Unitarity and Recursive-Based Methods for Computing One-Loop Amplitudes

Lance Dixon (SLAC) based on [**BlackHat**]: C. Berger, Z. Bern, L.D., F. Febres Cordero, D. Forde, H. Ita, D. Kosower, D. Maître, 0803.4180, 0808.0941

> IPMU Focus Week on Jet Physics November 12, 2009

A better way to compute?

 Backgrounds (and many signals) require detailed understanding of scattering amplitudes for many ultra-relativistic ("massless") particles

 – especially quarks and gluons of QCD

 Feynman told us how to do this
 – in principle

- Feynman rules, while very general and wonderful, are not optimized for these processes
- Can find more efficient methods, making use of analyticity + hidden symmetries (N=4 SUSY, twistor structure) of QCD

Color & Primitive Amplitudes

Standard color factor for a QCD graph has lots of structure constants contracted in various orders; for example:

We can write every *n*-gluon tree graph color factor as a sum of traces of matrices T^a in the fundamental (defining) representation of $SU(N_c)$: $Tr(T^{a_1}T^{a_2}\cdots T^{a_n})$ + all non-cyclic permutations

Use definition: $[T^a, T^b] = i f^{abc} T^c$ + normalization: $Tr(T^aT^b) = \delta^{ab}$

$$\rightarrow$$
 $f^{abc} = -i \operatorname{Tr}([T^a, T^b] T^c)$

3

into typical string of *f^{abc}* structure constants for a Feynman diagram:

- Always single traces (at tree level)
- $Tr(T^{a_1}T^{a_2}\cdots T^{a_n})$ comes only from those planar diagrams with cyclic ordering of external legs fixed to 1,2,...,n

Trace-based (dual) color decomposition

Similarly $q\bar{q}gg\cdots g$ amplitudes $\Rightarrow (T^{a_1}T^{a_2}\cdots T^{a_n})_i^{\bar{j}}$ + permutations

In summary, for the *n*-gluon trees, the color decomposition is

• Because $A_n^{\text{tree}}(1^{h_1}, 2^{h_2}, \dots, n^{h_n})$ comes from planar diagrams with cyclic ordering of external legs fixed to 1,2,...,n, it only has singularities in cyclicly-adjacent channels $s_{i,i+1}$, ...

Trace-based color decomposition at one-loop

For *n*-gluon amplitudes at one loop, get a leading-color single-trace structure, plus subleading-color double trace structures:

$$\mathcal{A}_{n}^{1-\text{loop}}(\{k_{i}, a_{i}, h_{i}\}) = g^{n}\{N_{c}\text{Tr}(T^{a_{1}}T^{a_{2}}\cdots T^{a_{n}})A_{n;1}(1^{h_{1}}, 2^{h_{2}}, \dots, n^{h_{n}}) + \text{non-cyclic perm's} + \text{Tr}(T^{a_{1}}T^{a_{2}})\text{Tr}(T^{a_{3}}\cdots T^{a_{n}})A_{n;3}(1^{h_{1}}, 2^{h_{2}}; 3^{h_{3}}, \dots, n^{h_{n}}) + \text{perm's} + \cdots\}$$

• $A_{n;1}(1^{h_1}, 2^{h_2}, ..., n^{h_n})$ also comes from planar 1-loop diagrams with cyclic ordering of external legs fixed to 1,2,...,n. So it also only has singularities in cyclicly-adjacent channels $s_{i,i+1}$, ...

The Tail of the Mantis Shrimp

- Reflects left and right circularly polarized light differently
- Led biologists to discover that its eyes have differential sensitivity
 It communicates via the helicity formalism

"It's the most private communication system imaginable. No other animal can see it."

- Roy Caldwell (U.C. Berkeley)

What the Biologists Didn't Know

Particle theorists have also evolved capability to communicate results via helicity formalism

→ Helicity Formalism → Tree-Level Simplicity in QCD

Many helicity amplitudes either vanish or are very short

Parke-Taylor formula (1986)

The right variables

Scattering amplitudes for massless plane waves of definite 4-momentum: Lorentz vectors k_i^{μ} $k_i^2 = 0$

Textbook: use Lorentz-invariant products (invariant masses): $s_{ij} = 2k_i \cdot k_j = (k_i + k_j)^2$

But for particles with spin there are better variables massless q, g, γ all have 2 helicities

Take "square root" of 4-vectors k_i^{μ} (spin 1) use 2-component Dirac (Weyl) spinors $u_{\alpha}(k_i)$ (spin $\frac{1}{2}$)

right-handed:
$$(\lambda_i)_{\alpha} = u_+(k_i)$$

 $h = +1/2 \qquad \longrightarrow$

left-handed: $(\tilde{\lambda}_i)_{\dot{\alpha}} = u_-(k_i)$ h = -1/2

Spinor products

Instead of Lorentz products:

Use spinor products:

$$s_{ij} = 2k_i \cdot k_j = (k_i + k_j)^2$$
$$\varepsilon^{\alpha\beta}(\lambda_i)_{\alpha}(\lambda_j)_{\beta} = \langle ij \rangle$$
$$\varepsilon^{\dot{\alpha}\dot{\beta}}(\tilde{\lambda}_i)_{\dot{\alpha}}(\tilde{\lambda}_j)_{\dot{\beta}} = [ij]$$

These are **complex square roots** of Lorentz products (if k_i real):

$$\langle i j \rangle = \sqrt{s_{ij}} e^{i\phi_{ij}}$$
 $[j i] = \sqrt{s_{ij}} e^{-i\phi_{ij}}$

L. Dixon Unitarity & Recursive Methods

Analyticity

- If we think of λ_i and $\tilde{\lambda}_i$ as independent variables, then momenta k_i^{μ} must be thought of as complex (for real momenta, λ_i and $\tilde{\lambda}_i$ are complex conjugates)
- There are special complex kinematics, dictated by how λ_i and $\tilde{\lambda}_i$ behave

Virtues of complex momenta

• Makes sense of most basic process with all 3 particles massless

For Efficient Computation

Reduce

the number of "diagrams"

Reuse

building blocks over & over

Recycle

lower-point (1-loop) & lower-loop (tree) on-shell amplitudes

Recurse

L. Dixon Unitarity & Recursive Methods

RECYCLE

Factorization

Amplitudes are "plastic". Fall apart into simpler ones in special limits.

Explore limits in complex plane

Britto, Cachazo, Feng, Witten, hep-th/0501052

Inject complex momentum at leg 1, remove it at leg n.

$$k_{1}(z) + k_{n}(z) = k_{1} + k_{n} \Rightarrow A(0) \rightarrow A(z)$$

$$k_{1}^{2}(z) = k_{n}^{2}(z) = 0$$

$$special limits \Leftrightarrow poles in z$$

$$special limits \Leftrightarrow poles in z$$

$$0 = \frac{1}{2\pi i} \oint dz \frac{A(z)}{z} = A(0) + \sum_{k} \operatorname{Res}\left[\frac{A(z)}{z}\right]|_{z=z_{k}}$$

$$residue \text{ at } z_{k} = [k^{th} \text{ factorization limit]} = k^{t+1} \int_{z=z_{k}}^{t+1} \int_{z=$$

→ BCFW (on-shell) recursion relations

Britto, Cachazo, Feng, hep-th/0412308

 A_{k+1} and A_{n-k+1} are **on-shell** tree amplitudes with **fewer** legs, and with momenta **shifted** by a **complex** amount

Trees recycled into trees

All gluon tree amplitudes built from:

(In contrast to Feynman vertices, it is on-shell, gauge invariant.)

On-shell recursion at one loop

Bern, LD, Kosower, hep-th/0501240, hep-ph/0505055, hep-ph/0507005; Berger, et al., hep-ph/0604195, hep-ph/0607014

- Same techniques work for one-loop QCD amplitudes
- New features compared with tree case, especially branch cuts
- Determine cut terms efficiently using (generalized) unitarity

Trees recycled into loops!

Ζ

One-loop amplitude decomposition

When all external momenta are in D=4, loop momenta in $D=4-2\varepsilon$ (dimensional regularization), one can write: BDDK (1994)

Generalized unitarity at one loop

Generalized unitarity for box coefficients b_i

no. of dimensions = 4 = no. of constraints \rightarrow discrete solutions (2)

Box coefficients b_i (cont.)

For improved numerical stability, can use simplified solutions when all internal lines massless, at least one external line (K_1) massless:

$$K_{2} \downarrow l_{3} \downarrow K_{3}$$

$$\downarrow \downarrow l_{2} \downarrow l_{4}$$

$$l_{2} \downarrow l_{4} \downarrow l_{4}$$

$$K_{1} \downarrow l_{1} \downarrow K_{4}$$

$$\begin{split} (l_1^{(\pm)})^{\mu} &= \frac{\langle 1^{\mp} | \, \cancel{K}_2 \cancel{K}_3 \cancel{K}_4 \gamma^{\mu} \, | 1^{\pm} \rangle}{2 \, \langle 1^{\mp} | \, \cancel{K}_2 \cancel{K}_4 \, | 1^{\pm} \rangle} \,, \\ (l_3^{(\pm)})^{\mu} &= \frac{\langle 1^{\mp} | \, \cancel{K}_2 \gamma^{\mu} \cancel{K}_3 \cancel{K}_4 \, | 1^{\pm} \rangle}{2 \, \langle 1^{\mp} | \, \cancel{K}_2 \cancel{K}_4 \, | 1^{\pm} \rangle} \,, \end{split}$$

$$\begin{split} (l_2^{(\pm)})^{\mu} &= -\frac{\langle 1^{\mp} | \, \gamma^{\mu} \, \underline{K}_2 \, \underline{K}_3 \, \underline{K}_4 \, | 1^{\pm} \rangle}{2 \, \langle 1^{\mp} | \, \underline{K}_2 \, \underline{K}_4 \, | 1^{\pm} \rangle} \,, \\ (l_4^{(\pm)})^{\mu} &= -\frac{\langle 1^{\mp} | \, \underline{K}_2 \, \underline{K}_3 \gamma^{\mu} \, \underline{K}_4 \, | 1^{\pm} \rangle}{2 \, \langle 1^{\mp} | \, \underline{K}_2 \, \underline{K}_4 \, | 1^{\pm} \rangle} \,. \end{split}$$

BH, 0803.4180; Risager 0804.3310

IPMU Nov. 12, 2009

Triangles & bubbles

With a 4-ple cut we select one coefficient

Triangle and bubble coefficients are more complicated since a double or triple cut does not isolate a single coefficient.

Also, solutions to cut constraints are now continuous, so there are multiple ways to solve and eliminate d_i , etc.

Britto et al. (2005,2006); Ossola, Papadopoulos, Pittau, hep-ph/0609007; Mastrolia hep-th/0611091; Forde, 0704 1825; Ellia, Cielo, Kupart, 0708 2208;

Forde, 0704.1835; Ellis, Giele, Kunszt, 0708.2398; ...

L. Dixon Unitarity & Recursive Methods

IPMU Nov. 12, 2009

Triangle coefficients

Forde, 0704.1835; BH, 0803.4180

Triple cut solution depends on one complex parameter, t

$$l_{1}^{\mu}(t) = \tilde{K}_{1}^{\mu} + \tilde{K}_{3}^{\mu} + \frac{t}{2} \langle \tilde{K}_{1}^{-} | \gamma^{\mu} | \tilde{K}_{3}^{-} \rangle + \frac{1}{2t} \langle \tilde{K}_{3}^{-} | \gamma^{\mu} | \tilde{K}_{1}^{-} \rangle$$
Solves $l_{1}^{2}(t) = l_{2}^{2}(t) = l_{3}^{2}(t) = 0$
for suitable definitions of $\tilde{K}_{1}^{\mu} \tilde{K}_{3}^{\mu}$
 $C_{3}(t) \equiv A_{(1)}^{\text{tree}} A_{(2)}^{\text{tree}} A_{(3)}^{\text{tree}} |_{l_{i}=l_{i}(t)}$
Box-subtracted
triple cut has poles
only at $t = 0, \infty$

$$T_{3}(t) = \sum_{j=-p}^{p} c_{j} t^{j}$$
Bubble similar
$$T_{3}(t) = \sum_{j=-p}^{p} c_{j} t^{j}$$
Divide Unitarity & Recursive Methods
$$IPMU$$
Nov. 12, 2009
25

Rational function R

No cuts in D=4 – can't get from D=4 unitarity However, can get using D=4-2 ϵ unitarity:

 $\int d^{4-2\epsilon}\ell \quad \Rightarrow \quad R(s_{ij}) \rightarrow R(s_{ij}) (-s_{12})^{-\epsilon} = R(s_{ij}) [1 - \epsilon \ln(-s_{ij})]$

Bern, Morgan (1996); Bern, LD, Kosower (1996);

Brandhuber, McNamara, Spence, Travaglini hep-th/0506068; Anastasiou, Britto, Feng, Kunszt, Mastrolia, hep-th/0609191, hep-th/0612277;

Britto, Feng, hep-ph/0612089, 0711.4284;

Giele, Kunszt, Melnikov, 0801.2237;

Britto, Feng, Mastrolia, 0803.1989; Britto, Feng, Yang, 0803.3147; Giele, Kunszt, Melnikov (2008); Giele, Zanderighi, 0805.2152; Ellis, Giele, Kunszt, Melnikov, 0806.3467;

Feng, Yang, 0806.4106; Badger, 0806.4600;

Ellis, Giele, Kunszt, Melnikov, Zanderighi, 0810.2762;

Kunszt talk at this workshop; Kunszt review (to appear)

OR: Get rational function *R* using on-shell recursion

• Used to get infinite series of one-loop QCD helicity amplitudes analytically:

- *n*-gluon MHV amplitudes at 1-loop $(-+\cdots+-+\cdots+)$
- *n*-gluon "split" helicity amplitudes $(--\cdots + + \cdots +)$
- "Higgs" + *n*-gluon MHV amplitudes $(\phi; -+ \cdots + + \cdots +)$

Forde, Kosower, hep-ph/0509358; Berger, Bern, LD, Forde, Kosower, hep-ph/0604195, hep-ph/0607014; Badger, Glover, Risager, 0704.3194; Glover, Mastrolia, Williams, 0804.4149

- Also other specific amplitudes analytically
- Method can be implemented numerically as well (BlackHat)

Loop amplitudes with cuts

Spurious poles

Locations all known (from Gram determinants associated with various scalar integrals)

Residues determined using cut part (residues cancel in full amplitude):

$$\begin{array}{c|c} & & & \\ & & \\ \bullet & & \\$$

$$R_n^S(0) = -\sum_{\text{spur. poles }\beta} \operatorname{Res}_{z=z_\beta} \frac{R_n(z)}{z} = \sum_{\text{spur. poles }\beta} \operatorname{Res}_{z=z_\beta} \frac{C_n(z)}{z}$$

Loop integrals appear in C_n . We expand them around the spurious poles, keeping only rational parts. E.g. for 3-mass triangle integral:

$$I_{3}^{3m}(s_{1}, s_{2}, s_{3}) \rightarrow -\frac{1}{2} \sum_{i=1}^{3} \ln(-s_{i}) \frac{s_{i} - s_{i+1} - s_{i-1}}{s_{i+1} s_{i-1}} \left[1 - \frac{1}{6} \frac{\Delta_{3}}{s_{i+1} s_{i-1}} + \frac{1}{30} \left(\frac{\Delta_{3}}{s_{i+1} s_{i-1}} \right)^{2} \right]$$

as $\Delta_{3} \rightarrow 0$ $+ \frac{1}{6} \frac{\Delta_{3}}{s_{1} s_{2} s_{3}} - \frac{s_{1} + s_{2} + s_{3}}{120} \left(\frac{\Delta_{3}}{s_{1} s_{2} s_{3}} \right)^{2} + \cdots, \qquad \Delta_{3} = \sum_{i=1}^{3} (s_{i}^{2} - 2s_{i} s_{i+1})^{2}$

L. Dixon Unitarity & Recursive Methods

IPMU Nov. 12, 2009

Physical poles \rightarrow recursive diagrams

Example

For rational part of $A_6^{1-loop}(1^-, 2^-, 3^+, 4^+, 5^+, 6^+)$

there are only four recursive diagrams:

(Compared with 10,860 1-loop Feynman diagrams)

Several Related Implementations

CutTools: NLO WWW NLO ttbb	Ossola, Papadopolous, Pittau, 0711.3596 Binoth+OPP, 0804.0350 Bevilacqua, Czakon, Papadopoulos, Pittau, Worek, 0907.4723	
Rocket:Giele, Zanderighi, 0805.2152One-loop n-gluon amplitudes for n up to 20;W + 3 jets amplitudesEllis, Giele, Kunszt, Melnikov, Zanderighi, 0810.2762		D-dim'l unitarity D-dim'l
NLO W + 3 jets Ellis,	, Melnikov, Zanderighi, 0901.4101, 0906.1445 Melnikov, Zanderighi, Conderighi, 0910.3671	unitarity + on-shell recursion
Blackhat: One-loop n-glu amplitudes nee	Berger, Bern, LD, Febres Cordero, Forde, H. Ita, D. Kosower, D. Maître, 0803.4180, 0808.0941 ion amplitudes for n up to 7,; eded for NLO production of <i>W</i> , <i>Z</i> + 3 jets	

Practical issues

• Evaluation time (for Monte Carlo integration over phase space)

Numerical imprecision due to round-off errors

– there can be large cancellations between different cut terms, and also against rational terms, in special phase space regions
– especially where the Gram determinants associated with the box and triangle integrals vanish:

 $\Delta = \det(p_i \cdot p_j) \quad \rightarrow \quad \mathbf{0}$

$$A^{1-\text{loop}} = \sum_{i} d_{i} \underbrace{\downarrow}_{i} \underbrace{\downarrow}_{i}$$

+ $R + \mathcal{O}(\epsilon)$

BlackHat results for n gluons

33

Most complex 6-gluon helicity amplitudes

Conclusions

- New and efficient computational approaches to gauge theories based on analyticity unitarity and factorization.
- Now, state-of-art one-loop amplitudes in QCD needed for important collider applications – can be computed by these techniques, and have begun to be applied to full NLO results.
- Real radiation also required (but not discussed here)
 - many automated programs for building a set of counterterms have been constructed recently:

Gleisberg, Krauss, 0709.2881; Seymour, Tevlin, 0803.2231; Hasegawa, Moch, Uwer, 0807.3701; Frederix, Gehrmann, Greiner, 0808.2128; Czakon, Papadopoulos, Worek, 0905.0883; Frederix, Frixione, Maltoni, Stelzer, 0908.4272 [MadFKS]; Frederix talk at this workshop

Still need to automate things further, in order to construct NLO programs for wider classes still of important LHC background processes.