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Motivation

Pair-produced new partlcle Y decaying into visible particles, V plus
invisible WIMPs, y

P+P—>Y +Y +etc >V, +y, + V,ty, +etc

Measuring new particle masses is not easy.

v Partonic CM frame ambiguity
v' Several missing particles
v" Complex event topologies

When the event reconstruction is impossible, measuring kinematic
boundaries is a good way to determine new particle masses.

v" Transverse mass of W-boson / Invariant mass methods /
M ,-kink methods ..

v' Observing the endtpomts (kinematic boundaries) of the
Varlables is important



However, in general, identifying a meaningful endpoint is
not a trivial task with many sources of systematic
uncertainties.

- Various Kinds of the signal endpoint shape

- Hard to estimate the backgrounds, especially for jets.
- Jet combinatorics with hard ISR
- In many cases, they are irreducible.

- Jet E resolution, Finite total decay widths effects.



 Example of endpoint measurement (1)

-> Invariant masses of visible particles in SUSY cascade decay chain
-> Gaussian smeared linear signal + backgrounds function fits well

with 1~10 GeV systematic uncertainty.
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 Example of endpoint measurement (2)

M "% (~q p~q p 2q~x+ q~x )= RH squark mass, m,. known
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In the existence of large systematic uncertainty, extracting
the mass parameter using template least chi-square
methods or global fit would provide large uncertainty also.

Anyway, even with the bulk distribution with large
uncertainty, one can always define the signal endpoint as a
breakpoint in the distribution with proper resolution/width
effect.

Can we reduce the systematic uncertainty in finding the
signal endpoint ?

At least, for M, endpoint measurement, it’s possible!



M_and M_,,

* M,, - An extension of the transverse mass, M, for the
event with two missing particles

Transverse mass of 'Y — V(p)+ x(k)

M.?=m,” + m;(2 + 2\/sz—|— p, | \/m12+ k. | —2p, -k,

— Independent of the longditudinal momenta.

= One may use an arbitrary trial WIMP mass m , to define M,

(True WIMP mass = m ")

Stransverse mass of Y, Y, > V,(p,)+ x,(k; )+ V,(p,)+ x,(k,))
M ;" = min[max{M (¥),M,(Y,)}]

= Minimization over all possible WIMP transverse momenta

— t t
* For all events, My ;,(m,=m,™¢) < m,/™*



* The mass constraint from M, : p,
[Cho,Choi,Kim,Park : arXiv-0709.0288/arXiv-0711.4526]

MTnZlax (X) — po + \/poz + XZ,
x = trial WIMP mass , Visible particle mass ~ 0

2 2
mY _mx

p’ = > , the momentum of v & y in the rest frame of Y
mY

e It’s an interesting result of M, kinematics because each of the
two mother particles is not at rest in LAB frame!

(1) It 1s only valid when total transverse momentum of

2 mother particle system is zero. (p,(¥,) + p,(Y,)=0)



M_ and M_,

Transverse mass(M , ) & invariant mass(M) of Y — V(p)+ x(k)
M.,>=m,” + m)(2 + 2\/mV2+ ne |2\/mz2+|kT > -2p, -k, <M’

— Defined in any frame with fixed endpoint, M

Pseudo transverse mass(M _, ) & pseudo invariant mass(M _ )
M7 =m +m+ 2m, + | pd [Pm, +]pg [ —2(R(z)pY ) (-)p?
<M (=m2+m ) +2m 2+ py [\m  +|pd [CoshAn—2R(m)p ) (-)py

# R(m) 1s the rotation in transverse plain by anlge, 7

# An = rapidity difference between the visible and invisible particles
= Defined in the rest frame of Y with fixed M _, endpoint, M _

— Endpoint useful only for a mother particle with P, =0

(*) The way of combininig momenta constituents for M_; is exactly same
with the collider variable, M [Tovey, arXiv:0802.2879]



If it is possible, then the pseudo transverse mass
endpoint will also provide us the P’

M™% (x)=m,* +x% + 2m, 2+ p® [yfx+[p® P|p"[
x = trial WIMP mass

- How about the new mother particle
pair, each with nonzero P ?



Pseudo - stransverse mass (M ., ) for
WY =>Wip,)+ x:(k)+ (V) + x:(k;))

Mszzz = min[max{M . (Y,),M ., (¥,)}]

M, =m+m 2+ 2m 4+ | py Pym, + Ky [P = 2R(2)py) Ko,
#p, s are visible transverse momenta in the LAB frame

# min&max over all possible invisible momentum Kk ;

-r endpoint can be realized using M_., (pseudo-
stransverse mass) variable defined in the LAB frame
for the pair of mother particles with total P,=0 !



 Then, the endpoint behavior in trial WIMP mass,
X, also provides the P?

M 257 (x) = mV2+x2+2\/mV2+|P° |2\/)€2+|p0 F—|p° [
x = trial WIMP mass

e Condition for PST endpoint :
Or=|Pp (Y, +1,)|=0

M ., solution for an event witho, =0

(For single visible particle in each decay chain)
M, m B x) =27 - 4,

TT?2

14 v

4° 2 (D (2))2
+ [1+ (2A —m (1) 2 —m (2)2)][AT _(mv mv ) ]
T

_ g v v L pv) | pv(2)
A, = E,"E "7+ P - P,



Properties of M_,, (x) distribution

-Itm;~ 0, M_,, (x) projection of events has
amplified endpoint structure with proper value of
trial WIMP mass, x originated from Jacobian
factor between M and M _

., do N ., do
aM _ (x) J(M . (x),M (x))o aM  (x)
J= Mﬂ(x)(Ex + Po )2

M(x) E_-P,

— oo , when x 1s small

max

{MT max region, J
9

M , min region,J_. — 1

min



Stransverse mass, M,

 In result of very different compression rate, most of
the large M, events are accumulated in narrow
M_, endpoint region
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A faint breakpoint(e.g. signal endpoint) with
small slope difference, Aa > Aa’ = J> Aa by the
amplification in M_, projection.

With the salient breakpoint structure, the
fitting scheme(function/range) can be
elaborated, and it reduces the sysmematic
uncertainties in extracting the position of the
breakpoint.



Error analysis with histogram : (x,,y, £ o,)
o, = statistical error of the 1-th bin
Statistical error for breakpoint(BP)

(using Least Square methods)

2 2 2
, O J o 1 5
Osr’ Aa’ - JAa’ - J? Osr
Sia 1 Sia
§BP(tt)(MﬂT2)N753P(tt)(MT2)

However, the error propagation factor ~ J for getting p°,

5p0(”“t (M _.,) ~ 5p0(”‘” (M ..,): No advantage for statistical errors.



Systematic error for BP using Segmented Linear Regression:
(x,,y, ) > Find the BP with maximal "Coefficient of Explanation”
> &’ L Xs 2
Aa®  J'Aa®  J*
(X &" ~ Y &”, similar square sum of residuals after maximization

2 2
5BP ~ 5BP

with elaborated fitting functions)

Sys 1 Sys
5BP(y )(Mszz) ~ F§ (y )(MTz)

Taking into account the error propagation factor,

(SyS) (Mszz) - i

J p° (SyS)(MTz) : O(I/J) reduction 1s eXpected!
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 Shining on buried new particle endpoints (2)
- Amplifying & identifying the correct 2 jet signal endpoint from
squark decays to gluino.

(~q~q 2 j; ~8 §2~8 2 J1 Jais A+ 2 jaex ) using >6 jets events.
- SUSY spectrum 3
c(qq)=10.5pb, 0(gg) ~o(gg) =3 pb

m. =91036.6 GeV ,
! The spectrum is properly separated so that the

| B N Jets from squark decay and gluino decay are
" l j, j, hard to be distinguished by any cuts.

We want to get the mass constraint, p®

2 2
0 mq mg~

m_, =98.6 GeV P = m

X1 q

by construction of subsystem M,_,, using jy, J,
with gluino pair as effective missing particles.



 [Event and jet selection scheme for subsystem M _,,

1. At least 6 jets with Pr > 30 GeV
2. No leptons. no b-jets

3. 01 (= €7 + 2oi21.6PT) < 30GeV

—_— .
Sum of the P; of hardest 6 jets
- No particular 2-jet selection scheme.

- For signal processes, there exist 15 jet-paring combinations.

- Also there exists many background processes with gluino+squark /
gluino~+gluino production with hard ISR jets / ...

- We just consider all the hardest 6 jets and constructed all possible

P; of 6jet system

subsystem M_p, ™19 as follows Trial gluino mass
ﬂ'f;{f?g(k) = min  [max { J[ _,ﬂ[ 2N

le—l—kﬂT:/ég—ﬂ}

J[(n 1)(_ ) = _)(2 + m..,gnp + Q(EER)EM + pg) (7) - ki)

éT = ¢r JF(I?)-
\

Y Effective MET corresponding\\ Total MET Sum of the P; of 4 jets, not
as if gluino P; sum selected as 2 squark jet candidate




Histogram of all the subsystem M _,, and M,

Expecting the correct tagged values (<1/15) consistently
contribute to a slight slope discontinuity in M,

Then, see the breakpoint enhancement in M_, projection!
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Simulation :

PYTHIA(~q~q, ~g~g, ~q~g production)(fully showered and
hadronized)

- PGS 4.0
- AE/E = 0.6/E 1n hadronic calorimeter

- Jets were reconstructed using cone algorithm, AR = 0.5

- We ignored the jet invariant masses in constructing M, and

M., (It was effective for reducing the jet energy res. effects in
identifying the endpoint at the expected position.)



Conclusion

* M_,,distribution has very impressive endpoint structure
enhancement with respect to varying trial WIMP mass,x

» Small slope discontinuities are amplified by J(x)?,
enlightening the breakpoint structures clearly

e It mi;aJht give us a chance to measure the mass constraints with
reduced systematic uncertainties, even in the case with
irreducible heavy jet combinatoric backgrounds.
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