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Motivation
• Pair-produced new particle Y decaying into visible particles, V plus 

invisible WIMPs, χ . 

• Measuring new particle masses is not easy.

Partonic CM frame ambiguity
Several missing particles
Complex event topologies

• When the event reconstruction is impossible, measuring kinematic 
boundaries is a good way to determine new particle masses.

Transverse mass of W-boson / Invariant mass methods /      
MT2-kink methods .. 
Observing the endpoints (kinematic boundaries) of the 
variables is important.

1 2 1 1 2 2+   +P P Y Y etc V V etcχ χ+ → + + → + +



• However, in general, identifying a meaningful endpoint is 
not a trivial task with many sources of systematic 
uncertainties.

- Various kinds of the signal endpoint shape
- Hard to estimate the backgrounds, especially for jets.

- Jet combinatorics with hard ISR
- In many cases, they are irreducible.

- Jet E resolution, Finite total decay widths effects.
- …



• Example of endpoint measurement (1) 
Invariant masses of visible particles in SUSY cascade decay chain 
Gaussian smeared linear signal + backgrounds function fits well
with 1~10 GeV systematic uncertainty.



• Example of endpoint measurement (2) 

MT2
max (~qR~qR q~χ+ q~χ )= RH squark mass, mx known

ATLAS Technical Design Report 2009

Max of MT2 measurement usually has O(1~10%)  systematic 
uncertainty in fitting process (fitting function, cuts, range …).



• In the existence of large systematic uncertainty, extracting 
the mass parameter using template least chi-square 
methods or global fit would provide large uncertainty also.

• Anyway, even with the bulk distribution with large 
uncertainty, one can always define the signal endpoint as a 
breakpoint in the distribution with proper resolution/width 
effect.

• Can we reduce the systematic uncertainty in finding the 
signal endpoint ?

• At least, for MT2 endpoint measurement, it’s possible!



• MT2  - An extension of the transverse mass, MT for the 
event with two missing particles 

• For all events,  MT &T2(mχ=mχ
true) ≤ mY
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• The mass constraint from MT2 : p0
[Cho,Choi,Kim,Park : arXiv-0709.0288/arXiv-0711.4526]
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• It’s an interesting result of MT2 kinematics because each of the 
two mother particles is not at rest in LAB frame!
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(*) The way of combininig momenta constituents for MπT is exactly same 
with the collider variable, MCT [Tovey, arXiv:0802.2879] 



If it is possible, then the pseudo transverse mass 
endpoint will also provide us the P0

How about the new mother particle 
pair, each with nonzero PT ? 
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• MπT endpoint can be realized using MπT2 (pseudo-
stransverse mass) variable defined in the LAB frame
for the pair of mother particles with total PT=0 !
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• Then, the endpoint behavior in trial WIMP mass, 
x, also provides the P0
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• Condition for PST endpoint : 
δT≡|PT ( Y1 + Y2 )| = 0
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• Properties of MπT2 (x) distribution

- If mvis~ 0, MπT2 (x) projection of events has 
amplified endpoint structure with proper value of 
trial WIMP mass, x originated from Jacobian
factor between MT and MπT
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• In result of very different compression rate, most of 
the large MT2 events are accumulated in narrow 
MπT2 endpoint region
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• A  faint breakpoint(e.g. signal endpoint) with 
small slope difference, Δa Δa` = J2 Δa by the 
amplification in MπT2 projection.

With the salient breakpoint structure, the 
fitting scheme(function/range) can be 
elaborated, and it reduces the sysmematic
uncertainties in extracting the position of the 
breakpoint.
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• Shining on buried new particle endpoints (1)
- 2 signal endpoints from same signature (2lepton+ MET)
- Measurement of mass differences precisely with small systematic 
fit errors 
- Example (1) LH or RH slepton pair production 2l + 2chi10

Parton level Detector level 
with δT<20GeV 

cuts



LSP

LH/RH squark mass = 722, 618 GeV
m (chi10)=400 GeV , with sizable bino and wino components

• Shining on buried new particle endpoints (2)
- Amplifying & identifying the correct 2 jet signal endpoint from 
squark decays to gluino.
(~q~q j1 ~g  j2 ~g j1 j3j5 χ + j2 j4j6χ ) using >6 jets events.
- SUSY spectrum

1036.6 GeVqm =

649.4 GeVgm =

0
1

98.6 GeVm
χ

=

( ) 0.5 pb, ( ) ~ ( ) 3 pbqq gq ggσ σ σ= =

The spectrum is properly separated so that the 
jets from squark decay and gluino decay are 
hard to be distinguished by any cuts.

We want to get the mass constraint, p0
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with gluino pair as effective missing particles.
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• Event and jet selection scheme for subsystem MπT2

- No particular 2-jet selection scheme.
- For signal processes, there exist 15 jet-paring combinations.
- Also there exists many background processes with  gluino+squark / 
gluino+gluino production with hard ISR jets / …
- We just consider all the hardest 6 jets and constructed  all possible 
subsystem MπT2 

(n=1..15) as follows 

Effective MET corresponding 
as if gluino PT sum

Total MET
Sum of the PT of 4 jets, not 

selected as 2 squark jet candidate

Sum of the PT of hardest 6 jets

PT of 6jet system

Trial gluino mass



• Histogram of all the subsystem MπT2 and MT2

• Expecting the correct tagged values (<1/15) consistently 
contribute to a slight slope discontinuity in MT2 

• Then, see the breakpoint enhancement in MπT2 projection!



• Trial gluino mass = 1.24 p0 = 389.7GeV   J =12.2
• Expected endpoint : MπT2 =519.5, MT2 =814.8 GeV
• Bin size in selected as best one among 10×(1,2,2.5) GeV
• Model fitting function :  Gaussian smeared step func / G. S. linear functions
• Mean values of measured endpoint & Systematic uncertainty in fitting      

(varying ranges, widths, while keeping χ2/n < 2. )

MπT2 
exp=519.4±0.2 GeV, MT2 

exp=797±20 GeV δMπT2 / δMπT2 ~ 1/J2

/



• Simulation : 
PYTHIA(~q~q, ~g~g, ~q~g production)(fully showered and 
hadronized) 

PGS 4.0
- ΔE/E = 0.6/E in hadronic calorimeter
- Jets were reconstructed using cone algorithm, ΔR = 0.5

- We ignored the jet invariant masses in constructing MT2  and 
MπT2  (It was effective for reducing the jet energy res. effects in 
identifying the endpoint at the expected position.)



• MπT2 distribution has very impressive endpoint structure 
enhancement with respect to varying trial WIMP mass,x

• Small slope discontinuities are amplified by J(x)2, 
enlightening the breakpoint structures clearly

• It might give us a chance to measure the mass constraints with 
reduced systematic uncertainties, even in the case with 
irreducible heavy jet combinatoric backgrounds. 

Conclusion
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