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In March, 1940, in the midst of war’s chaos, a 

mathematician, arrested for refusing military service, 
wrote a 14-page letter to his sister, a philosopher, 
from Bonne-Nouvelle prison at Rouen in France. He 

wrote, “On the one hand the analogy (of function 

�elds over �nite �elds) with number �elds is so strict 

and obvious... while, on the other hand, the one 

between the function �elds (over �nite �elds) and 

the “Riemannian” �elds... is to pro�t in the study of 

the �rst from knowledge acquired about the second, 
and of the extremely powerful means offered to 

us...”＊1 The mathematician is André Weil, who later 

proposed a surprising conjecture on zeta functions 

for varieties over �nite �elds following an analogue 

with the Riemann hypothesis,＊2 and has made a 

strong impact on mathematics up until now.

1, 2, 3,... Integers are one of the most fundamental 

and classical mathematical concepts that people 

are familiar with. It is an extremely dif�cult object 

to study, and modern mathematics is not powerful 

enough to answer many simple questions it poses. 
However, when we �nd a piece of truth in number 

theory, people tend to have a superb outcome.
From ancient times, solving equations has 

attracted the attention of lots of mathematicians. 
Solution to quadratic equations x2 + ax + b = 0 was 

known already by ancient Babylonians, presumably 

discovered by practical needs. Attention changed 

to more complicated equations as time went by. 
When we study equations, one way is to think of 

them graphically. For example, consider the equation 

y = x2. We learn that this equation represents a 

parabola, which enables us to study the equation 

geometrically. Generalizing this approach, algebraic 

geometry is a branch of mathematics that tries 

to consider systems of multi-variable equations 

geometrically. Algebraic geometry has already been 

discussed several times in the IPMU News (e.g. Toda＊3

and Bondal＊4). Figures de�ned by systems of 

equations are called algebraic varieties in algebraic 

geometry. Algebraic geometry is situated at the 

intersection of various �elds of mathematics. Given 
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Figure 1.  Realization of an algebraic variety in two different 
worlds. 

§1  Weil’s Philosophy

＊1 Refer to Column 1 for some explanation of �elds which appear in this 
sentence and rings which appear in §2. Finite �elds are discussed in detail in 
§2. Riemannian �elds are �elds related to complex geometry, and often called 
function �eld over the �eld of complex numbers. 

＊2 For the Riemann hypothesis, see§3.
＊3 Yukinobu Toda, Kavli IPMU News No. 20 (2012) p. 4.
＊4 Alexey Bondal, IPMU News No. 14 (2011) p. 4.



5

Feature

algebraic varieties, we may consider �gures de�ned 

by integral solutions. Studying such solutions could 

be seen as a part of number theory. We may also 

consider �gures de�ned by complex solutions of 

algebraic varieties. Now, this is a realm of complex 

geometry.
When we consider solutions in different places, 

their landscapes are totally different. For example, 
in complex geometry, algebraic varieties can be 

considered as �gures in higher-dimensional complex 

space, so that geometric thinking is possible. But, 
if we wish to study integral solutions, the �gure 

de�ned by such solution is too discrete to use 

geometric intuition (see Figure 1). 
These are different worlds de�ned by the same 

language, algebraic geometry. Surprisingly, Weil’s 
philosophy (which he himself admits was not the 

�rst to assert) tells us that these seemingly unrelated 

worlds have relations beyond our perception, called 

analogy, and we can attain the truth of mathematics 

when we think of them as the Trinity shown in 

Figure 2.

The Riemann zeta function is the function de�ned 

by a simple series

In the mid-19th century Riemann found out that 

information on the distribution of prime numbers 

is encrypted in this function, and he proposed an 

ultimate form of this expected information. He 

formulated it into a celebrated conjecture, which we 

now call the Riemann hypothesis. This conjecture is 

still a central problem in mathematics, but it seems 

that we are far from its resolution.
To compare with integers, polynomial rings over 

�nite �elds have often been considered. To introduce 

these objects, let us de�ne �nite �elds �rst. Let p be 

a prime number. Consider the set 

{0̄, 1̄, ..., p-1} denoted by Fp. In fact, we may de�ne 

four elementary operations (addition, subtraction, 
multiplication, and division) for the elements of this 
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§2  Zeta Functions

Figure 2.  Weil’s Trinity.
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set just as we de�ne them for the elements of the 

set of rational numbers (a rational number is a real 

number that can be written as a simple fraction). 
This is nothing dif�cult, and for addition and 

multiplication, all we need to do is to consider the 

remainder after division by p. For example, when 

p = 7, we have

4̄ × 5̄ = 20─ = 6̄.
Since 20─ is not de�ned, the meaning of the equation 

is a bit ambiguous, but we leave the interpretation of 

it to the readers. Division is slightly more problematic, 
but when we want to compute

4̅  ÷ 5̅  = ?,
all we need to do is to �nd ? so that

5̄ × ? = 4̄.
The interested reader can check that the answer is 5̄. 
If we consider p which is not a prime number, we 

can de�ne multiplication and addition in the same 

way, but we cannot de�ne division. For example, for 

p = 12 (the world of a clock!) it is easily understood 

that ? does not exist such that 

4̄ × ? = 1̄.
The polynomial ring Fp[x] in question is the set 

of polynomials whose coef�cients are elements of 

Fp. For example, in F3 [x], we have the following 9 

polynomials with degree less than or equal to 1:

Likewise, we have polynomials with degree 

bigger than 1, so that F3[x] contains in�nitely 

many polynomials. Similar to the additions and 

multiplications of the usual polynomials, additions 

and multiplications are de�ned for elements of 

Fp[x]. Moreover, we have the notion of irreducible 

polynomials, which are polynomials which cannot 

be divided by polynomial with lower degrees. 
Irreducible polynomials in Fp[x] can be regarded as 

the notion corresponding to prime numbers in the 

set of integers.
Now, if the Riemann zeta function for the integer 

ring is too challenging to deal with, we may try to 

consider an analogous zeta function for its cousin 

ring Fp[x] and study it. To de�ne the analogous 

function, an important discovery is the Euler’s 
product representation

This representation enables us to interpret the 

zeta function “algebro-geometrically.” Let f be an 

element of Fp[x]. We denote the degree of f by 

deg( f ). By analogy, then, we may de�ne

Here, the factor p-s in the de�nition of the Riemann 

zeta function is replaced by p-deg( f )•s. This is because, 
when we interpret p in the de�nition of ζ(s) as the 

“size” of the prime number p, it is reasonable to 

measure the size of f as pdeg( f ). Algebro-geometrically, 
Fp[x] is understood to be a line (over a �nite �eld). 
With this interpretation, all the factors appearing 

in the de�nition of ζFp[x](s) have algebro-geometric 

meanings. Pursuing this, it is not hard to de�ne the 

Column 1: Fields and rings

A ring is a set such that addition and 

multiplication rules are de�ned. For 

example, the set of integers （…, -2, -1, 0, 1,
…）is closed under taking addition and 

multiplication in the usual sense, so we may 

say that the set forms a ring. The set of 

polynomials has similar property, so it is also 

an example of a ring. Fields are a special kind 

of ring. More precisely, a ring is said to be a 

�eld if any element but 0 has an invertible 

element. Finite �elds are examples of �elds as 

well as the set of rational numbers and the 

set of real numbers.
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�nite �eld. This is the zeta function de�ned by Weil, 
and nothing but (☆) of the trinity shown in Figure 2.

Weil computed ζFp[x](s), or more generally ζC(s) 
for general curves C. It showed that, contrary to 

Riemann’s original zeta function, the zeta functions 

ζFp[x](s) and ζC(s) are rational functions (namely 

fractions of polynomials). More precisely, we may 

write

where fn are polynomials. Even more surprisingly, the 

roots of the equation fn(t) = 0 have their absolute 

value equal to pn/2. The absolute value could be 

anything, but transcendental power forces us to 

Column 2: Invariants

Invariants means quantities invariant under 
certain operations. Why can we consider 
surface area as an invariant? There is a 
philosophy that geometry can be classi�ed by 
invariance under transformations. This was 
�rst claimed by Klein in his famous Erlangen 
program, which is so to say a guideline of 
geometry. For example, Euclidean geometry is 
a geometry which is invariant under parallel 
translation or rotation, and topology is 
a geometry which is invariant under continuous
deformation, which has more freedom 
than Euclidean geometry. Surface area is 
an invariant in Euclidean geometry, and we 
have so-called cohomologies as topological 
invariants. Of course, cohomologies can be 
seen as invariants for Euclidean geometry as 
well. The word “invariants” makes sense once 
we specify geometry.

§3  Weil Conjecture

ζ  

thought he knew what these numbers were. The 

Riemann hypothesis conjectures that the Riemann 

zeta function has non-trivial zeros only on the line 

Re(s) = 1/2, and the half integers could be seen as 

a perfect analogue of this. The original Riemann 

conjecture is too hard to tackle, but an analogue for 

curves over �nite �elds was formulated and proven 

by Weil.
Moreover, he found out that fn(t) has geometric 

information. Namely, for him, computing fn(t) 
seemed as if to compute the cohomology Hn(X).

Cohomologies express “topological information” 
of �gures. In research, it is extremely important to 

describe characteristics of things. How do we extract 

characteristics of �gures such as the one shown 

below?

 Mathematical objects that characterize �gures are 

called “invariants.” For example, volume and surface 

area are typical invariants. These invariants readily 

change if we deform the �gure. Of course, these 

invariants are important, but sometimes we need to 

express the characteristics of �gures more roughly. In 

that case, we sometimes count the number of holes 

in the �gure. This number doesn’t change even if 

we stretch the �gure. On the other hand, no matter 

how we stretch a sphere, we can’t transform it into a 

torus. This implies that an invariant like the number 

of holes may be used to classify �gures. Geometry, 
which aims to extract �gures’ characteristics 

which are invariant under continuous deformation 

(e.g. number of holes), is called “topology.” and 

zeta function ζX(s) for algebraic variety X over a 

pick extremely speci�c rational numbers n/2! Weil 
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cohomology is an invariant generalizing and 

abstracting the hole number. Cohomology is very 

important and frequently appears in geometry which 

deals with continuous objects, such as complex 

geometry. Geometry over a �nite �eld stands on the 

other extreme. As �nite �elds have only �nitely many 

elements, it doesn’t make sense, a priori, to take 

continuous invariants. Nevertheless, Weil claimed 

that topological information is hidden in the zeta 

function. This is (☆☆) of the trinity (see, Fig. 2).
After these observations, Weil proposed conjectures 

on properties of the the zeta functions for more 

general varieties. Concretely, for any algebraic variety, 
ζX(s) is a rational function, and the absolute value 

of the root of each polynomial is equal to pn/2 for 

some integer n. In addition to these conjectures, Weil 

predicted the existence of cohomology theories, which 

have the ability to extract topological information, 
for varieties over �nite �elds: he predicted it in 1949, 
shortly after the war. 

Why are the zeta functions important? This is 

rather a philosophical question. People studying 

number theory “believe” that the zeta functions 

contain important information. However, this belief 

is not just fantasy. For example, the BSD (Birch and 

Swinnerton-Dyer) conjecture, which, as well as the 

Riemann hypothesis, has been offered a prize money 

of $1 million＊5 for the solution to it, predicts that 

the zeta functions have information on the number 

of solutions of the de�ning equation of certain 

algebraic varieties. The numbers of solutions of 

systems of equations are the ultimate information 

that number theorists look for. Other than this, many 

dif�cult and central questions are related to the zeta 

functions, and we still believe that we may reach the 

truth by studying the zeta functions.

In the late 50s, a genius, Alexander Grothendieck 

appeared to solve the Weil conjecture. He started 

to construct the cohomology theory that Weil had 

predicted. With the aid of M. Artin and others, 
after 10 years of concentration he succeeded in 

constructing topological cohomology theory for 

varieties over �nite �elds. It was called the ℓ-adic 

cohomology. The theory was far more general and 

abstract than Weil had imagined. Their results were 

collected in the seminar notes called SGA,＊6 with the 

total number of pages more than 5000. He named 

the new geometry “arithmetic geometry.”
Even though most of the Weil conjecture had 

been solved due to their efforts, the analogy with 

the Riemann hypothesis seemed to remain unsolved. 
However, Grothendieck’s student, another genius, 
Pierre Deligne successfully solved the last piece of 

the Weil conjecture fully using the framework that 

Grothendieck had established. More than 30 years 

had passed since the letter of Weil in 1940.
What is intuitive in complex geometry could 

frequently be extremely hard in arithmetic geometry 

when following analogies with complex geometry. 
For this purpose, the utmost understanding of 

concepts of complex geometry was needed. Due 

to this fact, an enormous amount of mathematical 

notions and philosophy was yielded while arithmetic 

geometry was being constructed, and the in�uence 

of the geometry over a �nite �eld to complex 

geometry cannot be overestimated. Hodge theory 

could be seen as an analogue of complex geometry 

(cf. Deligne’s Hodge I＊7), and the theory of weights 

coming from Hodge theory is indispensable in 

geometric representation theory. The geometric 

Langlands program is a theory considered by 

following an analogy between number theory 

and complex geometry via arithmetic geometry, 
and some experts point out relations with physics. 

§4 Grothendieck and ℓ-adic 
Cohomology

＊5 In 2000, the Clay Mathematics Institute in the U.S. offered a $1 million prize 
for solving each of the seven mathematical problems including the Riemann 
hypothesis. Up to the present time, only the ‘Poincaré conjecture’ has been 
solved by Grigori Perelman.

＊6 Séminaire de Géométrie Algébrique, http://library.msri.org/books/sga/.
＊7 P. Deligne, “Théorie de Hodge. I,” Actes du Congrès International des 

Mathématiciens 1, (1970) 425.
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Column 3:ℓ-adic and p-adic theories

In arithmetic, when a prime number p 
is �xed we often distinguish other prime 
numbers different from p, and they are 
often denoted byℓ. For example, consider a 
quadratic equation ax2 + bx + c = 0. It is well-
known that the roots are

Note that we have 2a as the denominator. 
Consider the equation in F2. Since 2 = 0 here, 
the denominator doesn’t make sense. On the 
other hand, it makes sense if we consider the 
equation in Fℓ(ℓ≠ 2).

This shows that we have different behaviors 
as we vary prime numbers. Similar things often 
happen, which is the reason to distinguish 
prime numbers, and ℓ-adic and p-adic 
cohomologies are de�ned by very different 
methods. 

√
 .

§5  ℓ-adic, p-adic, and the Future

The notion of derived categories, which is being 

extensively investigated in algebraic geometry 

and which some of the Kavli IPMU researchers are 

interested in, is one of the numerous notions that 

were yielded in the process mentioned above. The 

return has turned out to be huge.

Once again, let us come back to the analogy 

between complex geometry and geometry 

over �nite �elds. In complex geometry we have 

topological cohomology theory, but we also have 

analytic cohomology theory. These two cohomology 

theories have been known to coincide. Since 

Grothendieck constructed the ℓ-adic cohomology 

theory as an analogy with topological cohomology 

theory, it is also natural to expect an analogy over 

a �nite �eld with analytic cohomology. In fact, 
Dwork had already considered such cohomology 

theory prior to ℓ-adic theory, and he had shown 

the rationality of the zeta function in the Weil 

conjecture. However, construction of a general 

theory like ℓ-adic theory was hard, and the theory 

fell behind ℓ-adic theory which was theoretically 

complete. There are several theories which should 

be mentioned such as Grothendieck’s crystalline 

cohomology and Monsky-Washnitzer’s cohomology, 
but �nally, in the 80s, Pierre Berthelot constructed 

analytic cohomology theory for varieties over �nite 

�elds, called the rigid cohomology. This cohomology 

theory is sometimes called p-adic cohomology 

theory. Even though it was de�ned, many expected 

fundamental properties were left as conjectures. 
However, recent development of p-adic differential 

equation theory as well as the discovery of the weak 

desingularization theorem by de Jong �nally allowed 

Kiran Kedlaya to establish p-adic cohomology 

theory. Using these results, I proved a Langlands-

type theorem, which shows that, at least in the curve 

case, p-adic and ℓ-adic cohomology have essentially 

the same information. It realizes the philosophy of 

Grothendieck, which states: “All cohomologies stem 

from motives.”
I mentioned analysis over �nite �elds, but it 

is mysterious that imitation of analytic theory 

works over such discrete �elds. I always have the 

impression that there is no reason the theory over 

�nite �elds should behave as if it were the real 

world. It seems as if some invisible power gave rise 

to the analogy. However, I don’t want to cease the 

exploration just by worshiping the mysterious power, 
but want to make it a part of human knowledge 

by understanding it via the same language: 
analytic theory in complex geometry. When a new 

analogy between analysis for complex varieties and 

arithmetic geometry is realized, it should lead us 

to a deeper understanding of mathematics as an 

incarnation of the classical trinity.


