# Probing the Higgs Boson with M<sub>T2</sub> and MAOS Momentum

K.C., S.Y. Choi, J.S. Lee and C.B. Park arXiv:0908.0079 [hep-ph]W.S. Cho, K.C., J.S. Lee and C.B. Park in preparation

> Kiwoon Choi (KAIST) IPMU Focus Week, Nov. (2009)

> > ▲ロト ▲団ト ▲ヨト ▲ヨト 三回 - のへの

## Outline

- Current Strategy for Higgs Boson Search
- **2**  $M_{T2}$ -Assisted On-Shell (MAOS) Momentum
- Application of MAOS Momentum to the Higgs Search via H → WW\* → ℓνℓν

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Summary

## **Current Status of the SM Higgs Search**

- LEP bound:
  - $m_H > 114.5 \text{ GeV} (95\% \text{ CL})$
- Precision EW measurements:

 $m_H < 186(157)$  GeV (95% CL)

• Tevatron data:

 $m_H < 160 \text{ GeV}$  or  $m_H > 170 \text{ GeV}$  (95% CL)

 $\implies$  Most probable range of the SM Higgs boson mass:

 $114.5 \text{ GeV} < m_H < 160 \text{ GeV}$ 

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

### Major Higgs Search Channels at the LHC ATLAS Report, arXiv:0901.0512

$$\begin{split} H &\to WW^* \to \ell \nu \ell \nu, \quad H \to \gamma \gamma \\ H &\to ZZ^* \to 4\ell, \quad H \to \tau \bar{\tau} \end{split}$$

#### **Discovery Significance:**





**Our Observation:** With MAOS momentum (and  $M_{T2}$ ), the sensitivity of the *WW* channel can be significantly improved.

- $\implies$  (i) significantly enhance the efficiency of the Higgs search and mass measurement over the mass range  $115 \text{ GeV} < m_H < 190 \text{ GeV}.$ 
  - (ii) make the *WW*-channel as important as the  $\gamma\gamma$  or  $\tau\bar{\tau}$ channel for  $m_H < 130$  GeV.

**Current Search Strategy for**  $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$ ATLAS Report, arXiv:0901.0512

How to suppress the backgrounds and which observables are (most) sensitive to the Higgs signals (i.e. to  $m_H$ )?

- Backgrounds:  $pp \to WW$ ,  $t\bar{t}$ , single top,  $Z \to \ell\bar{\ell}$ , ... These backgrounds, except for WW, can be suppressed enough by the basic selection cut on { $p_T^{\ell}$ ,  $p_T^{\text{jet}}$ ,  $p_T^{WW}$ ,  $E_T^{\text{miss}}$ ,  $m_{\ell\ell}$  }.
- Remained WW backgrounds can be controlled by  $\Delta \Phi_{\ell\ell}$  (transverse dilepton opening angle) which encodes the Higgs spin correlation:



Use large angle events ( $\Delta \Phi_{\ell\ell} > 1.6$ ) as control region and small angle events ( $\Delta \Phi_{\ell\ell} < 1.6$ ) as signal region.

• Use the transverse mass of  $WW \rightarrow \ell \nu \ell \nu$  as the main observable to probe the Higgs signals.

Transverse mass has been used often as an alternative to the invariant mass for events with missing energy:

$$M_T^2(WW) = m_{\ell\ell}^2 + m_{\nu\nu}^2 + 2\sqrt{|\mathbf{p}_T^{\ell\ell}|^2 + m_{\ell\ell}^2}\sqrt{|\mathbf{p}_T^{\nu\nu}|^2 + m_{\nu\nu}^2} - 2\mathbf{p}_T^{\ell\ell} \cdot \mathbf{p}_T^{\nu\nu}$$
$$(\mathbf{p}_T^{\nu\nu} = \mathbf{p}_T^{WW} - \mathbf{p}_T^{\ell\ell} = \mathbf{p}_T)$$

As  $m_{\nu\nu}$  is not available, one considers a variant:

$$M_T^{\text{approx}} = M_T|_{m_{\nu\nu} = m_{\ell\ell}}$$
 (Rainwater and Zeppenfeld)  
or  $M_T^{\text{true}} = M_T|_{m_{\nu\nu} = 0}$  (Barr, Gripaios, Lester)

 $M_T^{\text{true}}$  has a slightly better efficiency than  $M_T^{\text{approx}}$ , but almost the same for the light Higgs mass range  $m_H < 160$  GeV. Barr, Gripaios, Lester; ATLAS Higgs Search Group

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# **Our Proposal:**

(i) Use (m<sub>H</sub><sup>maos</sup>)<sup>2</sup> = (p<sub>ℓ</sub> + p<sub>ℓ</sub> + p<sub>ν</sub><sup>maos</sup> + p<sub>ν</sub><sup>maos</sup>)<sup>2</sup> as the main observable to probe the Higgs signals.
(ii) Use M<sub>T2</sub> as an additional event selection variable.

•  $m_H$  = Central Peak of  $m_H^{\text{maos}}$  = Endpoint of  $M_T^{\text{true}}$ 



• The shape of  $m_H^{\text{maos}}$ -distribution and the S/B ratio can be efficiently controlled by the  $M_{T2}$  cut.

## M<sub>T2</sub>-Assisted-On-Shell (MAOS) Momentum

Cho, KC, Kim, Park, arXiv:0810.4853; KC, Choi, Lee, Park, arXiv:0908.0079

MAOS momentum is a kinematic variable designed to approximate systematically the invisible particle momenta in generic events producing two invisible particles with the same mass.



 $pp \rightarrow H + U(\text{ISR}) \rightarrow W + W^* + U \rightarrow \ell(p) + \bar{\nu}(k) + \bar{\ell}(q) + \nu(l) + U$ 

Construction of the MAOS neutrino momenta  $k_{\mu}^{maos}~\&~l_{\mu}^{maos}$  for

$$W(p+k)W^*(q+l) \to \ell(p) + \nu(k) + \ell(q) + \nu(l)$$

M<sub>T2</sub>: Lester and Summers

$$M_{T2}(\mathbf{p}_T, \mathbf{q}_T, \mathbf{p}_T) = \min_{\mathbf{k}_T + \mathbf{l}_T = \mathbf{p}_T} \left[ \max \left( M_T(\mathbf{p}_T, \mathbf{k}_T), M_T(\mathbf{q}_T, \mathbf{l}_T) \right) \right]$$

• Determine the transverse components with  $M_{T2}$  and  $p_{T}$ :

$$M_{T2} = M_T(\mathbf{p}_T, \mathbf{k}_T^{\text{mass}}) = M_T(\mathbf{q}_T, \mathbf{l}_T^{\text{mass}}), \quad \mathbf{p}_T = \mathbf{k}_T^{\text{mass}} + \mathbf{l}_T^{\text{mass}}$$

• Determine the longitudinal and energy components with (pseudo) on-shell conditions:

$$(k^{\text{maos}})^2 = (l^{\text{maos}})^2 = 0$$
  
 $(p + k^{\text{maos}})^2 = (q + l^{\text{maos}})^2 = M_{T2}^2 \quad (m_H < 2M_W)$ 

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• MAOS momenta are designed to have  $\mathbf{k}_{\mu}^{\text{maos}} = \mathbf{k}_{\mu}^{\text{true}} \& \mathbf{l}_{\mu}^{\text{maos}} = \mathbf{l}_{\mu}^{\text{true}}$  for the  $M_{T2}$  endpoint events for both signals and backgrounds:

\* Since a relatively large fraction of events are near the endpoint, particulary after  $p_T$  and  $E_T^{\text{miss}}$  cuts, MAOS momenta provide a reasonably good approximation to the true neutrino momenta.

\* One can systematically improve the accuracy of the MAOS approximation with an appropriate  $M_{T2}$  cut:  $M_{T2} > M_{T2}^{low}$ 

\* Distribution of  $m_H^{\text{maos}}$  for signal events has a narrow peak at  $m_H^{\text{true}}$  under a proper  $M_{T2}$ -cut selecting the near endpoint events:

$$(m_H^{\text{maos}})^2 = (p+q+k^{\text{maos}}+l^{\text{maos}})^2$$

•  $M_{T2}^{\max}(\text{signal}) = m_H/2 < M_W, \quad M_{T2}^{\max}(\text{background}) = M_W$ 

\* For  $m_H$  significantly lower than  $2M_W$ , one can employ an upper  $M_{T2}$ -cut,  $M_{T2} < M_{T2}^{\text{high}} \sim m_H/2$ , to reduce the backgrounds without touching the signals.

#### • Correlation between $\Delta \Phi_{ll}$ and $M_{T2}$ :

 $M_{T2}^2 = 2|\mathbf{p}_T||\mathbf{q}_T|(1 + \cos\Delta\Phi_{ll})$  for vanishing ISR

\* The angle cut,  $\Delta \Phi_{\ell\ell} < \Delta \Phi^{\text{cut}}$ , selects events with higher  $M_{T2}$ , thus improve not only the S/B ratio, but also the accuracy of the MAOS approximation to neutrino momenta.

One can employ appropriate  $\Delta \Phi_{\ell\ell}$  and  $M_{T2}$  cuts:

 $\Delta \Phi_{\ell\ell} < \Delta \Phi^{\rm cut}, \qquad M_{T2}^{\rm how} < M_{T2} < M_{T2}^{\rm high}$ 

to optimize the S/B ratio and the accuracy of the MAOS momentum approximation (= narrow peak of  $m_H^{\text{maos}}$ ).

Scatter plot of  $\Delta \Phi_{\ell\ell}$  and  $M_{T2}$  after the basic selection cut (signal for  $m_H = 140$  GeV and background)



 $\mathcal{O} \land \mathcal{O}$ 

# **Distribution of** $m_H^{\text{maos}}(\text{signal})$ **under the angle and** $M_{T2}$ **cuts** $(m_H = 140 \text{ GeV})$



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

## **Distributions of** $m_H^{\text{maos}}(\text{signal+background})$

- Event generation with PYTHIA6.4 with  $\int L dt = 10 \text{ fb}^{-1}$
- Include  $q\bar{q}, gg \rightarrow WW$  and  $t\bar{t}$  backgrounds
- Detector simulation with PGS4
- Event selection including the optimal cut of  $M_{T2}$  and  $\Delta \Phi_{ll}$



### 1- $\sigma$ error of $m_H$ from the likelihood fit to $m_H^{\text{mass}}$ or $M_T^{\text{true}}$



A similar improvement of the discovery significance is expected.

Cho, KC, Lee, Park, in preparation

# Summary

• MAOS momenta provide a systematic approximation to the invisible particle momenta in missing energy events, which can be useful for the SM processes

$$\begin{split} H &\to W^+ W^- \to \ell^+ \nu \ell \bar{\nu}, \\ t \bar{t} &\to b W^+ \bar{b} W^- \to b \ell^+ \nu \bar{b} \ell \bar{\nu}, \end{split}$$

as well as the new physics processes producing a pair of invisible WIMPs in the final state.

• Indeed, with MAOS momentum and  $M_{T2}$  applied to  $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$ , the efficiency of the Higgs search and mass measurement can be significantly improved for the most probable Higgs mass range: 115 GeV  $< m_H < 160$  GeV.