth, Stephen F. King, Kai Schmitz, Tsutomu T. Yanagida

IPMU16-0119
Anomaly of strings of 6d N=(1,0) theories
Hiroyuki Shimizu, Yuji Tachikawa

IPMU16-0120
Leptogenesis after chaotic sneutrino inflation and its implications for the SUSY breaking scale
Fredrik Bjorkeroth, Stephen F. King, Kai Schmitz, Tsutomu T. Yanagida

IPMU16-0121
Anomoly of strings of 6d N=(1,0) theories
Hiroyuki Shimizu, Yuji Tachikawa

IPMU16-0122
Unfolded Seiberg-Witten Floer spectra, I: Definition and invariance
Tirasen Khandhawit
arXiv:1604.08240

IPMU16-0123
Nambu-Goldstone Boson Hypothesis for Squarks and Sleptons in Pure Gravity Mediation
Tsutomu T. Yanagida, Wen Yin, Norimi Yokozaki

IPMU16-0124
AMS-02 Positron Excess and Indirect Detection of (Three-body) Decaying Dark Matter
Hsin-Chia Cheng, Wei-Chih Huang, Xiaoyuan Huang, Ian Low, Yue-Lin Sming Tsai, Qiang Yuan
JCAP 1703 (2017) no.03, 041, arXiv:1608.06382

IPMU16-0125
Renormalisation Group Corrections to Neutrino Mixing Sum Rule
J. Gehrlein, S.T. Petcov, M. Spinrath, A. Titov

IPMU16-0126
Vector-Like Pairs and Brill–Noether Theory
Taizan Watari

IPMU16-0127
Transit timing variation and transmission spectroscopy analyses of the hot Neptune GJ3470b

IPMU16-0128
CP violating phase from minimal texture neutrino mass matrix: Test of the phase relevant to leptogenesis
Masataka Fukugita, Yuya Kaneta, Yusuke Shimizu, Morimitsu Tanimoto, Tsutomu T. Yanagida

IPMU16-0129
On time-reversal anomaly of 2+1d topological phases
Yuji Tachikawa, Kazuya Tonekura

IPMU16-0130
Top-squark in natural SUSY under current LHC run-2 data
Chengcheng Han, Jie Ren, Lei Wu, Jin Min Yang, Mengchao Zhang

IPMU16-0131
Impact of axisymmetric mass models for dwarf spheroidal galaxies on indirect dark matter searches
Niki Klop, Fabio Zandanel, Kohei Hayashi, Shin’ichiro Ando

IPMU16-0132
Where does curvaton live? -- Distinguishing bulk/brane frames--
Francois Larrou tutourou, Shinji Mukohyama, Ryo Namba, Yota Watanabe

IPMU16-0133
Identifying a new particle with jet substructures
Chengcheng Han, Doojin Kim, Minho Kim, Kyoungchul Kong, Sung Hak Lim, Myeonghun Park

IPMU16-0134
Violent Preheating in Inflation with Nonminimal Coupling
Yohei Ema, Kyohei Mukaida, Kazunori Nakayama
JCAP 1702 (2017) no.02, 045, arXiv:1609.05209

IPMU16-0135
Holographic Entanglement Entropy
Mukund Rangamani, Tadashi Takayanagi

IPMU16-0136
From Path-Integrals to Tensor Networks for AdS/CFT
Masamichi Miyaji, Tadashi Takayanagi, Kento Watanabe

IPMU16-0137
On topological approach to local theory of surfaces in Calabi-Yau threefolds
Sergei Gukov, Chiu-Chu Melissa Liu, Artan Sheshmani, Shing-Tung Yau
arXiv:1609.04363
<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPMU16-0139</td>
<td>Non-supersymmetric AdS and the Swampland</td>
<td>Hirosi Ooguri, Cumrun Vafa</td>
</tr>
<tr>
<td>IPMU16-0140</td>
<td>Revisiting gravitino dark matter in thermal leptogenesis</td>
<td>Masahiro Ibe</td>
</tr>
<tr>
<td>IPMU16-0141</td>
<td>Surviving scenario of stop decays for ATLAS / + jets + E_{T}^{miss} search</td>
<td>Chengcheng Han, Mihoko M. Nojiri, Michihisa Takeuchi, Tsutomu T. Yanagida</td>
</tr>
<tr>
<td>IPMU16-0142</td>
<td>Relation between proton decay and PMNS phase in the minimal SUSY SO(10) GUT</td>
<td>Takeshi Fukuyama, Koji Ichikawa, Yukihiro Mimura</td>
</tr>
<tr>
<td>IPMU16-0143</td>
<td>Squeezed Bisppectrum in the δN Formalism: Local Observer Effect in Field Space</td>
<td>Yuichiro Tada, Vincent Vennin</td>
</tr>
<tr>
<td>IPMU16-0144</td>
<td>Role of matter in extended quasidilaton massive gravity</td>
<td>A. Emir Gumrukcuoglu, Kazuya Koyama, Shinji Mukohyama</td>
</tr>
<tr>
<td>IPMU16-0145</td>
<td>Quark-gluon discrimination in the search for gluino pair production at the LHC</td>
<td>Biplob Bhattacharjee, Satyanarayan Mukhopadhyay, Mihoko M. Nojiri, Yasuhiro Sakaki, Bryan R. Webber</td>
</tr>
<tr>
<td>IPMU16-0146</td>
<td>Measurement of the muon neutrino inclusive charged-current cross section in the energy range of 18-211 GeV with the T2K INGRID detector</td>
<td>K. Abe et al. (T2K collaboration)</td>
</tr>
<tr>
<td>IPMU16-0147</td>
<td>Upper bound on neutrino mass based on T2K neutrino timing measurements</td>
<td>K. Abe et al. (T2K collaboration)</td>
</tr>
<tr>
<td>IPMU16-0148</td>
<td>Measurement of double-differential muon neutrino charged-current interactions on C_{6}H_{6} without pions in the final state using the T2K off-axis beam</td>
<td>K. Abe et al. (T2K collaboration)</td>
</tr>
<tr>
<td>IPMU16-0149</td>
<td>Measurement of Muon Antineutrino Oscillations with an Accelerator-Produced Off-Axis Beam</td>
<td>K. Abe et al. (T2K collaboration)</td>
</tr>
</tbody>
</table>
IPMU16-0164
A map of the non-thermal WIMP
Hyungjin Kim, Jeong-Pyong Hong, Chang Sub Shin

IPMU16-0165
Light Stop, Heavy Higgs, and Heavy Gluino in Supersymmetric
Standard Models with Extra Matters
Junji Hisano, Wataru Kuramoto, Takumi Kuwahara
PTEP 2017 (2017) no.3, 033B10, arXiv:1611.07670

IPMU16-0166
Super-Survey Tidal Effect on Redshift-space Power Spectrum
Kazuyuki Akitsu, Masahiro Takada, Yin Li

IPMU16-0167
On the IceCube Result on $\nu_e \rightarrow \nu_\tau$ Oscillations
S.T. Petcov

IPMU16-0168
Dark cosmic rays
Ping-Kai Hu, Alexander Kusenko, Volodymyr Takhistov

IPMU16-0169
Astrophysical constraints on dark-matter Q-balls in the presence of
baryon-violating operators
Eric Cotner, Alexander Kusenko

IPMU16-0170
Leptogenesis via the 750 GeV pseudoscalar
Alexander Kusenko, Lauren Pearce, Louis Yang

IPMU16-0171
Diluted equilibrium sterile neutrino dark matter
Amol V. Patwardhan, George M. Fuller, Alexander Kusenko

IPMU16-0172
Inflationary primordial black holes for the LIGO gravitational wave
events and pulsar timing array experiments
Keisuke Inomata, Masahiro Kawasaki, Kyoei Mukaida, Yuichiro Tada, Tsutomu T. Yanagida

IPMU16-0173
Measurements of the atmospheric neutrino flux by Super-Kamiokande: Energy spectra, geomagnetic effects, and solar modulation
E. Richard et al. (Super-Kamiokande collaboration)

IPMU16-0174
Search for Neutrinos in Super-Kamiokande Associated with
gravitational-wave Events GW150914 and GW151226
K. Abe et al. (Super-Kamiokande collaboration)

IPMU16-0175
Cluster-Enriched Yang-Baxter Equation from SUSY Gauge Theories
Masahito Yamazaki
arXiv:1611.07522

IPMU16-0176
Effects of QCD bound states on dark matter relic abundance
Seng Pei Liew, Feng Luo

IPMU16-0177
Comments on Exchange Graphs in Cluster Algebras
Hyun Kyu Kim, Masahito Yamazaki
arXiv:1612.00145

IPMU16-0178
Constrains on $L_s - L_t$ Gauge Interactions from Rare Kaon Decay
Masahiro Ibe, Wakutaka Nakano, Motoo Suzuki

IPMU16-0179
CMSSM in light of the current LHC Run-2 and LUX data
Chengcheng Han, Ken-ichi Hikasa, Lei Wu, Jin Min Yang, Yang Zhang

IPMU16-0180
Type Ia supernovae within dense carbon- and oxygen-rich envelopes: a model for Super-Chandrasekhar explosions?
U. M. Noebauer, S. Taubenberger, S. Blinnikov, E. Sorokina, W. Hillebrandt

IPMU16-0181
Conformal geometry and branching problems in repesentation theory
Toshiyuki Kobayashi

IPMU16-0182
Solving puzzles of GW150914 by primordial black holes
S. Blinnikov, A. Dolgov, N.K. Porayko, K. Postnov
JCAP 1611 (2016) no.11, 036, arXiv:1611.05541

IPMU16-0183
Type Ia supernovae within dense carbon- and oxygen-rich envelopes: a model for Super-Chandrasekhar explosions?
U. M. Noebauer, S. Taubenberger, S. Blinnikov, E. Sorokina, W. Hillebrandt

IPMU16-0184
SXDF-ALMA 2 arcmin^2 deep survey: Resolving and characterizing the infrared extragalactic background light down to 0.5 mJy
Yuki Yamaguchi et al.

IPMU16-0185
SXDF-ALMA 2 arcmin^2 deep survey: Stacking of Rest-Frame Near-Infrared Selected Objects
Wei-Hao Wang et al.

IPMU16-0186
Molecular gas properties of a lensed star-forming galaxy at z~3.6: a case study
arXiv:1610.08065

IPMU16-0187
A deep ALMA image of the Hubble Ultra Deep Field
J.S. Dunlop et al.
K-vstemable Fano manifolds with the smallest alpha invariant
Chen Jiang
arXiv:1701.09085

Dark Matter Candidates in a Visible Heavy QCD Axion Model
Hajime Fukuda, Masahiro Ibe, Tsutomu T. Yanagida

Stable pairs on nodal K3 fibrations
Amin Gholampour, Artan Sheshmani, Yukinobu Toda

Localized Donaldson-Thomas theory of surfaces
Amin Gholampour, Artan Sheshmani, Shing-Tung Yau
arXiv:1701.08902

Nested Hilbert schemes on surfaces: Virtual fundamental class
Amin Gholampour, Artan Sheshmani, Shing-Tung Yau
arXiv:1701.08899

Relaxation leptogenesis, isocurvature perturbations, and the
cosmic infrared background
Masahiro Kawasaki, Alexander Kusenko, Lauren Pearce, Louis Yang

New-Type Charged Q-ball Dark Matter in Gauge Mediated SUSY
Breaking Models
Jeong-Pyong Hong, Masahiro Kawasaki

Universality in volume law entanglement of pure quantum states
Hiroyuki Fujita, Yuya O. Nakagawa, Sho Sugii, Masataka Watanabe
arXiv:1703.02993

Probing a dark photon using rare leptonic kaon and pion decays
Cheng-Wei Chiang and Po-Yan Tseng

No inflation in type IIA strings on rigid CY spaces
Yuki Wakimoto, Sergei V. Ketov
PTEP 2017 (2017), no. 8, 083E02, arXiv:1703.08993

Complete complexes and spectral sequences
Mikhail Kapranov, Evangelos Routis
arXiv:1702.00120

The ALP miracle: unified inflaton and dark matter
Ryuji Daido, Fuminobu Takahashi, Wen Yin
JCAP 1705 (2017) no.05, 044, arXiv:1702.02388

Anomaly Matching on the Higgs branch
Hiroyuki Shimizu, Yuji Tachikawa, Gabi Zafir
arXiv:1703.01013

Anisotropic deformations of spatially open cosmology in massive
gravity theory
Charles Mazuet, Shinji Mukohyama, Mikhail S. Volkov

Extending bimetric models of massive gravity to avoid to rely on
the Vainshtein mechanism on local scales and the Higuchi bound
on cosmological scales
Antonio De Felice, Shinti Mukohyama, Jean-Philippe Uzan
arXiv:1702.04490

The RESOLVE Survey Atomic Gas Censuses and Environmental
Influences on Galaxy Gas Reservoirs
David V. Stark, Sheila J. Kannappan, Kathleen D. Eckert, Jonathan
Florez, Kirsten R. Hall, Linda C. Watson, Erik A. Hoversten, Joseph N.
Burchett, David T. Guyan, Ashley D. Baker, Amanda J. Moffett,
Andreas A. Berlind, Mark A. Norris, Martha P. Hayes, Riccardo
Giovannelli, Adam K. Leroy, D. J. Pisano, Lisa H. Wei, Roberto E.
Gonzalez, Victor F. Calderon

Higher derivatives in Type II and M-theory on Calabi-Yau threefolds
Thomas W. Grimm, Kilian Mayer, Matthias Weissenbacher
arXiv:1702.08404

Holographic Entanglement Entropy on Generic Time Slices
Yuya Kusuki, Tadashi Takayanagi, Koji Umemoto

Anti-de Sitter Space from Optimization of Path Integrals in
Conformal Field Theories
Pawel Caputa, Nilay Kundu, Masamichi Miyaji, Tadashi Takayanagi,
Kento Watanabe

A Gauged $U(1)$ Peccei-Quinn Symmetry
Hajime Fukuda, Masahiro Ibe, Motoo Suzuki, Tsutomu T. Yanagida

New Kaluza-Klein Instantons and Decay of AdS Vacua
Hiroshi Ooguri, Lev Spodyneiko
arXiv:1703.03105

The sign of the dipole-dipole potential by axion exchange
Ryuji Daido, Fuminobu Takahashi

The sign of the dipole-dipole potential by axion exchange
Ryuji Daido, Fuminobu Takahashi

Two-loop Anomalous Dimensions for Four-Fermi Operators in
Supersymmetric Theories
Junji Hisano, Takumi Kuwahara, Yuji Omura, Takeki Sato

Contractions and deformations
Will Donovan
arXiv:1511.00406
<table>
<thead>
<tr>
<th>Preprint</th>
<th>Title</th>
<th>Authors</th>
<th>ArXiv ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPMU17-0045</td>
<td>Perverse schobers and wall crossing</td>
<td>Will Donovan</td>
<td>arXiv:1703.00592</td>
</tr>
<tr>
<td>IPMU17-0046</td>
<td>Out-of-Time Ordered correlators in $(T^2)^n/Z_n$</td>
<td>Pawel Caputa, Yuya Kusuki, Tadashi Takayanagi, Kento Watanabea</td>
<td>arXiv:1703.09939</td>
</tr>
<tr>
<td>IPMU17-0047</td>
<td>CFT descriptions of bulk local states in the AdS black holes</td>
<td>Kanato Goto, Tadashi Takayanagi</td>
<td>arXiv:1704.00053</td>
</tr>
<tr>
<td>IPMU17-0048</td>
<td>Primordial black holes and r-process nucleosynthesis</td>
<td>G.M. Fuller, A. Kusenko, V. Takhistov</td>
<td>arXiv:1704.01129</td>
</tr>
<tr>
<td>IPMU17-0049</td>
<td>On finite symmetries and their gauging in two dimensions</td>
<td>Lakshya Bhardwaj</td>
<td>arXiv:1704.02330</td>
</tr>
<tr>
<td>IPMU17-0050</td>
<td>Higgsino Dark Matter or Not: Role of Disappearing Track Searches</td>
<td>Hajime Fukuda, Natsumi Nagata, Hidetoshi Otono, Satoshi Shirai</td>
<td>arXiv:1703.09675</td>
</tr>
<tr>
<td>IPMU17-0051</td>
<td>All-order volume conjecture for closed 3-manifolds</td>
<td>Dongmin Gang, Mauricio Romo, Masahito Yamazaki</td>
<td>arXiv:1704.00918</td>
</tr>
</tbody>
</table>
FY2016

The Interplay Between Local and Global Processes in Galaxies (2016.04.11 - 2016.04.15, Cozumel, Mexico)
David Stark

Multi-Scale Environmental Influences on Galaxy Gas Content

Subaru’s synergy with space missions in 2020s (2016.04.21 - 2016.04.22, NAOJ, Mitaka)
Naoyuki Tamura

Subaru’s synergy with space missions: From the viewpoint of PFS

Southeastern Regional Mathematical String Theory Meeting (2016.04.23, Virginia Tech, Blacksburg, VA, USA)
Taizan Watari

Heterotic-Type IIA duality and degeneration of K3 surface

KIAS Algebraic Seminar (2016.04.26, 2016.04.29, KIAS)
Chen Jiang

On boundedness problem of Fano varieties I, II

Beauty 2016 (2016.05.02, Marseille, France)
Hitoshi Murayama

Theory in the LHC era overview and vision

Wolfgang Paul Lecture (2016.05.03, Bonn University)
Hitoshi Murayama

The Quantum Universe

Theory Special Seminar (2016.05.04, Bonn University, Germany)
Hitoshi Murayama

Two themes on Goldstone: generalization and dark matte

Caltech Colloquium (2016.05.05, Caltech)
Hitoshi Murayama

When a Symmetry Breaks

Tokyo-Princeton algebraic geometry conference (2016.05.08, Princeton University)
Chen Jiang

Binational boundedness of singular log Fano 3-folds

Pheno 2016 (2016.05.09 - 2016.05.11, Pittsburgh University, USA)
Hitoshi Murayama

Future Perspectives

Revealing the history of the universe with underground particle and nuclear research 2016 (2016.05.11 - 2016.05.13, U. Tokyo)
Shigeki Matsumoto

Current Status and Future Prospects of WIMP Paradigm

Cross-correlation Spectacular with LSST: Exploring Synergies Between LSST and External Datasets to Discover Fundamental Physics (2016.05.22 - 2016.05.25, Brookhaven National Lab & Stony Brook University)
Masahiro Takada

SuMiRe: Subaru imaging and spectroscopic galaxy surveys (invited talk)

GTM Seminar (2016.05.26, Kavli IPMU)
Chen Jiang

Boundedness results on Fano varieties

The 1st KEK-KIAS-NCTS Joint Workshop on Particle Physics Phenomenology (2016.05.26 - 2016.05.28, NCTS, Taiwan)
Shigeki Matsumoto

Current Status and Future Prospects of WIMP Paradigm

PhyStat (2016.05.30 - 2016.06.01, Kavli IPMU)
Hitoshi Murayama

the future of experimental neutrino physics

The Third International Meeting for Large Neutrino Infrastructures (2016.05.30 - 2016.05.31, KEK)
Hitoshi Murayama

Neutrinos and cosmology

Euclid Consortium Meeting 2016 (2016.05.30 - 2016.06.03, Lisbon, Portugal)
Masahiro Takada

A proposal/discussion on Subaru HSC Ultra-Wide Survey (for Euclid) (invited)

Journees SL2R (2016.06.09 - 2016.06.10, Metz, France)
Toshiyuki Kobayashi

Branching Problems and Symmetry Breaking Operators

Kyoto Algebraic Geometry seminar (2016.06.10, University of Kyoto)
Will Donovan

Contractions and deformations

ULTIMATE-Subaru science workshop (2016.06.16 - 2016.06.17, NAOJ, Mitaka)
Naoyuki Tamura & Kiyoto Yabe

ULTIMATE & PFS

New perspective on theory and observation of large-scale structure (2016.06.16, YITP, Kyoto University)
Masahiro Takada

Cosmic Covariance 2.5:1
Conference Presentations and Seminar Talks

Math-Physics seminar (2016.06.17 - 2016.07.17, IHES)
Artan Sheshmani
Nested Hilbert schemes and local DT theories

Darboux seminar (2016.06.17 - 2016.07.17, IHP)
Artan Sheshmani
Donaldson Thomas theory, Modular forms, and S-duality conjecture.

Kyoto Mirror Symmetry seminar (2016.06.17, University of Kyoto)
Will Donovan
General 3-fold flops and perverse sheaves of categories

Neutrinos and Light Particles in Cosmology (2016.06.22 - 2016.06.24, UC Berkeley, California, USA)
Hitoshi Murayama
Introduction Neutrinos and Cosmology

Neutrinos and Light Particles in Cosmology (2016.06.22 - 2016.06.24, UC Berkeley, USA)
Masahiro Takada
Neutrinos from lensing surveys I (invited)

SPIE2016 (2016.06.26 - 2016.07.01, University of Glasgow, UK)
Hitoshi Murayama
Studying the birth and the fate of the Universe

SPIE Astronomical Telescopes and Instrumentation (2016.06.26 - 2016.07.01, Edinburgh International Conference Centre)
Naoyuki Tamura
Prime Focus Spectrograph for the Subaru Telescope: overview, recent progress, and future perspectives

Understanding the First Results form LHC Run II (2016.06.27 - 2016.07.22, Mainz University)
Michihisa Takeuchi
di-photon from QCD bound states

Analysis on Manifolds with Symmetries and Related Structures. (2016.06.28 - 2016.06.29, Bath, UK)
Toshiyuki Kobayashi
Global Geometry and Analysis on Locally Symmetric Spaces with Indefinite-metric

particle theory seminar (2016.06.30, TU Dortmund University)
Feng Luo
Gluino Coannihilation

SUSY 2016 (2016.07.03 - 2016.07.08, The University of Melbourne, Australia)
Hitoshi Murayama
Outlook

Algebraic Geometry Seminar (2016.07.05, Graduation School of Mathematical Science, Komaba Campus, The University of Tokyo)
Dulip Piyanatne
Generalized Bogomolov-Gieseker type inequality for Fano 3-folds

PASCOS 2016 (2016.07.10 - 2016.07.16, ICISE, Vietnam)
Shigeki Matsumoto
Estimating J-factors of dSphs for indirect dark matter detections

MPP (2016.07.11, MPP Munich, Germany)
Matthias Weissenbacher
Higher derivative IIB supergravity in Calabi-Yau orientifolds
From theory to applications: celebrating a century of gravitational lensing (2016.07.11 - 2016.07.15, Leiden, The Netherlands)
Alessandro Sonnensfeld
Luminous and dark matter in earlytype galaxies: a tale of many lenses

Physics seminar (2016.07.14, Tohoku University)
Hitoshi Murayama
Goldstone bosons, effective operators, and dark pions

METU Algebraic Geometry seminar (2016.07.15, Middle East Technical University, Ankara, Turkey)
Will Donovan
Twists and braids for general 3-fold flops

7th European Congress of Mathematics (2016.07.18 - 2016.07.22, Berlin)
Will Donovan
Twists and braids for general 3-fold flops

Geometry, Representation Theory and the Baum-Connes Conjecture (in honor of Professor Baum for his 80th birthday) (2016.07.18 - 2016.07.22, Fields Institute, Toronto, Canada)
Toshiyuki Kobayashi
Conformally Covariant Symmetry Breaking Operators on Differential Forms and Some Applications

ILC Summer school (2016.07.23 - 2016.07.26, Itsukushien, Ichinoseki, Iwate)
Hitoshi Murayama
Aim of ILC

Mini workshop on Seiberg-Witten Floer stable homotopy type (2016.07.23 - 2016.07.24, University of Tokyo)
Tiras Khandhawit
Unfolded Seiberg-Witten Floer spectra

Geometric and algebraic aspects of integrability (2016.07.28 - 2016.08.04, Durham, UK)
Todor Milanov
Eynard–Orantin recursion for simple singularities of type A

Tambara Summer School 2016 (2016.07.30 - 2016.08.03, Tambara Institute of Mathematical Sciences, The University of Tokyo)
Chen Jiang
Birkar’s Anti-pluricanonical systems on Fano varieties explanation

Tambara Summer School 2016 (2016.07.30, Tambara Institute of Mathematical Sciences, The University of Tokyo)
Chen Jiang
On Fujita spectrum and Fujita invariants

Mapping the Pathways of Galaxy Transformation Across Time and Space (2016.07.31 - 2016.08.05, Catalina Island, USA)
Wiphu Rujopakarn
JVLA and ALMA Spatially-Resolved Observations of Intensely Star-Forming Regions in Galaxies at z ~ 1-3 in the Hubble Ultra-Deep Field

Twists and braids for general 3-fold flops (2016.08.17, Hong Kong University)
Will Donovan
Twists and braids for general 3-fold flops
Mini Workshop on Knot theory
(2016.08.19, PML, Pohang, South Korea)
Dongmin Gang
- 3-manifolds and 3 dimensional superconformal field theories

Quantum theory of finite temperature
(2016.08.22 - 2016.08.24, Riken, Japan 2016)
Shigeki Matsumoto
- Current status and Future prospects of WIMP dark matter

Workshop on Lie groups and representation theory
(2016.08.24, Aarhus University)
Yoshiki Oshima
- Characters of unitary representations and semisimple coadjoint orbits

On explicit description of holomorphic symplectic varieties
(2016.08.29 - 2016.09.01, Onuma International Seminar House)
Dulip Piyaratne
- Generalized Bogomolov-Gieseker type inequality for Fano 3-folds

Crossing the Rubicon: The fate of gas flows in galaxies
(2016.09.05 - 2016.09.09, Santarcangelo di Romagna)
Andreas Schulze
- Insight into the fueling and feedback of AGN through their mass functions and accretion rate distribution functions

Invisible 16 school
(2016.09.05 - 2016.09.09, SISSA, Italy)
Shigeki Matsumoto
- Theoretical aspects of dark matter

Workshop on Volume Conjecture and Quantum Topology
(2016.09.06 - 2016.09.09, Nishih Waseda Campus, Waseda University Tokyo, JAPAN)
Dongmin Gang
- A State integral model for SL(2) Chern-Simons theory on closed hyperbolic 3-manifolds

MSJ Autumn Meeting 2016
(2016.09.15 - 2016.09.18, Kansai University)
Yoshiki Oshima
- Unitary representations of real reductive Lie groups and orbit method

7th anniversary lecture (featured invited talk), Mathematical Society of Japan
(2016.09.15 - 2016.09.18, Kansai University, Japan)
Toshiyuki Kobayashi
- Birth of New Branching Problems

Derived categories and Chow groups of hyperkaehler and Calabi-Yau varieties
(2016.09.19 - 2016.09.23, Simons Center at Stony Brook University, USA)
Dulip Piyaratne
- Stability conditions and Fourier-Mukai theory

Symposium by group of optical and infrared astronomy in Japan
(2016.09.26 - 2016.09.28, NAOJ, Mitaka)
Naoyuki Tamura
- Prime Focus Spectrograph: Development updates, collaboration policy, future plans

Distinguished BSA Lecture
(2016.10.04 - 2016.10.07, Brookhaven National Laboratory, NY, USA)
Hitoshi Murayama
- The Quantum Universe

Colloquium at KMI
(2016.10.05, Nagoya U.)
Shigeki Matsumoto
- Current Status and Future Prospects of WIMP

Algebraic Geometry Seminar
(2016.10.06 - 2016.10.07, KIAS, Korea)
Dulip Piyaratne
- Stability conditions on derived categories of varieties I, II, III

2016 International Conference on Ultra-High Energy Cosmic Rays
(2016.10.11 - 2016.10.14, Kyoto)
Alexander Kusenko
- Summary Talk of UHECR-2016 conference

Duham KEK KIPMU KIAS Workshop
(2016.10.24 - 2016.10.28, KIAS, Seoul, Korea)
Hitoshi Murayama
- SIMP dark matter and EFT

The 6th KIAS Workshop on particle physics and cosmology
(2016.10.24, Seoul, Korea)
Han, Chengcheng
- Recent stop searches in the Natural SUSY

First stars and first galaxies
(2016.10.25 - 2016.10.27, Kanazawa)
Masahiro Takada
- Upper bound on the abundance of PBH with HSC observation of M31

Seminar @ Tokyo Metropolitan University
(2016.10.25, Tokyo Metropolitan University)
Shigeki Matsumoto
- Current status & Future prospect on WIMP searches

7th KIAS workshop on cosmology and structure formation
(2016.10.30 - 2016.11.04, Korea Institute of Advanced Study)
Naoyuki Tamura
- Subaru Prime Focus Spectrograph: Overview, current status, and future perspectives (invited talk)

Yale Physics Colloquium
(2016.11.01, Yale University, Connecticut, USA)
Hitoshi Murayama
- When a Symmetry Breaks

Dark Matter Autumn School
(2016.11.09, NJO)
Shigeki Matsumoto
- Current status and future prospects of WIMP searches

Fermilab Joint Experimental-Theoretical Physics seminar (Wine and cheese seminars)
(2016.11.11, Fermilab)
Christophe Bronner
- Neutrino oscillation results from T2K

Categorical and Analytic invariants IV
(2016.11.14 - 2016.11.18, Kavli IPMU)
Dulip Piyaratne
- Modification of Bogomolov-Gieseker type inequality conjecture and Fano 3-folds

SDSS MaNGA Team Meeting
(2016.11.14 - 2016.11.19, Shanghai, China)
David Stark
- What Sets the Conditions for Star Formation in Outer Galaxy Disks
Categorical and Analytic invariants in Algebraic geometry IV
(2016.11.14 - 2016.11.18, Kavli IPMU)
Todor Milanov

K-theoretic Gromov–Witten invariants in genus 0 and integrable hierarchies
JAXA lecture
(2016.11.16, JAXA)
Hitoshi Murayama

Modern cosmology and space borne instruments
NCTS Algebraic Geometry Day, II
(2016.11.18, National Cheng Kung University)
Chen Jiang

Birationality problem on varieties with numerically trivial canonical divisors
The 5th workshop of observational cosmology
(2016.11.23 - 2016.11.26)
Tomomi Sunayama

Shift of Baryon Acoustic Oscillation as a function of galaxy bias
The 5th workshop of observational cosmology
(2016.11.24 - 2016.11.26, Hiroshima University)
Masahiro Takada

Cosmology with cosmic large-scale structures
Representation Theory Seminar
(2016.11.25, RIMS)
Yoshiki Oshima

Determinant formula for parabolic Verma modules of Lie superalgebras
Geometry and Topology Seminar
(2016.11.25, University of Waterloo, Canada)
Francesco Sala

Moduli spaces and stacks of sheaves on resolutions of toric singularities
SFB-Seminar
(2016.11.25)
Will Donovan

Deformations: classical and modern
CosPA 2016
(2016.11.28 - 2016.12.02, The University of Sydney)
T. Yanagidira

Neutrino Masses in the Landscape of Vacua
Symposium on Parity Violation and Neutrino Physics
(2016.11.28 - 2016.11.29, Shanghai Jiao Tong University)
Hitoshi Murayama

CP Violation
The 13th International Symposium on Cosmology and Particle Astrophysics
(2016.11.28 - 2016.12.02, the University of Sydney)
Tsunomu Yanagidira

Neutrino Masses in the Landscape of Vacua (Invited)
Panoramas of the evolving cosmos - the 6th Subaru international conference
(2016.11.28 - 2016.12.02, International conference center Hiroshima)
Naoyuki Tamura

Prime Focus Spectrograph (PFS) for the Subaru Telescope: A very wide-field, massively multiplexed, optical and near-infrared spectrograph
The 6th Subaru international conference “Panoramas of the Evolving Cosmos”
(2016.11.28 - 2016.12.02, Hiroshima)
Masahiro Takada

Tightest upper bound on the abundance of PBH with density-cadence HSC observation of M31
Symposium of Representation Theory
(2016.11.29 - 2016.12.02, Okinawa)
Toshiyuki Kobayashi

Conformal geometry and branching problems in representation theory (2 lectures)
Algebraic geometry seminar
(2016.12.02, Nagoya University)
Will Donovan

Applications of noncommutative deformations
The Universal Problem of the Non-Universal IMF
(2016.12.05 - 2016.12.09, Lorentz Center, Leiden, The Netherlands)
Alessandro Sonnensfeld

Dry merger evolution and stellar IMF
Harmonic analysis on Lie groups and group algebras of locally compact groups
(2016.12.05 - 2016.12.09, TsIMF, China)
Yoshiki Oshima

The orbit method and characters of representations for real reductive groups
HINT 2016
(2016.12.05 - 2016.12.08, J-PARC)
Christophe Bronner

Physics potential of the current neutrino oscillation program in Japan
Focus Workshop on Particle Physics and Cosmology
(2016.12.05, IBS, Daejeon)
Shigeiki Matsumoto

TeV scale WIMP and Astrophysics
PFS collaboraton in JHU
(2016.12.12 - 2016.12.16, Johns Hopkins University, Maryland, USA)
Hitoshi Murayama

PFS collaboration updates
PFS collaboraton in JHU
(2016.12.12 - 2016.12.16, Johns Hopkins University, Maryland, USA)
Hitoshi Murayama

PFS collaboration updates
PFS meeting
Tomomi Sunayama

How n(z) for ELGs affects Baryon Acoustic Oscillation
Current Topics in String Theory: Conformal field theories
(2016.12.15 - 2016.12.17, KIAS in Korea)
Dongmin Gang

Simple 3d SCFTs and simple 3-manifolds
Arithmetic and algebraic geometry in Tokyo
(2016.12.15, University of Tokyo)
Will Donovan

Applications of noncommutative deformations
Current Topics in String Theory
(2016.12.15 - 2016.12.17, KIAS, Seoul, South Korea)
Gabri Zaffir

4d N=1 from 6d (1,0)
Algebraic Geometry
(2016.12.18 - 2016.12.22, Hanga Roa, Chile)
Will Donovan

Applications of noncommutative deformations
Interactions between topological recursion, modularity, quantum invariants, and low-dimensional topology
(2016.12.18 - 2016.12.23, Melbourne University, Creswick Campus)
Todor Milanov

Hurwitz Frobenius manifolds and K. Saito's primitive forms
JST Workshop topological quantum strategy
(2016.12.19, JST, Chiyoda, Tokyo)
Hitoshi Murayama
Spontaneous symmetry breaking, soliton, topology

Winter School on Higher Categories and TQFTs
(2016.12.19 - 2016.12.23, Gangwon, South Korea)
Alexander A. Voronov
Higher Categories and TQFTs

Christmas Workshop on Quivers, Moduli Spaces and Integrable Systems
(2016.12.19 - 2016.12.21, Department of Mathematics, Universitá degli Studi di Genova, Italy)
Francesco Sala
K-HA/CoHA of the stack of Higgs sheaves on a curve

Rironkon Symposium
(2016.12.20 - 2016.12.22, Tohoku University)
Masahiro Takada
Recent progresses in studies of cosmic large-scale structure (invited)

AMS Special Session on Harmonic Analysis (In Honor of Gestur Olafsson's 65th Birthday)
(2017.01.04, Atlanta)
Toshiyuki Kobayashi
Conformally Covariant Symmetry Breaking Operators on Differential Forms and Some Applications (invited)

The 2017 Workshop on Algebraic Geometry
(2017.01.04 - 2017.01.06, Xiamen University)
Chen Jiang
Remarks on Kawamata's effective non-vanishing conjecture

KMI2017
(2017.01.05 - 2017.01.07, Nagoya University)
Shigeki Matsumoto
Unexplored region of WIMP

Higher Dimensional Algebraic Geometry, Holomorphic Dynamics and Their Interactions
(2017.01.09 - 2017.01.20, National University of Singapore)
Chen Jiang
Explicit birational geometry of Fano and Calabi-Yau 3-folds

Higher Dimensional Algebraic Geometry, Holomorphic Dynamics and Their Interactions
(2017.01.09 - 2017.01.20, National University of Singapore)
Chen Jiang
Explicit birational geometry of Fano and Calabi-Yau 3-folds

Subaru Users Meeting FY2016
(2017.01.10 - 2017.01.12, NAOK, Mitaka campus)
Naoyuki Tamura
Subaru Prime Focus Spectrograph (PFS) project (invited)

IPMU week @ Berkeley
(2017.01.11 - 2017.01.13, Berkeley University)
Matthias Weissnagel
String Length Induced Operators in EFT

IPMU Week
(2017.01.11 - 2017.01.13, UC Berkeley)
Peter Cox
The Unnatural Composite Higgs at the LHC

Particle Phenomenology Mini Workshop
(2017.01.18, R312, New Physics Building, Nationa Taiwan University)
Po-Yan Tseng

Invited Colloquium, NRAO
(2017.01.19, National Radio Astronomy Observatory; Charlottesville, USA)
Wiphu Rujopakarn
Probing the peak epoch of galaxy assembly with VLA and ALMA

JSPS-RFBR Collaboration Workshop
(2017.01.20 - 2017.01.21, Nagoya University)
Itamar Yaakov
Supersymmetric Renyi Entropy - information, localization and defects

Seminar
(2017.01.23, JAXA)
Masahiro Takada
Tightest bounds on PBH abundance with HSC observation of M31

D modules and Hodge theory
(2017.01.23 - 2017.01.27, Kavli IPMU)
Yoshiki Oshima
Tropical geometric compactifications and Satake compactifications

Galaxy Group, Steward Observatory/National Optical Astronomy Observatory
(2017.01.30, University of Arizona, Tucson)
Wiphu Rujopakarn
Probing the peak epoch of galaxy assembly with ultra-deep VLA and ALMA surveys

Seminaire de analyse, geometrie et algebre
(2017.02.02, Institut Elie Cartan de Lorraine, Metz, France.)
Francesco Sala
Faisceaux de Higgs sur une courbe et algebres de Hall

Holography, Quantum Entanglement and Higher Spin Gravity
(2017.02.06 - 2017.02.07, YITP, Kyoto)
Itamar Yaakov
Supersymmetric Renyi Entropy and Defect Operators

Seminaire de geometrie et quantisations
(2017.02.06, Institut Henri Poincare, Paris, France)
Francesco Sala
Faisceaux de Higgs sur une courbe et algebres de Hall

Seminaire de geometrie et systemes dynamiques
(2017.02.07, Institut de Mathematiques de Bourgogne, Dijon, France)
Francesco Sala
Faisceaux de Higgs sur une courbe et algebres de Hall

Seminaire de geometrie algebrique
(2017.02.09, IMJ-PRG and ENS, Paris, France)
Francesco Sala
Faisceaux de Higgs sur une courbe et algebres de Hall

Geometry, Analysis, and Mathematical Physics
(2017.02.13 - 2017.02.17, Kyoto University)
Todor Milanov
Primitive forms and Frobenius structures on the Hurwitz spaces

Hitchin systems in mathematics and physics
(2017.02.13 - 2017.02.17, Perimeter Institute, Waterloo, Canada)
Francesco Sala
Higgs sheaves on a curve and Hall algebras

Echigo Yuzawa Symposium
(2017.02.13 - 2017.02.17, Echigo Yuzawa)
Chen Jiang
Remarks on Kawamata's effective non-vanishing conjecture
New Ideas in Stringphenomenology 2017
(2017.02.14 - 2017.02.17, DESY, Hamburg, Germany)
Taizan Watari
Revisiting Kronecker’s Jugendtraum

78th meeting of ICFA
(2017.02.16 - 2017.02.17, ICFA, Valencia, Spain)
Hitoshi Murayama
ILC Progress in Japan

Derived category and birational geometry
(2017.02.20 - 2017.02.23, Graduate School of Science Building, Osaka University, Japan)
Dulip Piyaratne
Stability conditions, Bogomolov-Gieseker type inequalities and Fano 3-folds

Derived category and birational geometry
(2017.02.20 - 2017.02.23, Osaka University)
Will Donovan
Perverse sheaves of categories and birational geometry

2017 Fudan Young Mathematicians Forum
(2017.02.27 - 2017.03.02, Fudan University)
Chen Jiang
Remarks on Kawamata’s effective non-vanishing conjecture

Superconformal Field Theories in Four or More Dimensions
(2017.03.05 - 2017.03.11, Aspen Center for Physics, Aspen, USA)
Gabi Zafir
Anomaly polynomials, 6d (1,0) SCFTs and 4d N=1 SCFTs

Algebraic geometry seminar
(2017.03.06, Scuola Internazionale Superiore di Studi Avanzati, Trieste)
Will Donovan
Perverse sheaves of categories and birational geometry

String Theory Seminar
(2017.03.06, Duke University)
Marco Bertolini
B-model correlators in hybrid models

Current Topics in Algebraic and Symplectic Geometry
(2017.03.06 - 2017.03.10, Kyoto University)
Yoshiki Oshima
Tropical geometric compactification of moduli spaces of abelian varieties and K3 surfaces

Physics seminar
(2017.03.06, KIAS, Seoul)
Itamar Yaakov
Supersymmetric Renyi Entropy and Defects

Cosmic acceleration conference
(2017.03.08 - 2017.03.10, KEK)
Naoyuki Tamura
Updates on the PFS project

Why does the Universe accelerate?-Exhaustive study and challenge for the future-
(2017.03.08 - 2017.03.10, KEK)
Masahiro Takada
Updates in B03 group and PBH constraints with HSC observation of M31

The AGB-Supernovae Mass Transition
(2017.03.27 - 2017.03.31, Rome, Italy)
Alexey Tolstov
Supernova explosions of 8-12 solar mass stars: light curve simulations
The Kavli IPMU continues to convey the importance and pleasure of our research on physics and mathematics of the universe to the general public through a variety of outreach programs.

April:
- Kavli IPMU and ICRR Co-Host Public Lecture “Decoding the Universe”
- General Theory of Relativity Holds True 13 Billion Light Years from Earth

May:
- Director Murayama Speaks at Symposium on Science and Technology Diplomacy
- Supermassive Black Hole Wind Can Stop New Stars from Forming

June:
- Kavli IPMU Public Lecture Held with Lisa Randall

July:
- Science Café Universe 2016
- Hyper Suprime-Cam Found an “Ancient Eye” in the Sky

August:
- Booth at the 2016 Super Science High School Student Fair
- A Program to Encourage Female Students to Study Science: “Look into the Universe”
- Ninth External Advisory Committee Meeting
- KamLAND-Zen Searched for Neutrinoless Double β Decay with World Record Sensitivity

September:
- Booth at the New Scientist Live in London
- FY2016 WPI Site Visit

October:
- Open Campus Kashiwa 2016

November:
- Minister of State Yosuke Tsuruho Visits Kavli IPMU
- Event: “Actually I Really Love Physics! —Career Paths of Female Physics Graduates”
- 15th Kavli IPMU/ICRR Joint Public Lecture, “The Observable Universe and Beyond”

December:
- VLA and ALMA Team up to Give First Look at Birthplaces of Most Current Stars
- Kavli IPMU Staff Received the University of Tokyo’s Special Award for Operational Improvement in 2016

January:
- Kavli IPMU / ELSI Joint Public Lecture “A Question of Origins”

February:
- AAAS 2017 Annual Meeting in Boston
- Director Murayama Talked at the WPI 10th Anniversary Symposium
- First Public Data Released by Hyper Suprime-Cam Subaru Strategic Program

March:
- Meeting of WPI Center Administrative Directors Held at Kavli IPMU
- Japanese Class Completion Ceremony
- Workshop –Searching for the Lost Study–Art x Science x Philosophy

Kavli IPMU and ICRR Co-Host Public Lecture “Decoding the Universe”

More than 280 young teenagers and adults took part in the 14th Kavli IPMU and Institute for Cosmic Ray Research (ICRR) public lecture “Decoding the Universe” at Amuser Kashiwa in Kashiwa city on April 16, 2016. Following a welcoming from ICRR Director Takaaki Kajita, ICRR Associate Professor and Kavli IPMU Scientist Yoshinari Hayato gave a talk titled “Neutrinos: What we’ve learned, and what remains a mystery.” He explained what neutrino oscillations were, their interesting properties, and about the research being carried out at the Super-Kamiokande.

Then, Kavli IPMU Assistant Professor Takahiro Nishimichi gave a talk titled “Subaru Telescope: Using big data to uncover the dark properties of the Universe.” He talked about topics in precise cosmological theory needed to correctly interpret huge amounts of data from the Hyper-Suprime Cam attached to the Subaru Telescope in Hawaii. He also said “Big-Data Astronomy” using statistical methods and super computers to deal with astronomical big data from observations, is
becoming important in astronomy. Afterwards, the audience was invited to the hall’s foyer to chat and discuss ideas with the speakers.

Yoshinari Hayato giving a talk. Takahiro Nishimichi giving a talk.

General Theory of Relativity Holds True 13 Billion Light Years from Earth

A team led by Kavli IPMU Postdoctoral Researcher Tepppei Okumura and Kavli IPMU Assistant Professor Chiaki Hikage, together with University of Tokyo Department of Astronomy Professor Tomonori Totani, have found that 13 billion light years from Earth, Einstein’s general theory of relativity still holds true. The scientists first used data from the FastSound galaxy survey, collected using the Subaru Telescope, to analyze the velocity and clustering of more than 3000 galaxies about 13 billion light years away, and created a 3D map of the distant universe. By studying the galaxy map in more detail, the researchers managed to calculate the rate at which the distant universe was expanding due to gravity, and found that it was in agreement with the general theory of relativity within experimental uncertainty. This result confirmed the general theory of relativity is correct, and supports the idea that the expansion of the universe could be explained by a cosmological constant which Einstein had proposed. The results were published online in *Publications of the Astronomical Society of Japan* on April 26, and scientists in the future will need to consider this outcome when developing new models.

Director Murayama Speaks at Symposium on Science and Technology Diplomacy

Kavli IPMU Director Hitoshi Murayama spoke about science and technology diplomacy at an event attended by senior government officials and academics at the National Graduate Institute for Policy Studies (GRIPS) in Tokyo on May 24, 2016. Hosted by the Cabinet Office, Ministry of Foreign Affairs, Ministry of Education, Culture, Sports, Science and Technology, Ministry of Economy, Trade and Industry, and GRIPS, the symposium was an opportunity to discuss the current state and future of science and technology in diplomacy, taking into account the G7 Ise-Shima Summit that took place from May 26-27. Murayama pointed out that international organizations such as CERN and a synchrotron light source SESAME under construction in Jordan have led world peace efforts by allowing scientists from different countries to work together. He called on government officials to allow Japan to share its knowledge with other countries, and support future fundamental science projects to further contribute to world peace. Other notable talks included a welcoming from Minister of Foreign Affairs Fumio Kishida, a speech from Science and Technology Advisor to the Minister of Foreign Affairs Teruo Kishi, and a panel discussion on “A New Direction for Japan’s Diplomacy through Science and Technology” between distinguished guests, including Murayama, to debate how Japan’s science and technology can better contribute to the global society.

Hitoshi Murayama (far right) with other panelists (Courtesy of the Ministry of Foreign Affairs of Japan)
Supermassive Black Hole Wind Can Stop New Stars from Forming

Kavli IPMU Postdoctoral Researcher Edmond Cheung and Kavli IPMU Assistant Professor Kevin Bundy have led an international collaboration that discovered a new class of galaxies called red geysers, where supermassive black hole winds are energetic enough to heat the surrounding gas and suppress star formation. As part of the MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) project using the Sloan Digital Sky Survey telescope and its spectrograph attachment, the team caught red geyser galaxies heating gas within its host galaxy. Despite the fact these galaxies had enough gas for star formation, the wind from the black hole would create an environment too hot for star formation. The study was published online in Nature on May 26, 2016. Also, in this issue of the Kavli IPMU News No. 34, Kevin Bundy explains this study, see pp. 4-9.

Kavli IPMU Public Lecture Held with Lisa Randall

On June 19, 2016, Harvard University Professor of Physics Lisa Randall delivered her lecture in the 21 Komcee Lecture Hall at the Komaba campus of the University of Tokyo, where 200 people attended the full house event. To begin, Shinji Mukohyama, Professor at the Kyoto University Research Institute for Fundamental Physics and Kavli IPMU Visiting Senior Scientist, delivered a lecture titled “Beyond the Imagined 4th Dimension.” He explained that from superstring theory — which is thought to be the ultimate theory because it can describe all of the forces of nature, including gravity — extra dimensions beyond the 4-dimensional spacetime are derived. However, as the justification for such extra dimensions cannot be observed, theories have emerged such as that extra dimensions are compactified in such a way that at every point in the 4-dimensional spacetime, there exists a small circle, and that the visible 4-dimensional spacetime clings to a brane inside a higher-dimensional space.

Next, Lisa Randall delivered a lecture titled “Dark Matter and the Dinosaur Extinction.” Kavli IPMU Director Hitoshi Murayama, who also provided extended commentary on the points raised, interpreted Randall’s presentation into Japanese. Randall raised a new theory — which was introduced in her recently published book for the general public — where a comet collides with the dark matter found in our Milky Way Galaxy, causing the object to impact with the Earth, and possibly resulting in the extinction of dinosaurs.

A question and answer session followed the lectures. Murayama asked questions sourced from the audience — which had been written on post-it notes stuck to a whiteboard — to which the presenters gave answers. Even after the event, the speakers made themselves available, and were surrounded by many inquirers.

Lisa Randall giving a talk, interpreted by Hitoshi Murayama

Shinji Mukohyama giving a talk

(From left) Shinji Mukohyama, Lisa Randall, and Hitoshi Murayama answer questions submitted by the audience
Outreach and Public Relations

Science Café Universe 2016

The annual “Science Café Universe 2016” was held at the Tamarakuto Science Center (TSC) in NishiTokyo City, jointly sponsored by the Kavli IPMU and the TSC. Two lectures were given, first in July and then in September.

On July 3, Kavli IPMU Postdoctoral Fellow Ryo Namba talked about “Primordial Gravitational Waves and Magnetic Fields from the Very Early Universe: Forefront of Cosmology.” About 40 people listened, 70% being high-school and junior high-school students.

On September 4, Kavli IPMU Postdoctoral Fellow Akishi Ikeda talked about the “Deep Relation between Mathematics and Physics: Equation of Everything Derived from Principle of Least Action.” About 50 people listened, 80% being high-school and junior high-school students.

During his lecture, Ryo Namba took time out to talk to each group of the audience sitting around the same table.

Hyper Suprime-Cam Found an “Ancient Eye” in the Sky

An international team of researchers from the National Astronomical Observatory of Japan (NAOJ), Kavli IPMU, and other institutes have discovered a rare gravitational lensing effect in the images obtained from the Subaru Telescope’s Hyper Suprime-Cam (HSC). It suggests lensing by a foreground galaxy of two background galaxies at different distances. The rare finding has been dubbed the “Eye of Horus” because of its eye-like appearance, resembling the eye of Horus, the ancient Egyptian sky god.

This discovery was reported in Astrophysical Journal Letters on July 25, 2016. Researchers involved in the discovery include Kavli IPMU Postdoctoral Fellows Anupreeta More and Alessandro Sonnenfeld as well as the University of Tokyo Graduate School of Science Assistant Professor Masamune Oguri, who is also Kavli IPMU Associate Scientist. It should also be noted that the first author of this paper, NAOJ Assistant Professor Masayuki Tanaka was at the Kavli IPMU as a Postdoctoral Fellow until March 2013.

In the HSC survey, it is expected to find 10 more systems of the same kind.

Booth at the 2016 Super Science High School Student Fair

On August 10 and 11, the 2016 Super Science High School Student Fair was held at the Kobe International Exhibition Hall in Kobe, Hyogo Prefecture. The Kavli IPMU and other 8 WPI centers jointly ran a booth exhibiting their research activities.
On August 20, 2016, a Program to Encourage Female Students to Study Science, “Look into the Universe,” was held at the Kavli IPMU. A total of 70 people, including junior high-school and high-school girls, their parents, and teachers listened to two lectures given by Chicago University Professor Young-Kee Kim, who was a former Deputy Director of Fermilab. The lectures were given in English and interpreted consecutively by Kavli IPMU Director Hitoshi Murayama in Japanese. After the lectures, there was a Q&A session, and finally, the attendants enjoyed friendly conversation with Professor Kim and Director Murayama.

KamLAND-Zen searched for neutrinoless double β decay with world record sensitivity

If neutrinos are Majorana particles (the anti-neutrino is the same as the neutrino), neutrinoless double-beta decay ($0\nu\beta\beta$) offers decisive evidence for it, and neutrinos may be responsible for the dominance of matter over antimatter in the Universe. As a result, a number of experiments world-wide are in intense competition to discover $0\nu\beta\beta$. The KamLAND-Zen international collaboration, led by Kunio Inoue (Director of the Research Center for Neutrino Science, Tohoku University and Kavli IPMU Principal Investigator), has been searching for $0\nu\beta\beta$ in an unprecedented amount of Xenon-136, the isotope where the double-beta decay occurs, using its ultra-low background liquid-scintillator detector located 1000 m underground in the Kamioka mine in Gifu Prefecture. Kavli IPMU Assistant Professor Alexandre Kozlov is one of the main players in this experiment. Recently, KamLAND-Zen succeeded in dramatically improving the upper limit of $0\nu\beta\beta$ rate by a factor of 6. This result has been published in Physical Review Letters on August 16, 2016 and selected as an Editors’ Suggestion paper.

Booth at the New Scientist Live in London

From September 22 through 25, 2016, a science event “New Scientist Live” was held in London. Eight Japanese universities and research institutes, including the Kavli IPMU, OIST (The Okinawa Institute of Science and Technology), Osaka University, RIKEN, and NAOJ (National Astronomical Observatory of Japan) jointly ran an exhibition booth, titled “The Best of Japan Science.”
FY2016 WPI Site Visit

An FY2016 WPI site visit was conducted on September 29 and 30 to evaluate the scientific results recorded by the Kavli IPMU researchers since the launch of the Institute from scratch in October 2007, the level of achievement of the initial implementation plan of the Institute as a WPI center, and its progress plan during the extension period starting from FY2017. The site visit team consisted of WPI Program Director (PD) Toshio Kuroki, Deputy PD Akira Ukawa, Program Officer (PO) in charge of the Kavli IPMU Ichiro Snda, PO in charge of Tokyo Institute of Technology’s Earth-Life Science Institute (ELSI) Shoken Miyama, members of the Working Group in charge of the Kavli IPMU (Hiraku Nakajima, Yutaka Hosotani, Tetsuji Miwa, Matthias Staudacher, Ian Shipsey, and Anthony Tyson), some of the WPI Program Committee members (Maki Kawai and Michiharu Nakamura), MEXT and JSPS officers, Takuya Saito (Director, Office for the Promotion of Basic Research, the Basic Research Promotion Division, Research Promotion Bureau) and others.

The first day was devoted to the overview report by Kavli IPMU Director Murayama and presentations by Kavli IPMU researchers on representative research accomplishments as well as 19 poster presentations by young researchers.

In the morning of the second day, Director Murayama presented the progress plan of the Kavli IPMU. The University of Tokyo’s President Makoto Gonokami and Executive Vice President for Research Kazuo Hotate joined the discussion and, together with the Kavli IPMU management, answered various questions from the site visit team. In the final session, PD, POs, and members of the Working Group expressed their comments, and the site visit was adjourned.

Open Campus Kashiwa 2016

On October 21 and 22, 2016, the University of Tokyo’s Kashiwa Campus held an open campus under the banner “Kashiwa Knowledge: Discover and Experience.” At the Kavli IPMU lecture hall, two public lectures were given. On the first day, Kavli IPMU Associate Professor Naoyuki Tamura spoke about “A Survey of the Universe with the PFS (Prime Focus Spectrograph), A New Spectrometer for the Subaru Telescope, Will Observe an Unprecedented Number of Galaxies and Stars at the Same Time.” The next day, Kavli IPMU Director Hitoshi Murayama spoke about “Ripples in Spacetime—Gravitational Waves Open Up a New Way to Probe the Universe—.”

In addition, Kavli IPMU Professor Naoki Yoshida and Kavli IPMU Artist-in-Residence Norimichi Hirakawa, a media artist who stayed at the Kavli IPMU twice in July and September 2016, had a conversation about “Common Features between Science and Art.”

The Kavli IPMU also presented a two-day program including an exhibition of artist Hirakawa’s new media art pieces inspired by his residence at the Kavli IPMU, “Research at Kavli IPMU” poster presentations, mathematical puzzles, guided tours of the Kavli IPMU building, a display of books written or recommended by IPMU researchers, and a screening of Particle Fever. This is a documentary film that follows the lives of six researchers as they search for answers about how our universe was made, and witnesses moments of scientific breakthrough at the Large Hadron Collider. It has Japanese subtitles, in cooperation with UC Berkeley Professor and Kavli IPMU Visiting Senior Scientist Yasunori Nomura, and by Kavli IPMU staff.

In two days, a total of 9,600 people visited the campus. The Kavli IPMU attracted more than 2,900 people.

Note: Readers who are interested in Mr. Hirakawa’s Artist-in-Residence story at the Kavli IPMU can find his report as well as an Artist Interview in this issue of the Kavli IPMU News No. 36 (pp. 20–23).
On November 11, Minister of State for Science and Technology Policy Yosuke Tsuruho visited the Kavli IPMU, accompanied by Yoshio Yamawaki (Director General for Science, Technology and Innovation of Cabinet Office), Yasuyoshi Kakita (Director, Promotion Policy Division, Research Promotion Bureau of Ministry of Education, Culture, Sports, Science and Technology), and other government officers. Director Hitoshi Murayama began by presenting an overview of the Kavli IPMU and its research activities. He also explained the World Premier International Research Center Initiative (WPI) as well as the present status of the SuMIRe project conducted under the Cabinet Office’s Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) and the applications and technologies derived from basic research. Then, after having looked over the Kavli IPMU building, the guests joined researchers and talked with them at tea time.

On November 19, 2016, the University of Tokyo’s Kavli IPMU, Institute for Solid State Physics, and Institute for Cosmic Ray Research jointly hosted an event called “Actually I Really Love Physics! — Career Paths of Female Physics Graduates” at the Kavli IPMU, and there were 33 participants. This event was held to support female students in physics to plan their careers. For that purpose, various speakers of physics graduates talked their career paths and the attractiveness of the field of physics. It was also aimed to create a network of participants on this occasion.

In the morning, four speakers talked about topics including their career paths and research for 10 to 20 minutes each.

In the afternoon, there were two thirty-minute lectures. Kavli IPMU Director Hitoshi Murayama spoke on the topic “What I started to see as I majored in physics—the forefront of astrophysics research and achievements of female researchers.” The University of Electro-Communications Associate Professor Haruka Tanji then gave a lecture entitled “What I saw when I broke out of my shell—Study at a graduate school in the U.S. and afterwards.” In her lecture, she also spoke about reconciling research with raising a child.

After the lectures, the participants toured the three host institutes. The final program of the event was a meeting of the lecturers and participants. A friendly atmosphere, with tea and cookies being served, produced active interactions among the participants, and the event ended successfully.
On November 27, 2016, the Kavli IPMU and the Institute for Cosmic Ray Research (ICRR) held the 15th joint public lecture at the Ito Hall of the University of Tokyo’s Hongo campus. “Observable Universe and Beyond” was the main topic and it attracted an audience of about 300 people including junior high school and high school students.

The first lecture entitled “Observing Formation and Evolution of Galaxies with Large Telescopes” was given by ICRR Assistant Professor Yoshiaki Ono. He talked about studies of the evolution of the neutrality of the universe, which elucidate the reionization epoch when cosmological structure formation started. In particular, he focused on surveys of distant galaxies that are important in understanding the number density of galaxies in the early universe.

Then Kavli IPMU Associate Professor Taizan Watari spoke on “Beyond Our Universe, Far to Observe, People Say, Different Worlds Exist.” Having started with quoting Karl Busse’s poem Über den Bergen,*** he developed the topic by comparing “happiness imagined to dwell over the mountains” to the laws of physics in the worlds which we cannot yet observe. He said, “While our laws of physics seem to hold within the universe we can observe, it is possible that the laws of physics and constants beyond the observable universe are different from ours.” He then explained a possible world resulting from slight changes in physics laws and constants.

After the lectures, Professor Ono and Professor Watari answered questions from each other and the audience. There was then a further opportunity of communication between the lecturers and the attendees in the foyer of Ito Hall, and many of them eagerly asked questions at that time.

![Taizan Watari (left) and Yoshiaki Ono (right).](image)

VLA and ALMA Team up to Give First Look at Birthplaces of Most Current Stars

An international team of astronomers, including Kavli IPMU postdoctoral fellow Wiphu Rujopakarn (who is also affiliated with Chulalongkorn University in Bangkok) as the first author of the paper reporting this research, got their first look at the exact place where stars were born at a peak rate of star formation. To do so, they used the National Radio Astronomy Observatory’s Karl G. Jansky Very Large Array (VLA) in New Mexico and the Atacama Large Millimeter/Submillimeter Array (ALMA) in Chile to look at eleven distant galaxies selected from the Hubble Ultra-Deep Field. They are seen as they were 8.9 – 11.5 billion years ago.

Most stars in the present Universe are thought to have been born then. However, galaxies forming stars prolifically are shrouded in a great deal of dust due to star formation activity. This makes it difficult to look at the birthplace of stars because intervening dust hides it from visible-light observations. However, radio waves, having longer wave lengths than visible light, can get through the dust. Therefore, the astronomers made the most sensitive image of such distant galaxies where star formation was occurring with the VLA, and observed the distribution of cold gas (which is the fuel

Distant Star-Forming Galaxies in the Hubble Ultra-Deep Field

Radio/Optical combination images of distant galaxies as seen with VLA and Hubble Space Telescope. Their distances from Earth are indicated in the images. Credit: K. Trisupatsilp, NRAO/AUI/NSF, NASA.
for star formation) with the ALMA using radio waves in the millimeter wavelength region (called millimeter waves), as seen in the two figures shown on the right. The new observations, using the VLA and ALMA, have shown that intense star formation in the galaxies they studied most frequently occurred throughout the galaxies, as opposed to much smaller regions in present-day galaxies with similar high star-formation rates. The star formation rate (the total mass of stars formed per year) in the galaxies they studied turned out to be 20 times as large as that in the present-day average galaxies.

By precisely observing and analyzing the images of more distant galaxies where star formation was occurring using both radio waves and millimeter waves in future research like the present one, it is expected that we can investigate what mechanisms were responsible for the bulk of star formation in those galaxies at that time, and how they are different from the star-formation mechanisms in present-day galaxies, and eventually, we can shed light on the history of galaxy evolution.

These results were published in the December 1 issue of the Astrophysical Journal.

The combination of VLA, ALMA, and Hubble Space Telescope provides simultaneous insights into star formation, cold dust, and the existing stellar populations in distant galaxies in the Hubble Ultra Deep Field. Credit: Wiphu Rujopakarn/Kavli IPMU.

Kavli IPMU Staff Received the University of Tokyo’s Special Award for Operational Improvement in 2016

The Kavli IPMU Administrative Division team, represented by Rieko Tamura of the International Relations and Researchers Support Section, received the University of Tokyo’s 2016 Special Award for Operational Improvement. The team consists of 20 members that took part in the “Win-Win Project towards University Globalization.” The Awards for Operational Improvement is divided into three ranks: the President’s Award, the Executive Vice President’s Award, and the Special Award given by the University’s Division for Operational Improvements. Every year, teams of university staff members are invited to implement ideas for operational improvement, and the awards are given to teams that have shown excellent achievements.

The Kavli IPMU team planned and implemented two programs: “Lunchtime English Training” and “Language Exchange with IPMU Researchers.” These programs raised the English proficiency of administrative staff, and reduced inefficiencies around English language-related tasks. In addition, “Language Exchange with IPMU Researchers” is a program carried out between Kavli IPMU staff and researchers from abroad. It is a win-win program as recognized by the award: the exchange is an opportunity for the researchers to improve their knowledge of Japanese language and culture.

Kavli IPMU / ELSI Joint Public Lecture “A Question of Origins”

On January 22, 2017, the 2nd public lecture—“A Question of Origins”—co-sponsored by Kavli IPMU and Tokyo Institute of Technology’s Earth-Life Science Institute (ELSI) was held at the University of Tokyo’s Ito Hall at Hongo campus.

The purpose of the Kavli IPMU is to pursue the “Origin of the Universe” and the purpose of the ELSI is to pursue the “Origin of the Earth and Life.” These two WPI institutes planned this public lecture as an event to convey the latest findings of their research in an easy-to-understand way as well as to offer a diversity of perspectives, including the philosophical perspective to the audience, under the common theme of “A Question of Origins,” which is fundamental to mankind. The venue was filled to capacity with 350 people.

After an opening address by WPI Program Director Toshio Kuroki, Kavli IPMU Principal Investigator Hiroshi Ooguri talked about “The Origin of the Universe from
Outreach and Public Relations

the Physics Point of View," ELSI Director Kei Hirose talked about "Learning the Past from the Present—Travelling through Time over 4.5 Billion Years—," and the University of Tokyo's Graduate School of the Humanities and Sociology Professor Noburu Notomi spoke about "Question of the Origin (arkhē) Posed by Ancient Greek Philosophy." After the lectures, the three speakers took part in a round table discussion entitled "What Does It Mean to Question Origins?" Finally, there was a discussion between the lecturers and the audience, and the event ended on a high note.

AAAS 2017 Annual Meeting in Boston

The American Association for the Advancement of Science (AAAS) annual meeting was held in Boston from February 16 through 20, 2017. At this AAAS annual meeting, the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), the Japan Society for the Promotion of Science (JSPS), and the nine WPI centers including the Kavli IPMU hosted the WPI booth for three days from February 17. Open to all attendees, the booth showcased some of the latest research from WPI centers, as well as highlighted their efforts to create an open research environment that attracts scientists from around the world, with WPI Program Director Toshio Kuroki in attendance. During the three days, the WPI booth was visited by more than 300 people, including researchers, journalists, students, and families.

At this AAAS annual meeting, Nobel laureate Takaaki Kajita (Director of the University of Tokyo’s Institute for Cosmic Ray Research and Kavli IPMU Principal Investigator) participated as a panelist at the panel discussion entitled, "Opening a New Era to the Universe with Gravitational Waves."

WPI booth at the AAAS annual meeting in Boston. Photo: Courtesy of the International Institute for Carbon-Neutral Energy Research (I²CNER), Kyushu University.

Director Murayama Talked at the WPI 10th Anniversary Symposium

On December 17, 2016, the WPI 10th Anniversary Symposium "Towards the Future of Science in Japan" was held at Assembly Hall, East Annex, Ministry of Education, Culture, Sports, Science and Technology (MEXT), under the sponsorship of MEXT and the Japan Society for the Promotion of Science (JSPS) and with the cooperation of all the nine WPI centers. In this symposium, Kavli IPMU Director Hitoshi Murayama spoke on "The Beginning and the End of the Universe." His lecture and other lectures (all in Japanese) can be seen at https://www.jsps.go.jp/j-toplevel/13_lecture.html.

Surrounded by young students, Director Murayama answers their questions, at the WPI 10th Anniversary Symposium "Towards the future of science in Japan." Photo: Courtesy of IFReC.
First Public Data Released by Hyper Suprime-Cam Subaru Strategic Program

The first public data set from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) was released on February 27, 2017 (local time in Hawaii). The HSC-SSP is a large survey being done using HSC, an optical imaging camera mounted at the prime focus of the Subaru Telescope. Since it is difficult to analyze such a huge dataset with standard tools, a dedicated database and interface for ease of access and use of the data has been developed.

The HSC-SSP is a “cosmic census” project expected to spend 300 nights over 5 to 6 years to conduct an imaging survey of various galaxies over a wide solid angle of the sky, corresponding to 6,000 times the area of the full moon, in sufficient depth to probe the distant Universe. The HSC-SSP is an international collaboration of astronomers from NAOJ, Kavli IPMU, and other institutes in Japan, the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA) in Taiwan, and Princeton University in the United States. Kavli IPMU Professor Masahiro Takada serves as a leader of the HSC-SSP Science Working Group using the HSC-SSP data.

This release includes data from the first 1.7 years (61.5 nights of observations beginning in 2014) and the total amount of data comprises of 80 terabytes. Though this first public dataset represents only a sixth of that expected from the entire HSC-SSP survey, it already contains almost 100 million galaxies. In contrast, the US-based Sloan Digital Sky Survey (SDSS)—which is known for its wide area observation—took over 10 years to create equivalent data sets.

Why was it possible for the HSC-SSP survey to collect such a large amount of data within this short period? It is because the HSC-SSP is a large survey project which fully takes advantage of the performance of the Subaru telescope and the HSC. First, the Subaru telescope has a large 8.2 m diameter primary mirror, and, therefore, a high light-collecting power. Further, the HSC, a wide-field camera mounted at the prime focus of the Subaru telescope, has 104 CCDs (870 million pixels in total) for science exposures and a 1.77 square-degree field of view—about 1000 times as large as that of the Hubble Space Telescope.

In contrast to other surveys, the HSC-SSP can collect high-quality data including information on dim galaxies and distant galaxies. In future, it is expected to shed light on such topics as the origin of galaxies, and the nature of dark matter and dark energy, using these data.

Meeting of WPI Center Administrative Directors Held at Kavli IPMU

On March 8, 2017, a meeting of the WPI (World Premier International Research Center Initiative) center Administrative Directors was held at the Kavli IPMU. In addition to the Administrative Director and some administrative staff from each WPI center, WPI Program Director (PD) Toshio Kuroki, Deputy PD Akira Ukawa, Director Takuya Saito of the Office for the Promotion of Basic Research, the Basic Research Promotion Division, Research Promotion Bureau, Ministry of Education, Culture, Sports, Science and Technology (MEXT), and some officers from MEXT and JSPS (Japan Society for the Promotion of Science) WPI Secretariat also attended the meeting.

To begin, meeting host and Kavli IPMU Administrative Director Haruyama reported on the necessity for the WPI program, 10 years after its launch, to deepen cooperation among the centers. Then, PD Kuroki, MEXT Director Saito, and others explained the present status toward establishing the “WPI Academy.” According to these explanations, the WPI centers, which started in 2007 as first-generation centers, can maintain and develop their status of “World Premier International Research Center,” attained through their ten years of activities, in the new framework of the WPI Academy. As the Kavli IPMU is a WPI center with a five-year extension, it is expected to play its role in the WPI Academy as well as in the current WPI program. Further, there was a presentation of information by a fundraising specialist. He pointed out the necessity of an approach toward various kinds of fundraising, sufficient appeal power the WPI activities have, etc.

The participants toured the Kavli IPMU building which is known for its unique design, and attended daily tea
Outreach and Public Relations

Japanese Class Completion Ceremony

At the Kavli IPMU, its own Japanese classes are open to researchers and their families. To date, many people have completed their 40 hours of Introductory Japanese Course taught by Kavli IPMU’s Japanese Language teacher Masami Nishikawa. On March 13, 2017, six students celebrated finishing their Japanese classes. They presented speeches in Japanese and received their certificates. They are Kavli IPMU Postdoctoral Fellows Jiaxin Han, Ting-Wen Lan, Juliana Kwan, Fabian Koehlinger, Po-yen Tseng, and his wife Chia-i Chen.

Workshop –Searching for the Lost Study– Art × Science × Philosophy

On March 25, 2017, a workshop Called “Searching for the Lost Study– Art × Science × Philosophy” was held at Tamarokuto Science Center in Nishi-Tokyo City. This workshop was aimed at considering similarities and differences between science, art, and philosophy. The following specialists were invited to present their view on this theme: Masahito Yamazaki (Kavli IPMU Assistant Professor; Physics), Yoshihiro Maruyama (Kyoto University’s Hakubi Project/Graduate School of Letters Assistant Professor; Mathematical Philosophy), Masafumi Oizumi (ARAYA’s Manager; Cognitive Science), Shunsuke Kuwahara (The University of Tokyo’s Department of Aesthetics Assistant Professor; Aesthetics), and Nozomu Ogawa (Art Center Ongoing Director; Contemporary Art). There were about 40 participants. More than half of them were women. The workshop lasted the whole day, with a Science session, Art session, and General session, and it was organized in such a way that there were frequent discussion times among the participants. In each group sitting around a table, a very active discussion was made to deepen the understanding of the presentation given by lecturers.

Four issues of the Kavli IPMU News have been published in FY 2016.