NLO QCD Predictions for W + 3 Jet Production at Hadron Colliders

Lance Dixon (SLAC) for the **BlackHat** collaboration

C.F.Berger, Z. Bern, LD, D. Forde, F. Febres Cordero, H. Ita, D. Kosower, D. Maître, 0803.4180 + T. Gleisberg → 0902.2760, 0907.1984

> IPMU Focus Week on Jet Physics November 11, 2009

Outline

- Motivation
- W + 3 jets production at hadron colliders at NLO in QCD
- Lessons about choice of scales
- Strong and stable W polarization effects
- Preliminary [leading-color + N_f]
 NLO Z + 3 jets
- Conclusions

The Energy Frontier Is at Hadron Colliders

Tevatron Run II: $2001 \rightarrow 2011?$

LHC: 2009 → ???

L. Dixon NLO W + 3 Jets

Tevatron & LHC Are QCD Machines

Signals and Backgrounds

- New particles whether from
 - supersymmetry
 - extra dimensions
 - new forces
 - Higgs boson(s)

typically decay into old particles:

- quarks, gluons, charged leptons, neutrinos, photons, *W*s & *Z*s (which in turn decay to leptons, ...)
- Kinematic signatures not always clean (e.g. mass bumps) if neutrinos, or other escaping particles present
- Need precise Standard Model backgrounds for a variety of multi-particle – and especially multi-jet –processes, to maximize potential for new physics discoveries

QCD Factorization & Parton Model

Collins, Soper, Sterman 1985

Partonic Cross Section in Perturbation Theory

$$\hat{\sigma}(\alpha_s, \mu_F, \mu_R) = [\alpha_s(\mu_R)]^{n_\alpha} \left[\hat{\sigma}^{(0)} + \frac{\alpha_s}{2\pi} \hat{\sigma}^{(1)}(\mu_F, \mu_R) + \left(\frac{\alpha_s}{2\pi}\right)^2 \hat{\sigma}^{(2)}(\mu_F, \mu_R) + \cdots \right]$$

$$LO \qquad \text{NLO} \qquad \text{NNLO}$$

Problem: Leading-order, tree-level predictions only qualitative due to **poor convergence** of expansion in $\alpha_s(\mu)$ (setting $\mu_R = \mu_F = \mu$)

Lack of One-Loop Amplitudes

At NLO, the **bottleneck** for more complex processes is the lack of availability of **one-loop** amplitudes.

L. Dixon NLO W + 3 Jets

Strong growth in difficulty at one loop (NLO) with number of final-state objects

L. Dixon NLO W + 3 Jets

Background to Search for Supersymmetry

Signal: missing energy + 4 jets
SM background from Z + 4 jets,

 $Z \rightarrow$ neutrinos

Current state of art for Z + 4 jets: ALPGEN, based on LO tree amplitudes \rightarrow normalization still quite uncertain

A Better Way to Compute?

- Backgrounds (and many signals) require detailed understanding of scattering amplitudes for many ultra-relativistic ("massless") particles

 – especially quarks and gluons of QCD
- Feynman diagrams can be used in principle
- However, Feynman diagrams, while

very general and **powerful**, are **not optimized** for these processes

- On-shell methods, exploiting analyticity, can be more efficient, especially for multi-gluon + quark processes!
- We have implemented these methods numerically in a C++ program, BlackHat

One-Loop Amplitude Decomposition

When all external momenta are in D=4, loop momenta in $D=4-2\varepsilon$ (dimensional regularization), one can write: **BDDK** (1994)

coefficients are all rational functions – determine algebraiclally from products of trees using (generalized) unitarity

Inside BlackHat

L. Dixon NLO W + 3 Jets

Several Related Implementations

CutTools: NLO WWW NLO ttbb	Ossola, Papadopolous, Pittau, 0711.359 Binoth+OPP, 0804.035 Bevilacqua, Czakon, Papadopoulos Pittau, Worek, 0907.472	0 S,			
W + 3 jets ampl Ellis, Gie NLO W + 3 jets i	Giele, Zanderighi, 0805.215 on amplitudes for n up to 20; litudes ele, Kunszt, Melnikov, Zanderighi, 0810.2762 in leading-color (large <i>N</i> _c) approximation Melnikov, Zanderighi, 0901.4101, 0906.1445 Melnikov, Zanderighi, 0910.367	2 1 5	D-dim'l unitarity D-dim'l unitarity + on-shell recursion		
Blackhat: Berger, Bern, LD, Febres Cordero, Forde, H. Ita, D. Kosower, D. Maître, 0803.4180, 0808.0941 One-loop n-gluon amplitudes for n up to 7,; amplitudes needed for NLO production of <i>W</i> , <i>Z</i> + 3 jets					
Dixon NLO W + 3	B Jets IPMU Nov. 11, 2	2009	15		

W+3 jets at NLO

C.F.Berger, Z. Bern, LD, D. Forde, F. Febres Cordero, T. Gleisberg, H. Ita, D. Kosower, D. Maître, 0902.2760, 0907.1984

- Background to SUSY searches in the "Jets + MET" channel, when the charged lepton in $W \rightarrow l v_l$ is lost
- Also closely related to Z + 3 jets, another SUSY background when $Z \rightarrow vv$
- Similar to top-quark pair production in semi-leptonic W decay channel, $t \overline{t} \rightarrow l v_l + 4$ jets
- Many different kinematic configurations can appear in final state have to be careful to choose scale μ correctly to avoid pathologies!

Color Sampling for Virtual Corrections

and subleading-color terms, such as:

The latter include many more terms, and are much more timeconsuming for computer to evaluate. But they are much smaller (~ 1/30 of total cross section) so we evaluate them much less often.

Numerical Stability of Virtual Terms

 Nontrivial because there are many kinematic regions where there are large cancellations between terms in this expansion, leading to roundoff error:

$$A^{1-\text{loop}} = \sum_{i} d_{i} \underbrace{\downarrow}_{i} \underbrace{\downarrow}_{i}$$

IPMU

+ $R + \mathcal{O}(\epsilon)$

 \rightarrow

- BlackHat has a lot of tests for instability; if a piece of A^{1-loop} is unstable, it recomputes that piece with higher precision (~32 digits).
- Resulting distributions of log(relative error)

Real radiation handled using

Nov. 11, 2009

18

W + 3 jets at Tevatron at NLO

same cuts as CDF

$E_T^{\rm jet} > 20 {\rm GeV} ,$	$ \eta^{\rm jet} < 2$
$E_T^e > 20 \mathrm{GeV},$	$ \eta^e < 1.1,$
$\not\!\!\!E_T > 30 \mathrm{GeV},$	$M_T^W>20{\rm GeV}$

$$M_T^W = \sqrt{2E_T^e E_T^\nu (1 - \cos(\Delta \phi_{e\nu}))}$$

Except: we use SISCone; CDF used IR unsafe JETCLU

Much smaller uncertainties than at LO.
Agrees well with data; more data coming soon!

L. Dixon

IPMU

W + n jets cuts at LHC $\sqrt{s} = 14 \text{ TeV}$ $|\eta^{\text{jet}}| < 3$, R = 0.4, $|\eta^e| < 2.5$, $E_T^e > 20 \,\text{GeV}$ $E_T^{\nu} > 30 \,\text{GeV}\,, \qquad M_T^W > 20 \,\text{GeV}\,.$ $E_{\tau}^{\rm jet} > 40 \,{\rm GeV}$ $E_T^{\rm jet} > 30 \,{\rm GeV}$ or SISCone, f = 0.5kΤ or

Better Scale Choices

What's going on? Consider these 2 configurations:

• If (a) dominates, then
$$\mu = E_T^W \equiv \sqrt{M_W^2 + p_T^2(W)}$$
 is OK

- But if (b) dominates, then the scale E_T^W is way too low.
- Looking at large E_{T} for the 2nd jet forces configuration (b).
- The total (partonic) transverse energy is a better variable; gets large properly for both (a) and (b)

$$\hat{H}_T = \sum_p E_T^p + E_T^e + E_T^\nu$$

• Another reasonable scale is invariant mass of the *n* jets

Bauer, Lange 0905.4739

IPMU Nov. 11, 2009

Compare the Two Scale Choices

"Berends Ratio"

Berends observed that

$$\frac{\sigma_{n+2 \text{ jets}}}{\sigma_{n+1 \text{ jets}}} \approx \frac{\sigma_{n+1 \text{ jets}}}{\sigma_{n \text{ jets}}}$$

We can compute
$$r_{B,1} \equiv \frac{\sigma_3 \text{ jets} \sigma_1 \text{ jet}}{\sigma_2^2 \text{ jets}}$$
 at LO, NLO

For W + n jets, and for SISCone and kT jet algorithms

$r_{B,1}$	LO	NLO
$E_T^{\text{jet}} > 30 \text{GeV}$ SISCone	0.788	0.841
$E_T^{\text{jet}} > 40 \text{GeV}$ SISCone	0.713	0.805
$E_T^{\text{jet}} > 30 \text{GeV}$ kT	0.858	0.910
$E_T^{\text{jet}} > 40 \text{GeV}$ kT	0.787	0.873

Total Transverse Energy H_T at LHC

Jet Separations $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$

L. Dixon

Lepton Rapidity in W + 3 jets at LHC

u(x)/d(x) gets very large as $x \rightarrow 1$ NLO W + 3 Jets IPMU Nov. 11.

L. Dixon

26

Leptonic E_T in W + 3 jets at LHC

 W^+/W^- transverse lepton ratios trace a remarkably large and stable left-handed *W* polarization at large $p_T(W)$ – independent of number of jets – will be useful to separate *W* + n jets from top, maybe also from new physics

Transverse spin can be confusing

(stolen from recent talk by W. Vogelsang)

L. Dixon NLO W + 3 Jets

IPMU Nov. 11, 2009

Origin of W polarization in LO W + 1 jet

L. Dixon NLO W + 3 Jets

29

 $W^{+/-}$ + n jets: e⁺/e⁻ E_T ratio

LO → NLO hardly affects ratios

L. Dixon NLO W + 3 Jets

$W^{+/-}$ + n jets: Neutrino E_T

NLO LO

31

Actual W polarization – LOW + 2 jets

L. Dixon

Top quark pairs very different

Main production channels are C invariant:

 $g\overline{g} \to t\overline{t} \qquad q\overline{q} \to t\overline{t}$

Semi-leptonic decay involves (partially) left-handed W+

$$t\overline{t} \to bW^+\overline{b}W^- \to b\,e^+\nu\,\overline{b}jj$$

But charge conjugate decay involves (same degree) right-handed W

$$t\bar{t} \to bW^+\bar{b}W^- \to bjj\,\bar{b}\,e^-\bar{\nu}$$

 \rightarrow electron and positron have almost identical p_T distributions

 \rightarrow A nice handle on separating W + jets from top

Supersymmetry may be like top – or not – depends on $qg \rightarrow \tilde{q}\tilde{g}$

L. Dixon NLO W + 3 Jets

IPMU Nov. 11, 2009

K-factor at $\mu = M_V$ is 20% larger than in W + 3 jets, but this was for E_T > 20 GeV, and SISCone with f = 0.5, R = 0.4

L. Dixon NLO W + 3 Jets

Algorithm Dependence of Z + n jets

IPMU

Conclusions

- New and efficient computational approaches to one-loop QCD amplitudes needed for important Tevatron and LHC backgrounds:
 - exploit **analyticity**: build loop amplitudes up out of trees
 - implemented numerically in C++ program BlackHat, as well as CutTools and Rocket
- NLO W + 3 jets agrees well with Tevatron data
- LHC kinematics and pp initial state → different effects
- Valuable lessons already learned about scales and W polarization
- Preliminary [leading-color + N_f] NLO Z + 3 jets results too
- W/Z + 4 jets also now feasible
- Other groups have produced NLO results for several other processes using similar methods (VVV, tt bb, ...)
- Will aid in optimal exploitation of LHC data!

Extra slides

Infrared safety

Cones tricky to get right. Seeds can cause problems.

JETCLU (CDF) + D0 cone algorithms were IR unsafe for NLO W + 2 jets
Midpoint OK for W + 2 jets, but (probably) fails for W + 3 jets

Figure 1: Configuration illustrating one of the IR unsafety problems of the midpoint jet algorithm (R = 1); (a) the stable cones (ellipses) found in the midpoint algorithm; (b) with the addition of an arbitrarily soft seed particle (red wavy line) an extra stable cone is found.

SIScone is a practical (fast enough) seedless cone algorithm that avoids these problems Salam, Soyez

L. Dixon NLO W + 3 Jets

IPMU Nov. 11, 2009