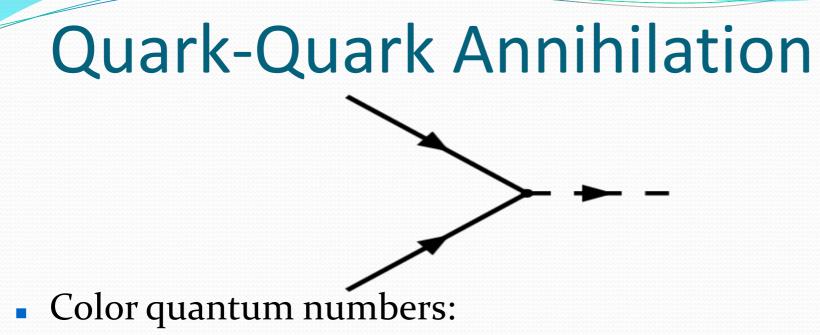
QCD Corrections to Scalar Diquark Production

Ian Lewis, University of Wisconsin November 11, 2009 Collaborators: Tao Han, Tom McElmurry arXiv:0909.2666 [hep-ph]

Motivation

- Hadron colliders (Tevatron, LHC) explore high energy frontier of physics beyond the Standard Model.
- Event rates dominated by strong interactions.
- Any new particle that participates in QCD interactions will be produced at favorable rates.
- For rather heavy particles, valence quarks are still the major contribution for their production.
- At *pp* colliders, such as the LHC, this means quark-quark scattering can dominate.



 $\mathbf{3} imes \mathbf{3} = \mathbf{6} + ar{\mathbf{3}}$

• EW quantum numbers:

$SU(2)_L$	$U(1)_Y$	$ Q = T_3 + Y $	couplings to	
1	1/3	1/3	QQ, UD	
3	1/3	1/3, 2/3, 4/3	QQ	
1	2/3	2/3	DD	
1	4/3	4/3	UU	

Exotic color states

- Examples of color sextet and antitriplet:
 - Color triplet scalar quarks in R-parity violating SUSY
 [Barbier *et al.*, hep-ph/0406039]
 - Color sextet scalars are present in some partialunification models [Mohapatra *et al.*, 0709.1486 [hep-ph]]
- The pair production for color sextet states at the LHC was calculated in [Chen *et al.*, 0811.2105 [hep-ph]]
- We approach phenomenologically and do not assume any model.

Model

The interaction Lagrangian is

$$\mathcal{L} = 2\sqrt{2} \left[\bar{K}_i{}^{ab} D^i \bar{q}_a \left(\lambda_L P_L + \lambda_R P_R \right) q_b^C + \text{h.c.} \right]$$

- C is a charge conjugation matrix
- *a,b,i* are color indices
- $K^i{}_{ab}$ are Clebsch-Gordan coefficients

Born Level

- Leading order process: $q(p_1) + q(p_2) \rightarrow D(l)$
- Then the Born-level cross section is

$$\sigma_{Born}(\hat{s}) = \frac{2\pi N_D \lambda^2}{N_C^2 \hat{s}} \delta(1 - \frac{m_D^2}{\hat{s}}) = \frac{\sigma_0}{\hat{s}} \delta(1 - \tau)$$

- N_D is the dimension of the diquark representation
- N_C is the dimension of the quark representation
- m_D is the diquark mass

•
$$\lambda^2 = \lambda_L^2 + \lambda_R^2$$

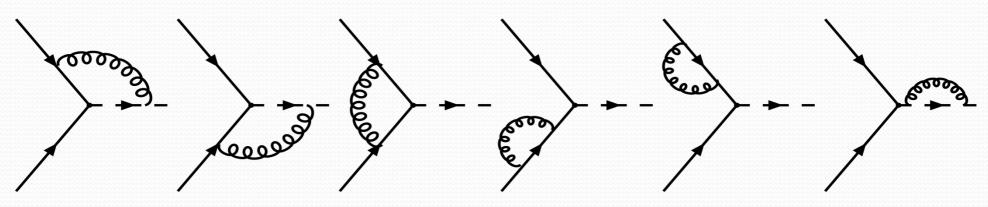
• \hat{s} center of mass energy

•
$$\tau = \frac{m_D^2}{\hat{s}}$$

NLO Calculation

- At O(α_s) have contributions from loop diagrams, real gluon emission, and gluon initiated processes.
- Diagrams contain ultra-violet (UV), soft, and collinear divergences.
- All divergences are regulated using dimensional regularization in d=4-2ɛ dimensions
- MS-bar scheme used to cancel UV and collinear divergences.
- Calculation done for stop production by Tilman Plehn [hep-ph/0006182]

Virtual Corrections



- One loop corrections:
 - Contain UV, soft, and collinear divergences.
 - Self-energy diagrams do not contribute.
 - Only vertex loops contribute

Renormalization

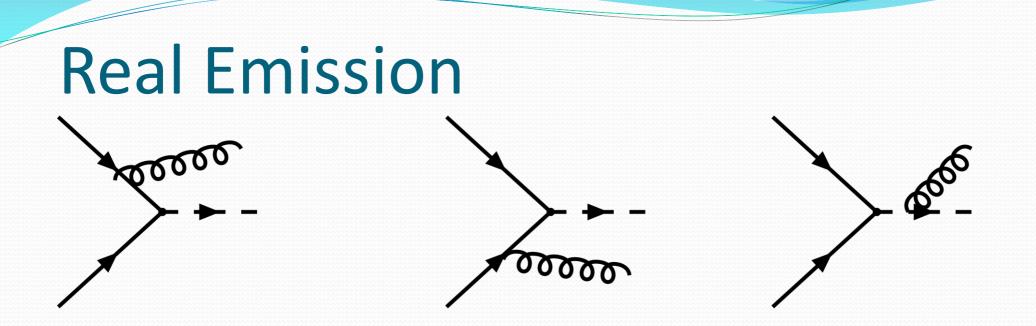
Renormalization constants in MS-bar scheme:

• Quark wave-function:
$$Z_2^q = 1 - \frac{\alpha_s C_F}{4\pi} \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \frac{1}{\epsilon}$$

• Diquark wave-function: $Z_2^D = 1 + \frac{\alpha_s C_D}{2\pi} \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \frac{1}{\epsilon}$
• Vertex: $Z_{\lambda} = 1 - \frac{\alpha_s}{4\pi} \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \frac{1}{\epsilon} (4C_F - C_D)$

• The scale dependence of the quark-diquark coupling is found to be $\lambda(u^2) = \frac{\lambda(Q^2)}{\lambda(Q^2)}$

$$\lambda(\mu_R^2) = \frac{\langle u^2 \rangle}{1 + \frac{3\alpha_s C_F}{4\pi} \ln\left(\frac{\mu_R^2}{Q^2}\right)}$$



- Contain soft and collinear divergences.
- Soft divergences cancel with soft divergences of virtual diagrams.
- Use MS-bar scheme to factorize collinear divergences.

qq Initial State

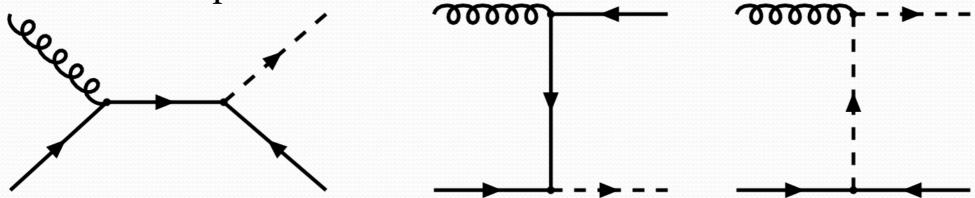
Hadronic cross section for quark-quark initial states.

$$\begin{aligned} \sigma_{NLO}^{qq} &= \frac{2\pi\lambda^2}{S} \frac{N_D}{N_C^2} \int_{\tau_0}^1 \frac{d\tau}{\tau} \left(q \otimes q \right) \left(\frac{\tau_0}{\tau} \right) \left[\delta(1-\tau) \\ &+ \frac{\alpha_s}{2\pi} \left\{ 2P_{qq}(\tau) \ln \frac{m_D^2}{\mu_F^2 \tau} \right. \\ &+ 2C_F \left[2(1+\tau^2) \left(\frac{\ln(1-\tau)}{1-\tau} \right)_+ + \left(\frac{\pi^2}{3} - \frac{3}{2} \ln \frac{m_D^2}{\mu_R^2} - 1 \right) \delta(1-\tau) + 1 - \tau \right] \\ &- C_D \left[\frac{1+\tau^2}{(1-\tau)_+} + \left(\frac{2\pi^2}{3} - 1 \right) \delta(1-\tau) \right] \right\} \right] \end{aligned}$$

• Where $P_{qq}(\tau) = C_F[(1 + \tau^2)/(1 - \tau)]_+$ is the DGLAP splitting function

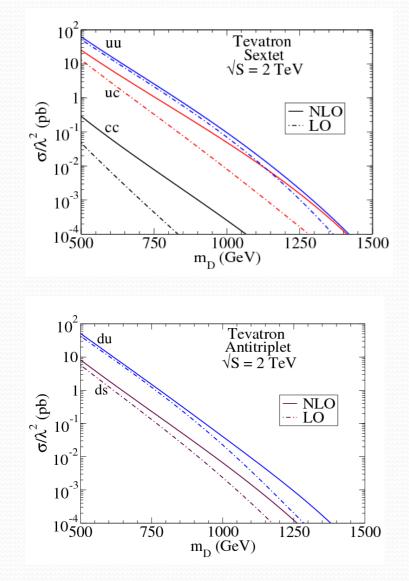
Gluon Initiated Process

 NLO QCD corrections may also arise from gluon initiated processes:



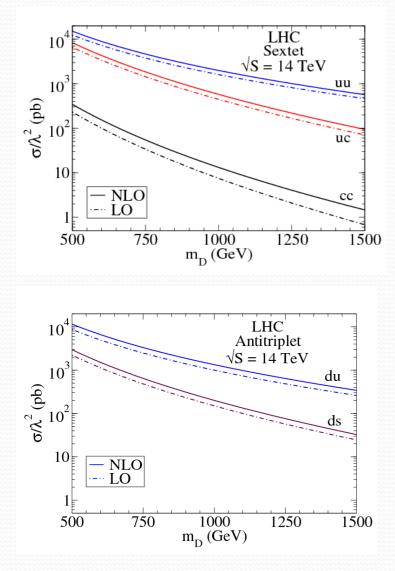
- Contains collinear divergences, but no soft divergences.
- Use MS-bar scheme to factorize collinear divergences.

Tevatron Cross Section



- p-pbar at 2 TeV
- $\mu_F = \mu_R = m_D$
- Scattering involving valence quarks dominates

LHC Cross Section

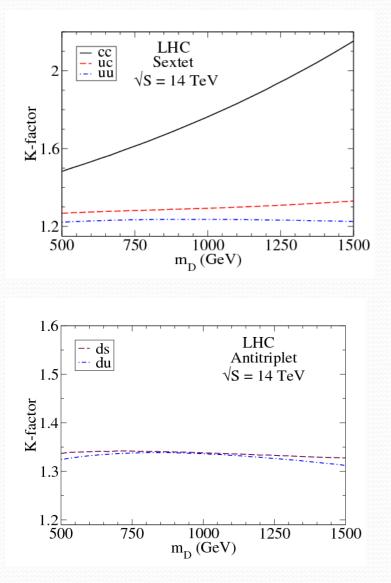


- pp at 14 TeV
- $\mu_F = \mu_R = m_D$
- Diquark is produced at favorable rates.

November 11, 2009

Ian Lewis, University of Wisconsin

K-factors



 The K-factor is the ratio of the NLO cross section to leading order cross section

November 11, 2009

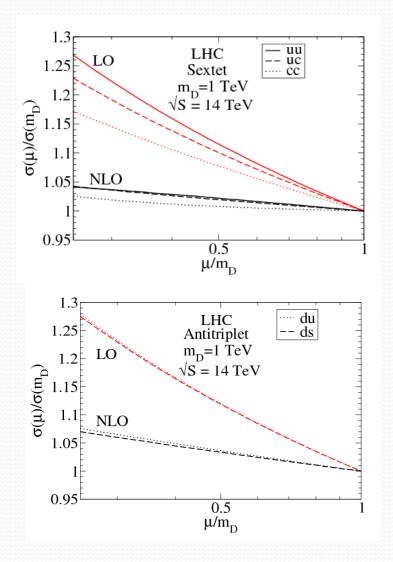
Ian Lewis, University of Wisconsin

LHC Cross Section

	m_D	σ_{LO}^{CTEQ6L}	$\sigma_{LO}^{CTEQ6.1M}$	$\sigma_{NLO}^{CTEQ6.1M}$	$\sigma^{CTEQ6.1M}_{\Phi+q}$	$\sigma^{CTEQ6.1M}_{\Phi+g}$
du	$500 { m GeV}$	$8.71 \times 10^3 \text{ pb}$	$9.47 \times 10^3 \text{ pb}$	$1.15 \times 10^4 \text{ pb}$	$1.05 \times 10^3 \text{ pb}$	$3.48 \times 10^3 \text{ pb}$
	1 TeV	$1.00 \times 10^3 \text{ pb}$	$1.08 \times 10^3 \text{ pb}$	$1.34 \times 10^{3} \text{ pb}$	67.3 pb	573 pb
uu	$500 { m GeV}$	$1.23 \times 10^4 \text{ pb}$	$1.33 \times 10^4 \text{ pb}$	$1.51 \times 10^4 \text{ pb}$	$1.58 \times 10^3 \text{ pb}$	$4.07 \times 10^{3} \text{ pb}$
	1 TeV	$1.60 \times 10^3 \text{ pb}$	$1.72 \times 10^3 \text{ pb}$	$1.98 \times 10^3 \text{ pb}$	101 pb	784 pb

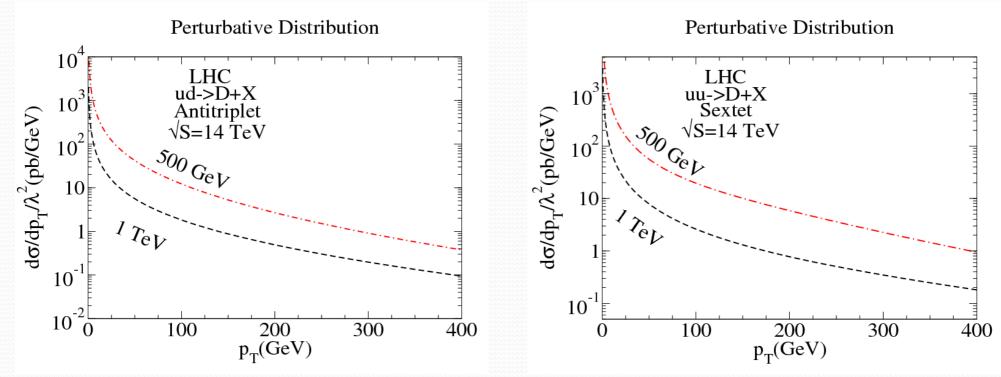
- Final state parton cross sections for p_T>20 GeV
- Final state gluon cross section dominant, especially for higher masses

Scale Dependence



- Factorization and renormalization scales varied for $m_D/4 < \mu_F = \mu_R < m_D$
- m_D=1 TeV
- Scale dependence of NLO cross section is less than that of the leading order cross section

Transverse Momentum Distribution



Perturbative calculation diverges at p_T->o

Ian Lewis, University of Wisconsin

Resummation, ct'd

 Resummation performed by Collins, Soper, and Sterman [Nucl. Phys. B 250, 199 (1985)]:

•
$$\frac{d^2 \sigma^{resum}}{dp_T^2 dy} = \frac{\sigma_0}{S} \int \frac{d^2 b}{(2\pi)^2} e^{i\mathbf{b}\cdot\mathbf{p_T}} W(b^*) e^{-S_{np}}$$

•
$$W(b) = \exp\left\{-\int_{b_0^2/b^2}^{m_D^2} \frac{dq^2}{q^2} \frac{\alpha_s(q^2)}{2\pi} \left[\ln\left(\frac{m_D^2}{q^2}\right) A^{(1)} + B^{(1)}\right]\right\}$$

$$\times \left[f_q(x_1^0)_{q'}(x_2^0) + (x_1^0 \leftrightarrow x_2^0)\right]$$

•
$$b_0 = 2e^{-\gamma_E};$$
 $b^* = \frac{b}{\sqrt{1 + b^2/b_{max}^2}}$
 $A^{(1)} = 2C_F,$ $B^{(1)} = -(3C_F + C_F)$

November 11, 2009

Ian Lewis, University of Wisconsin

Non-perturbative Effects

 Parameterize non-perturbative effects following Davies, Webber, and Stirling [Nucl. Phys. B 256, 413 (1985)]

$$S_{np} = b^2 \left[g_1 + g_2 \log \frac{b_{max} m_D}{2} \right]$$

Matching

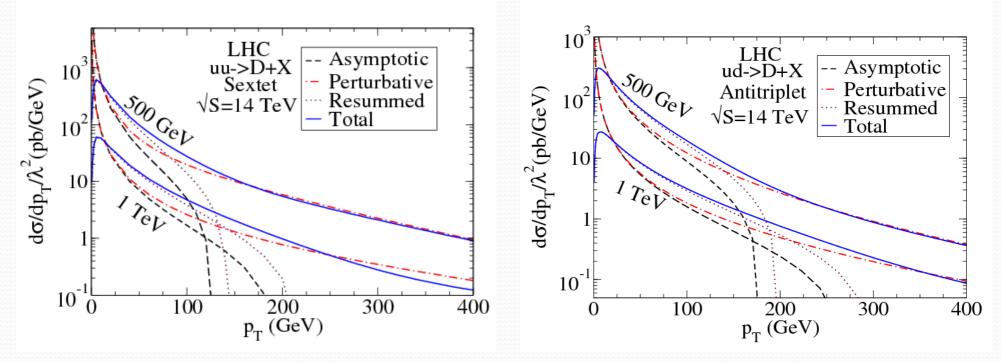
• To match the perturbative and resummed distributions:

$$\frac{d\sigma^{general}}{dp_T dy} = \frac{d\sigma^{pert}}{dp_T dy} + f(p_T) \left(\frac{d\sigma^{resum}}{dp_T dy} - \frac{d\sigma^{asym}}{dp_T dy}\right)$$

• $f(p_T) = \frac{1}{1 + (p_T/p_T^{match})^4}$ is an ad hoc function

• p_T^{match} is the boundary line above which the the perturbative calculation is accurate

Resummation Results



- Results of transverse momentum resummation.
- At low p_T, asymptotic and perturbative distributions agree well.
- Distribution peaks at *p_T* ~ 5 GeV

Summary

- Diquarks produced at favorable rates and LHC.
- K-factors for production from initial state valence quarks:
 - 1.3-1.35 for antitriplet diquark
 - 1.2-1.3 for sextet diquark
- Much larger K-factors for pure sea quark scattering
- We performed the soft gluon resummation for small transverse momentum.
- Transverse momentum distribution peaks at p_T~5 GeV

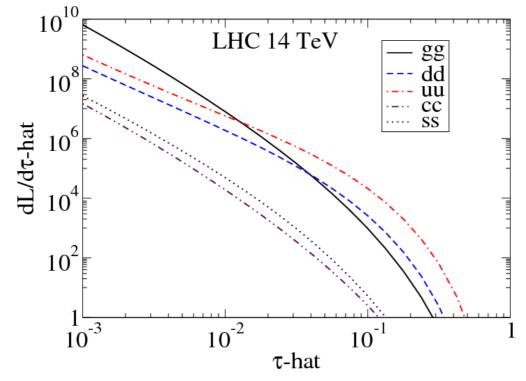
Extra Slides

Parton Luminosity

Parton luminosity defined to be

$$\frac{d\mathcal{L}_{ij}}{d\hat{\tau}} = \int_{\hat{\tau}}^{1} \frac{dx_a}{x_a} [f_{a/A}(x_a) f_{b/B}(\hat{\tau}/x_a) + (A \leftrightarrow B \ if \ a \neq b)]$$

• Where $\hat{\tau} = x_a x_b = \hat{s}/S$



Color Structure

- The generators of the diquark representation can be expressed as $T^{Ai}_i = 2 {\rm Tr} K^i t^A \bar{K}_j$
- The quadratic casimir operator of the diquark representation is

$$T^{A}T_{A} = C_{D} = (N_{C} \mp 1)(N_{C} \pm 2)/N_{C}$$

The generators satisfy the orthogonality relation

$$\mathrm{Tr}T^{A}T^{B} = T_{D}\delta^{AB} = \frac{1}{2}(N_{C} \pm 2)\delta^{AB}$$

Gluon Initiated Process

Hadronic cross section for quark-gluon partonic channel:

$$\sigma_{NLO}^{gq} = \frac{\lambda^2 \alpha_s}{S} \frac{N_D}{N_C^2} \int_{\tau_0}^1 \frac{d\tau}{\tau} \left(gq + qg\right) \left(\frac{\tau_0}{\tau}\right) \\ \times \left\{ P_{qg}(\tau) \ln \frac{m_D^2 (1-\tau)^2}{\mu_F^2 \tau} - \frac{1}{4} (1-\tau)(3-7\tau) \right. \\ \left. + \frac{C_D}{C_F} \left[\tau \ln \tau + \frac{1}{2} (1-\tau)(1+2\tau) \right] \right\}$$

- Where
$$P_{qg}(\tau) = 1/2[(1-\tau)^2 + \tau^2]\,$$
 is the DGLAP splitting function