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Multiparticle final states

‣ typical SM process is accompanied by radiation multi-jet events

‣ most signals involve pair-production and subsequent chain decays

More important than ever to describe high-multiplicity final states

LHC’s new regime in energy and luminosity implies that we will have a 

very large number of high-multiplicity events
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Leading order

Status: fully automated, edge around outgoing 8 particles 

Alpgen, CompHEP, CalcHEP, Helac, Madgraph, Helas, Sherpa, Whizard, ... 

⇒ amazing progress in the last years [before only parton shower]



Leading order

Drawbacks of LO: 
large scale dependences, sensitivity to cuts, poor modeling of jets, ... 

Example:  W+4 jet cross-section ∝ αs(Q)4

Vary αs(Q) by ±10% via change of Q ⇒ cross-section varies by ±40%
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Leading order

Drawbacks of LO: 
large scale dependences, sensitivity to cuts, poor modeling of jets, ... 

Example:  W+4 jet cross-section ∝ αs(Q)4

Vary αs(Q) by ±10% via change of Q ⇒ cross-section varies by ±40%

Status: fully automated, edge around outgoing 8 particles 

Alpgen, CompHEP, CalcHEP, Helac, Madgraph, Helas, Sherpa, Whizard, ... 

always the fastest option, often the only one

test quickly new ideas with fully exclusive description

many working, well-tested approaches

highly automated, crucial to explore new ground, but no precision 

When and why LO:

Today’s high energy colliders

Collider Process status

HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

⇒ all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure their
properties limited by the quality of our understanding of QCD

The one-loop amplitude for six gluon scattering - April 2006 – p.2/20
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Why NLO?

LO predictions only qualitative, due to poor convergence of 
perturbative expansion (         0.1) ⇒ NLO can be 30-100%  

first prediction of normalization of cross-sections is at NLO

less sensitivity to unphysical input scales (renormalization,factorization)

more physics at NLO 

‣ parton merging to give structure in jets 
‣ more species of incoming partons enter at NLO 

‣ initial state radiation effects

a prerequisite for more sophisticated calculations which match NLO 
with parton showers

αs ∼
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⇒ Role of NLO for precision measurement uncontested
 What about for discoveries?



The 2007 Les Houches NLO wishlist

}
NLO multi-leg Working group 

report ’08

based on Feynman 
diagrams;
private codes only

 ←’09 with new techniques

 ←’09 with standard techniques

Process Comments

(V ∈ {Z,W, γ})
Calculations completed since Les Houches 2005

1. pp → V V jet WW jet completed by Dittmaier/Kallweit/Uwer [3];

Campbell/Ellis/Zanderighi [4]

and Binoth/Karg/Kauer/Sanguinetti (in progress)

2. pp → Higgs+2jets NLO QCD to the gg channel
completed by Campbell/Ellis/Zanderighi [5];

NLO QCD+EW to the VBF channel

completed by Ciccolini/Denner/Dittmaier [6, 7]

3. pp → V V V ZZZ completed by Lazopoulos/Melnikov/Petriello [8]

andWWZ by Hankele/Zeppenfeld [9]

Calculations remaining from Les Houches 2005

4. pp → tt̄ bb̄ relevant for tt̄H
5. pp → tt̄+2jets relevant for tt̄H
6. pp → V V bb̄, relevant for VBF→ H → V V , tt̄H
7. pp → V V +2jets relevant for VBF→ H → V V

VBF contributions calculated by

(Bozzi/)Jäger/Oleari/Zeppenfeld [10–12]

8. pp → V +3jets various new physics signatures

NLO calculations added to list in 2007

9. pp → bb̄bb̄ Higgs and new physics signatures

Calculations beyond NLO added in 2007

10. gg → W ∗W ∗ O(α2α3
s) backgrounds to Higgs

11. NNLO pp → tt̄ normalization of a benchmark process

12. NNLO to VBF and Z/γ+jet Higgs couplings and SM benchmark

Calculations including electroweak effects

13. NNLO QCD+NLO EW forW/Z precision calculation of a SM benchmark

Table 1: The updated experimenter’s wishlist for LHC processes
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+ virtual amplitudes for all 2 → 4 at one point   [van Hameren, Papadopoulos, Pittau]



NLO: current status 

2 → 2: all known (or easy) in SM and beyond

2 → 3: very few processes left

[but: often do not include decays, newest codes mostly private]

2 → 4: the frontier 

Status of NLO:

• NLO cross-sections available only for two processes at the LHC
✓tt + bb                                [Bredenstein et al ’08; Bevilacqua et al ’09]

✓W + 3jets                                   [Berger et al ’09; Ellis et al ’09 (LC)]

• Benchmark results for all 2 → 4 processes in the Les Houches 
list at one phase space point                         [van Hameren et al ’09]

See talks of Lance Dixon and Zoltan Kunszt for recent 
progress on new techniques for NLO calculations



Generalized unitarity

References:
- Ellis, Giele, Kunszt ’07                       
- Giele, Kunszt, Melnikov ’08               
- Giele & GZ ’08                               
- Ellis, Giele, Melnikov, Kunszt ’08        
- Ellis, Giele, Melnikov, Kunszt, GZ ’08   
- Ellis, Melnikov, GZ ’09, Melnikov & GZ ’09                        

These papers heavily rely on previous work
    - Bern, Dixon, Kosower ’94                

- Ossola, Pittau, Papadopoulos ’06       
- Britto, Cachazo, Feng ’04                 
- [....] 

I will not explain the method in detail, only remind of the main ideas  
(see talks of L. Dixon and  Z. Kunszt). 

I will concentrate on applications & recent results

 [Unitarity in D=4]
 [Unitarity in D≠4]
 [All one-loop N-gluon amplitudes]
 [Massive fermions, ttggg amplitudes]
 [W+5p one-loop amplitudes] 
 [W+3 jets]  

    [Unitarity, oneloop from trees]
[OPP]
[Generalized cuts]
 



One-loop virtual amplitudes

Cut constructible part can be obtained by taking residues in D=4

Contents
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1. Introduction

The current TEVATRON collider and the upcoming Large Hadron Collider need a good
understanding of the standard model signals to carry out a successful search for the Higgs
particle and physics beyond the standard model. At these hadron colliders QCD plays an
essential role. From the lessons learned at the TEVATRON we need fixed order calculations
matched with parton shower Monte Carlo’s and hadronization models for a successful
understanding of the observed collisions.

For successful implementation of numerical algorithms for evaluating the fixed order
amplitudes one needs to take into account the so-called complexity of the algorithm. That
is, how does the evaluation time grows with the number of external particles. An algo-
rithm of polynomial complexity is highly desirable. Furthermore algebraic methods can be
successfully implemented in efficient and reliable numerical procedures. This can lead to
rather different methods from what one would develop and use in analytic calculation.

The leading order parton level generators are well understood. Generators have been
constructed using algebraic manipulation programs to calculate the tree amplitudes directly
from Feynman diagrams. However, such a direct approach leads to an algorithm of double
factorial complexity. Techniques such as helicity amplitudes, color ordering and recursion

– 1 –

Rational part: can be obtained with D ≠ 4



Generic D dependence

Two sources of D dependence 

dimensionality of loop 
momentum D

# of spin eigenstates/
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Two key observations

1. External particles in D=4 ⇒ no preferred direction in the extra space

☛ in arbitrary D up to 5 constraints ⇒ get up to pentagon integrals

εC = log10
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Two key observations

1. External particles in D=4 ⇒ no preferred direction in the extra space

☛ in arbitrary D up to 5 constraints ⇒ get up to pentagon integrals
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Choose Ds1, Ds2 integer  ⇒ suitable for numerical implementation



In practice
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2

‣ Start from

‣ Use unitarity constraints to determine the coefficients, computed as 
products of tree-level amplitudes with complex momenta in higher 
dimensions

‣ Berends-Giele recursion relations are natural candidates to compute 
tree level amplitudes: they are very fast for large N and very general 
(spin, masses, complex momenta)

Berends, Giele ’88

☺ Generalized unitarity: very simple, efficient, general, transparent
     method, straightforward to implement/automate
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Cut-constructible part:

Rational part:

Vanishing contributions:

Scalar integrals I(4-2e)
i1i2... all known

                   ‘t Hooft & Veltman ‘79; Bern, Dixon Kosower ’93, Duplancic & Nizic ’02; 
Ellis & GZ ’08, public code ⇒ http://www.qcdloop.fnal.gov

http://www.qcdloop.fnal.gov
http://www.qcdloop.fnal.gov


The F90 Rocket program

Rocket science!

But it still must be tested in battle conditions, ie a real physical process

Eruca sativa =Rocket=roquette=arugula=rucola

Recursive unitarity calculation of one-loop amplitudes

So far computed one-loop amplitudes:
✓N-gluons 
✓qq + N-gluons
✓qq + W + N-gluons
✓qq + QQ + W
✓tt + N-gluons
✓tt + qq + N-gluons [Schulze]

NB: N is a parameter in Rocket
In perspective, for gluons: 

N = 6  ⇒ 10860 diags.
N = 7  ⇒ 168925 diags.

Successfully computed up to N=20



 W + 3 jets

W±, TeV W+, LHC W−, LHC

σ [pb], µ = 40 GeV 74.0 ± 0.2 783.1 ± 2.7 481.6 ± 1.4

σ [pb], µ = 80 GeV 45.5 ± 0.1 515.1 ± 1.1 316.7 ± 0.7

σ [pb], µ = 160 GeV 29.5 ± 0.1 353.5 ± 0.8 217.5 ± 0.5

Table 1: Total cross section for the production of a W boson in association with three jets including
both two quark and four quark processes vs. factorization and normalization scale. The results are
obtained using the program MCFM. Cuts for the jets are pT > 15 GeV, |η| < 2 at the Tevatron
(
√

s = 1.96 TeV) and pT > 50 GeV, |η| < 3 at the LHC (
√

s = 14 TeV). The CTEQ6L1 parton
distributions which have αs(MZ) = 0.13 are used. The quoted errors are statistical only.

was suggested in Ref. [25] more than ten years ago. Important physical results obtained

using this method [26] have demonstrated both its potential and limitations. The tech-

niques of applying generalized unitarity were significantly developed in recent years thanks

to important advances in Refs. [27–31]. These developments culminated in the design of

two generalized unitarity algorithms [32, 33].

The computational algorithm suggested in Ref. [33] is employed in this paper; we will

refer to it as D-dimensional generalized unitarity. Note that this method was recently

used to obtain results not currently attainable with other methods, see e.g. Refs. [34–36].

However, an apparent weakness of generalized unitarity is that there is no single result

for any physical process that has been obtained within this framework.2 This should be

contrasted with the traditional tensor reduction approaches which never lost contact with

phenomenology and are being constantly refined to accommodate new challenges.

This is not a good situation for generalized unitarity which has to live up to the claim

of its advocates that it is a more powerful method. The only way to address this potential

criticism is to demonstrate the applicability of generalized unitarity in actual calculations

of direct phenomenological interest, preferably in processes which are beyond the reach of

traditional methods. We have chosen the production of a W boson in association with

three jets for this purpose. The reasons for our choice are as follows:

• the calculation of NLO QCD corrections to this process is of direct relevance since

it is measured at the Tevatron [2, 3]; it is not possible to use the leading order (LO)

prediction for serious comparison of theoretical and experimental results because the

LO cross section varies by as much as a factor of two under reasonable changes in

scale, see e.g. Table 1;

• measurements at the Tevatron have shown that for W + n jets with n = 1 and 2, the

data [2, 3] is well described by NLO QCD [4]; it is interesting to verify this also for

three and higher numbers of jets;

2We distinguish between generalized unitarity and application of the algorithm of Ref. [29] to Feynman

diagrams. The latter method was employed for the computation of NLO QCD corrections to a relatively

simple physical process pp → V V V in [37].

– 2 –

I. W + 3 jets measured at the Tevaton, but LO varies by more than a factor 2 
for reasonable changes in scales 
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diagrams. The latter method was employed for the computation of NLO QCD corrections to a relatively

simple physical process pp → V V V in [37].

– 2 –

I. W + 3 jets measured at the Tevaton, but LO varies by more than a factor 2 
for reasonable changes in scales 

II. CDF data for W + n jets with n=1,2 
is described exceptionally well by 
NLO QCD 
⇒ verify this for 3 and more jets

W+n  jet rates from CDF

Both uncertainty on rates and deviation of Data/Theory from 1 are smaller than 

other calculations. “Berends” ratio agrees well for all calculations,

 but unfortunately only available for n!2 from MCFM.
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III.W/Z + 3 jets of interest at the LHC, as one of the backgrounds to 
model-independent new physics searches using jets + MET

IV. Calculation highly non-trivial optimal testing ground

0→ ū d g g g W+

0→ ū d Q̄Q g W+

1203 +104 Feynman diagrams

 258 +18 Feynman diagrams



Cross-section calculation

leading color tree level W+6 parton amplitudes computed recursively 

we use Catani-Seymour subtraction terms modified to deal with the 
minimal set of color structures needed at leading color

• Consider the NLO leading color approximation, keep nf dependence 
exact (important for beta function) but neglect 1/Nc2 terms

• Real radiation part:

• Real + virtual implemented in the MCFM parton level integrator 

Full-color NLO calculation done by Berger et al. ’09 (see talk by Lance Dixon)
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level. Although no loops are involved in the latter case, such computation is very challenging

because of the effort required to compute the relevant matrix elements and to integrate them

over high-multiplicity phase-space of the final state particles. In the next few paragraphs

we describe some ideas that are essential for overcoming these difficulties.

Our computation of one-loop virtual amplitudes for W + 3 jets employs a particular

technique called generalized D-dimensional unitarity [13]. It is one of several approaches

pursued currently which are based on a connection between one-loop scattering amplitudes

and tree-level amplitudes for complex on-shell momenta [14–21]. Amplitudes required for

the W + 3 jets computation are described in Ref. [8].

Our treatment of the real emission corrections is based on the Catani- Seymour dipole

subtraction formalism [22]. However, some modifications of the formalism are required

in our case since we deal with leading color amplitudes and extensively use symmetry of

the final state phase-space to reduce the number of color-ordered amplitudes that need to

be calculated. Modifications of the subtraction formalism as well as issues related to our

treatment of multi-particle phase-space are discussed in Ref. [7].

Because we employ leading color approximation, it is important to discuss its accuracy.

We may get an idea about the quality of the leading color approximation by studying W +3

jets at leading order and W + n jets n ≤ 2 at next-to-leading order. We find that, typically,

leading color cross-sections exceed full color cross-sections by about ten percent, consistent

with naive expectation that subleading terms are suppressed relative to leading terms by

O(1/N2
c ).

[add table here]

We also find that, to a good approximation, ratios of leading order leading-color and

leading order full-color predictions for observables, that are of interest to us, are independent

of the renormalization and factorization scales

RO =

∫
O(p)dσFC

LO(µ, p)
∫
O(p)dσLC

LO(µ, p)
. (1)

Here, O can be any observable; in particular one may think about it as a particular bin in a

histogram for some physical variable such as transverse momentum, rapidity, or jet invariant

mass. For example, for the transverse momentum distribution of the third hardest jet in

W + 3 jet sample, we find R ≈ 0.91, independent of the renormalization and factorization

scales and the transverse momentum of a jet.

Define 
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This turns out to be very stable, independent of factorization/renormalization 
and on the observable (e.g. bin of distribution) 

RO(µ)⇒ r
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This turns out to be very stable, independent of factorization/renormalization 
and on the observable (e.g. bin of distribution) 

RO(µ)⇒ r

Define our best approximation to the NLO result as  ONLO = r · ONLO,LC

Leading color adjustment tested in W+1, W+2jets and W+3jets: always OK to 3 %
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This turns out to be very stable, independent of factorization/renormalization 
and on the observable (e.g. bin of distribution) 
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Define our best approximation to the NLO result as  ONLO = r · ONLO,LC

Leading color adjustment tested in W+1, W+2jets and W+3jets: always OK to 3 %

Other O(1%) effects neglected: 

• CKM set to unity ⇒ ~ -1%

• W treated onshell ⇒~ +1%



CDF cuts

p⊥,j > 20GeV p⊥,e > 20GeV E⊥,miss > 30GeV

|ηe| < 1.1 M⊥,W > 20GeV

µ0 =
√

p2
⊥,W + M2

W µ = µR = µF = [µ0/2, 2µ0]

• CDF uses JETCLU with R = 0.4, but this is not infrared safe, use a 
different jet-algorithm 

• CDF applies lepton-isolation cuts. This is a O(10%) effect. Lepton-
isolation has been corrected for (was not have been needed ... )  
No lepton isolation applied

• PDFs: cteq6l1 and cteq6m 



Jet-algorithms

8

well – the difference between SIScone and JETCLU with the same R is about twenty percent.

Perturbative studies of jet substructure [28] suggest that the jet algorithm closest to CDF’s

JETCLU jet algorithm is anti-k⊥. Therefore, it appears that anti-k⊥ algorithm should be

chosen for our calculation of W + 3 jet production cross-section at the Tevatron.

Algorithm R Ejet
⊥ > 20 GeV E3rdjet

⊥ > 25 GeV

JETCLU 0.4 1.845(2)+1.101(3)
−0.634(2) 1.008(1)+0.614(2)

−0.352(1)

SIScone 0.4 1.470(1)+0.765(1)
−0.560(1) 0.805(1)+0.493(1)

−0.281(1)

anti-k⊥ 0.4 1.850(1)+1.105(1)
−0.638(1) 1.010(1)+0.619(1)

−0.351(1)

TABLE I: Leading order cross-sections in picobarns for W + 3 jets at the Tevatron for different

jet algorithms. We use merging parameter f = 0.75 for JETCLU and f = 0.5 for SISCone. The

renormalization and factorization scales are set to µ0. The upper (lower) value corresponds to

setting both scales to µ0/2 and 2µ0, respectively. Statistical errors are also indicated. Other cuts

on jets and leptons are described in the text.

The caveat in this discussion is that since JETCLU is not an infra-red safe algorithm, the

significance of leading order comparisons is unclear since radiative corrections can be arbi-

trarily large. Hence, it is not obvious that the most appropriate jet algorithm for theoretical

calculations is the one which matches the JETCLU leading order results. To study this

question, we perform the next-to-leading order calculation using both SIScone algorithm

with R = 0.4 and f = 0.5 and the anti-k⊥ algorithm with R = 0.4. The NLO computation

with the SIScone algorithm allows us to compare our results to that of Ref. [11]. A similar

computation with the anti-k⊥ algorithm, would, if we had perfect data, tell us whether the

agreement at leading order between JETCLU and anti-k⊥ is fortuitous.

We now summarize the leading order results for the two algorithms. Using the three

choices of the renormalization and factorization scales discussed previously, to set upper

and lower bounds on the cross-section variation, we obtain the following result for leading-

color and full-color leading order cross-sections

σW+≥3j,LC

LO,E3rd jet
⊥ >25 GeV

= 0.89+0.55
−0.31 pb, σW+≥3j,FC

LO,E3rd jet
⊥ >25 GeV

= 0.81+0.50
−0.28 pb, SIScone; (3)

σW+≥3j,LC

LO,E3rd jet
⊥ >25 GeV

= 1.12+0.68
−0.39 pb, σW+≥3j,FC

LO,E3rd jet
⊥ >25 GeV

= 1.01+0.62
−0.35 pb, anti − k⊥; (4)

Leading order:

SIScone: Salam & Soyez ’07; 
anti-kt: Cacciari, Salam, Soyez ’08

• CDF uses JETCLU which is not 
infrared safe 

• NLO calculation with JETCLU 
not possible

• use e.g. SISCone and anti-kt 
algorithm which are IR safe

• can compare Leading order 
results for these algorithm 
(even if meaning of LO for 
JETCLU is questionable ... )

At LO anti-kt R =0.4 is closer to JETCLU

Moral: 
precision comparison with theory require that experiments use IR-safe algorithms
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FIG. 1: The transverse energy distribution of the third hardest jet for W +3 jet inclusive production

cross-section at the Tevatron for SIScone (left) and anti-k⊥ (right) jet algorithms. All cuts and

parameters relevant for deriving these distributions are described in the text. The leading color

adjustment procedure is applied. For experimental points, statistical and systematic uncertainties

are combined in quadrature. The bands illustrate the scale dependence at leading (green) and

next-to-leading order (red).

ξ, introduced at the previous Section, we find ξNLO
SIScone = 1.25 and ξNLO

anti−k⊥
= 1.15 which

implies that overall uncertainty in the NLO QCD prediction is twenty five percent or better.

Compared to leading order predictions, the uncertainty is reduced by at least a factor of

four.

We also find that the difference between NLO cross-sections computed with SIScone and

anti-k⊥ is smaller than the difference between corresponding leading order cross-sections.

Nevertheless, the difference at NLO is about ten percent and therefore not negligible. Ex-

perimental data seems to be closer to SIScone; however, given a twenty percent uncertainty

in data and up to twenty percent uncertainty in the NLO results, no inconsistency can be

claimed.

CDF published the transverse energy distribution of the third hardest jet in W + 3

jet inclusive production cross-section. In Fig 1, we compare the theoretical prediction for

this distribution at leading and next-to-leading order with experimental data for the two jet

algorithms. For experimental points, statistical and systematic uncertainties are combined in

quadrature. Theoretical results are rescaled by R = 0.91 bin-by-bin, following the discussion
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FIG. 2: The measured cross section dσ(W → eν+ ≥ n-jets)/dEnth-jet
T

compared to NLO predictions for n = 2, 3. In the upper
panels the NLO distribution is the solid (black) histogram, and CDF data points are the (red) points, whose inner and outer
error bars denote the statistical and total uncertainties on the measurements. The LO predictions are shown as dashed (blue)
lines. The lower panels show the distribution normalized to an NLO prediction, the full one for n = 2 and the leading-color
one for n = 3, in the experimental bins (that is, averaging over several bins in the upper panel). The scale uncertainty bands
are shaded (gray) for NLO and cross-hatched (brown) for LO. In the n = 2 case, the dotted (black) line shows the ratio of the
leading-color approximation to the full-color calculation.

narrow scale-dependence bands. See ref. [2] for details.
Our aim in this Letter is to extend this comparison

to n = 3 jets. We apply the same lepton and jet cuts
as CDF, replacing the /ET cut by one on the neutrino
ET , and ignoring the lepton–jet ∆R cut removed by
acceptance. We approximate the Cabibbo-Kobayashi-
Maskawa matrix by the unit matrix, express the W cou-
pling to fermions using the Standard Model parame-
ters αQED = 1/128.802 and sin2 θW = 0.230, and use
mW = 80.419 GeV and ΓW = 2.06 GeV. We use the
CTEQ6M [32] parton distribution functions (PDFs) and
an event-by-event common renormalization and factor-
ization scale, µ =

√

m2
W + p2

T (W ). To estimate the scale
dependence we choose five values in the range (1

2 , 2)×µ.
The numerical integration errors are on the order of a
half percent. We do not include PDF uncertainties. For
W + 1, 2-jet production these uncertainties have been
estimated in ref. [2]. In general they are smaller than
the scale uncertainties at low ET but larger at high ET .
The LO calculation uses the CTEQ6L1 PDF set. For
n = 1, 2 jets, NLO total cross sections agree with those
from MCFM [31], for various cuts. As our calculation is
a parton-level one, we do not apply corrections due to
non-perturbative effects such as induced by the underly-
ing event or hadronization. Such corrections are expected
to be under ten percent [2].

In table I, we collect the results for the total cross
section, comparing CDF data to the NLO theoretical

predictions computed using BlackHat and SHERPA.
The columns labeled “LC NLO” and “NLO” show respec-
tively the results for our leading-color approximation to
NLO, and for the full NLO calculation. The leading-color
NLO and full NLO cross-sections for W + 1- and W + 2-
jet production agree to within three percent. We thus
expect only a small change in the results for W + 3-jet
production once the missing subleading-color contribu-
tions are incorporated.

We have also compared the ET distribution of the nth

jet in CDF data to the NLO predictions for W + 1, 2, 3-
jet production. For W + 2, 3-jets these comparisons are
shown in fig. 2, including scale-dependence bands ob-
tained as described above. For reference, we also show
the LO distributions and corresponding scale-dependence
band. (The calculations matching to parton showers [30]
used in ref. [2] make different choices for the scale varia-
tion and are not directly comparable to the parton-level
predictions shown here.) The NLO predictions match
the data very well, and uniformly in all but the high-
est ET bin. The central values of the LO predictions,
in contrast, have different shapes from the data. The
scale dependence of the NLO predictions is substantially
smaller than that of the LO ones. In the W + 2-jet case,
we also show the ratio of the leading-color approxima-
tion to the full-color result within the NLO calculation:
the two results differ by less than three percent over the
entire transverse energy range, considerably smaller than

Berger et al ’09

NB:  CDF ⇒ JetCLU    VERSUS  NLO Theory ⇒ SISCone

☺ small K=1.0-1.1, reduced uncertainty: 50% (LO) → 10% (NLO)

☺ first applications of new techniques to 2 → 4 LHC processes

☺ agreement with CDF data (within currently large errors) 
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Dual role of SM processes

Dual role of SM processes at colliders

- primary signals (apply signal cuts)
- unwanted background (apply background cuts)

Standard procedure
• study a given process with signal cuts ⇒ refine theoretical tools
• once good understanding of the process is achieved with signal 

cuts (e.g. low pt region) extrapolate to background cuts region 
(e.g. high pt)

How reliable is this procedure ? 

Purpose of background cuts: push into corners of phase-space the SM 
process, therefore the robustness of the procedure is not assured. 
NLO QCD predictions for non-trivial processes can shed light on this.  



W+ + 3 jets at the LHC 

In the following: use highly non-trivial NLO calculation of W++3 jets 

to illustrate/study this issue

µ0 =
√

p2
⊥,W + M2

W µ = µR = µF = [µ0/2, 2µ0]

ECM = 10TeV E⊥,e = 20 GeV

E⊥,miss = 15GeV M⊥,W = 30 GeV

E⊥,jet = 30 GeV

|ηe| < 2.4 |ηjet| < 3

Jets: SIScone with R = 0.5; PDFs: cteq6l1/cteq6m 

Signal-cuts setup (inspired by CMS studies):



Scale dependence 

Melnikov & GZ ’09

• scale dependence considerably 
reduced at NLO (both 
inclusive and exclusive)  

• NLO tends to reduce cross-
section

• because of very large scale 
dependence of LO,  quoting a 
K-factor not very meaningful

W+ +3j

W- +3j
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FIG. 1: The dependence of the W + + 3 jet inclusive produc-
tion cross section at the LHC on the factorization and renor-
malization scale µ. All cuts and parameters are described in
the text. The leading color adjustment procedure is applied.

is to suppress, as far as possible, the very kinematic con-
figurations that are allowed by signal cuts. Therefore,
such an extrapolation can only work if the influence of
kinematics on QCD radiative effects is correctly captured
by the available tools. Since only relatively simple theo-
retical tools, such as leading order parton integrators or
parton showers, are currently available for complicated
final states, the modeling of the radiative effects is only
approximate. On the other hand, if a NLO QCD com-
putation is available, such an extrapolation can be done
with a smaller ambiguity since all the relevant scales are
generated dynamically in NLO computations, largely in-
dependent of the choices made initially. For cases with
complicated kinematics, this is clearly indispensable.

In this paper we discuss and illustrate this issue, taking
the production of W bosons in association with three jets
at the LHC as an example. For definiteness, we choose
to consider proton-proton collisions at

√
s = 10 TeV [27].

However, we do not aim to describe W + 3 jet produc-
tion at the LHC in all possible detail, since knowledge
of the exact experimental setup would be required. In-
stead, we look for and try to understand differences be-
tween NLO and LO QCD results for basic observables,
for the case of signal cuts. We point out that it is not al-
ways clear which leading order predictions should be used
in those comparisons since different choices of renormal-
ization and factorization scales affect the leading order
predictions strongly. We therefore compare our results
to a variety of leading order predictions including most
advanced ones, where matrix element computations are
matched to parton showers.

We note that NLO QCD corrections to W+3 jet pro-
duction at the LHC have been studied in great detail
recently in Ref. [6], mostly for signal cuts. We have
checked a number of results for W± production cross-
sections at the LHC, reported in that reference, and
found agreement within a few percent in all cases con-
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FIG. 2: The dependence of the W− + 3 jet inclusive produc-
tion cross section at the LHC on the factorization and renor-
malization scale µ. All cuts and parameters are described in
the text. The leading color adjustment procedure is applied.

sidered. These small differences are compatible with the
fact that our calculation employs the leading color ap-
proximation with color adjustment procedure, explained
in detail in Ref. [5], whereas computation in Ref. [6] ac-
counts for complete color dependence.

We also discuss QCD corrections to background cuts,
studied by the ATLAS [28–30] and CMS collaborations
[31, 32] for SUSY searches at the LHC. Such anal-
yses often assume that Standard Model backgrounds
can be measured in SUSY-free regions to fix normal-
izations and then employ LO computations to extrap-
olate to kinematic regions where supersymmetric signal
is expected. Hence, an implicit assumption in those
analyses is that LO distributions have correct shapes
and that higher-order QCD effects provide a kinematic-
independent renormalization. We are now in position
to check these assumptions with the explicit NLO QCD
computation of W +3 jet process for typical ATLAS and
CMS cuts.

The remainder of the paper is organized as follows. In
Section II, we discuss W +3 jet production for signal cuts
at the LHC. In Section III we study W +3 jet production
as a background to SUSY searches for two typical sets of
cuts close to those suggested by the ATLAS and CMS
collaborations. In Section IV we present our conclusions.

II. STUDY OF W + 3 JET PROCESS

In this Section, we discuss NLO QCD effects in W + 3
jet production for a set of cuts, designed to study the W
production in association with jets. We follow Ref. [5]
closely and perform calculations in the leading color ap-
proximation. The calculation relies heavily on the frame-
work provided by MCFM [33] and uses one-loop ampli-
tudes computed in [22]. We employ the Catani-Seymour
dipole subtraction [34] to compute real emission correc-

2

20

25

30

35

40

45

 80  100  120  140  160  180  200  220  240

!
(µ

) 
[p

b
/G

e
V

]

µ [GeV]

LO

NLO, inclusive

NLO, exclusive

FIG. 1: The dependence of the W + + 3 jet inclusive produc-
tion cross section at the LHC on the factorization and renor-
malization scale µ. All cuts and parameters are described in
the text. The leading color adjustment procedure is applied.

is to suppress, as far as possible, the very kinematic con-
figurations that are allowed by signal cuts. Therefore,
such an extrapolation can only work if the influence of
kinematics on QCD radiative effects is correctly captured
by the available tools. Since only relatively simple theo-
retical tools, such as leading order parton integrators or
parton showers, are currently available for complicated
final states, the modeling of the radiative effects is only
approximate. On the other hand, if a NLO QCD com-
putation is available, such an extrapolation can be done
with a smaller ambiguity since all the relevant scales are
generated dynamically in NLO computations, largely in-
dependent of the choices made initially. For cases with
complicated kinematics, this is clearly indispensable.

In this paper we discuss and illustrate this issue, taking
the production of W bosons in association with three jets
at the LHC as an example. For definiteness, we choose
to consider proton-proton collisions at

√
s = 10 TeV [27].

However, we do not aim to describe W + 3 jet produc-
tion at the LHC in all possible detail, since knowledge
of the exact experimental setup would be required. In-
stead, we look for and try to understand differences be-
tween NLO and LO QCD results for basic observables,
for the case of signal cuts. We point out that it is not al-
ways clear which leading order predictions should be used
in those comparisons since different choices of renormal-
ization and factorization scales affect the leading order
predictions strongly. We therefore compare our results
to a variety of leading order predictions including most
advanced ones, where matrix element computations are
matched to parton showers.

We note that NLO QCD corrections to W+3 jet pro-
duction at the LHC have been studied in great detail
recently in Ref. [6], mostly for signal cuts. We have
checked a number of results for W± production cross-
sections at the LHC, reported in that reference, and
found agreement within a few percent in all cases con-
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sidered. These small differences are compatible with the
fact that our calculation employs the leading color ap-
proximation with color adjustment procedure, explained
in detail in Ref. [5], whereas computation in Ref. [6] ac-
counts for complete color dependence.

We also discuss QCD corrections to background cuts,
studied by the ATLAS [28–30] and CMS collaborations
[31, 32] for SUSY searches at the LHC. Such anal-
yses often assume that Standard Model backgrounds
can be measured in SUSY-free regions to fix normal-
izations and then employ LO computations to extrap-
olate to kinematic regions where supersymmetric signal
is expected. Hence, an implicit assumption in those
analyses is that LO distributions have correct shapes
and that higher-order QCD effects provide a kinematic-
independent renormalization. We are now in position
to check these assumptions with the explicit NLO QCD
computation of W +3 jet process for typical ATLAS and
CMS cuts.

The remainder of the paper is organized as follows. In
Section II, we discuss W +3 jet production for signal cuts
at the LHC. In Section III we study W +3 jet production
as a background to SUSY searches for two typical sets of
cuts close to those suggested by the ATLAS and CMS
collaborations. In Section IV we present our conclusions.

II. STUDY OF W + 3 JET PROCESS

In this Section, we discuss NLO QCD effects in W + 3
jet production for a set of cuts, designed to study the W
production in association with jets. We follow Ref. [5]
closely and perform calculations in the leading color ap-
proximation. The calculation relies heavily on the frame-
work provided by MCFM [33] and uses one-loop ampli-
tudes computed in [22]. We employ the Catani-Seymour
dipole subtraction [34] to compute real emission correc-



Sample transverse energy distribution 

Melnikov GZ ’09

• with scale μ0: considerable change in shape between LO and NLO 
(extrapolation of LO from low pt to high pt would fail badly)

• but origin of the change in shape well understood: at high ET, μ0 is smaller 
than typical scales of the QCD branching ⇒ LO overshoots the result

Can one do a more sophisticated LO calculation? 
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FIG. 3: The transverse momentum distribution of the leading
jet for W + + 3 jet inclusive production cross section at the
LHC. All cuts and parameters are described in the text. The
leading color adjustment procedure is applied.

tion; details of our implementation are given in [4]. We
use the leading color adjustment procedure described in
that paper to correct for deficiencies of the leading color
approximation, to the extent possible. We note that pro-
duction cross-sections for W+ and W− at the LHC are
not the same; we have chosen to discuss the case of W+

production almost everywhere in this paper. We do, how-
ever, show results for the W− + 3 jet production cross-
section at the LHC in dependence of factorization and
renormalization scales.

We begin by summarizing all the relevant cuts and
input parameters that are employed in the computation.
We take the LHC center-of-mass energy to be 10 TeV. We
require that the transverse momentum and pseudorapid-
ity of the three jets satisfy pT,j > 30 GeV and |ηj | < 3.
We consider the leptonic decay of the W to electron (or
muon) and employ the following restrictions on lepton
transverse momentum, missing transverse energy, lepton
rapidity and W -boson transverse mass, pT,e > 20 GeV,
!ET > 15 GeV, |ηe| < 2.4, MW

T > 30 GeV. We
do not apply an isolation cut on the leptons. To de-
fine jets, we use the SISCone jet-algorithm [35] with
R =

√

∆η2 + ∆φ2 = 0.5 and merging parameter f = 0.5.

We consider the production of on-shell W+ bosons,
that decay into a pair of massless leptons. Finite width
effects are about 1%; they tend to decrease the cross
section. The CKM matrix is set equal to the identity
matrix; this reduces the W + 3 jet production cross sec-
tion at the LHC by less than 1%. All quarks, with the
exception of the top quark, are considered massless. The
top quark is considered infinitely heavy and its contribu-
tion is neglected. The mass of the W boson is taken to be
mW = 80.419 GeV; its couplings to fermions are obtained
from αQED(mZ) = 1/128.802 and sin2 θW = 0.230. We
use CTEQ6L parton distribution functions for leading
order and CTEQ6M for next-to-leading order computa-
tions [36, 37]. Note that we do not include the factor
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FIG. 4: The transverse momentum distribution of the lead-
ing jet for W + + 3 jet inclusive production cross section at
the LHC. All cuts and parameters are described in the text.
The leading color adjustment procedure is applied. All LO
distributions are rescaled by constant factor, to ensure that
the LO and NLO normalizations coincide.

Br(W → lνl) in the results for cross-sections quoted be-
low.

We first discuss results for total cross sections.
We set renormalization and factorization scales µ to
µ = [80, 120, 160, 200, 240] GeV and calculate the cross-
sections with the cuts defined at the beginning of this
Section. The result of the calculation is illustrated in
Fig.1. For full-color leading order cross section we find

σLO,FC
W++≥3j

= 35(10) pb , (2)

where the ±10 pb uncertainty from scale variation is
shown in brackets. Calculating the same cross-section
in the leading color approximation, we find the leading
color adjustment parameter

R = σLO,FC
W++≥3j

/σLO,LC
W++≥3j

= 0.940(5) , (3)

where the uncertainty indicates changes in this ra-
tio that we observe when we change factoriza-
tion/renormalization scales chosen in leading order com-
putations or cuts on the final state particles. We also find
that the R ratio for the W− production is the same as
for the W+. Since R does not depend in any significant
way on the details of the process, applied cuts and chosen
scales, we use the central value for R given in Eq.(3) in
what follows.

At NLO we obtain the adjusted leading-color inclusive
cross-section, σNLO,aLC

W++≥3j
(incl) = R · σNLO,LC

W++≥3j
(incl),

σNLO,aLC
W++≥3j

(incl) = 32.4(1.5) pb . (4)

This result implies (see Fig.1) that for our choice of
cuts and input parameters, NLO QCD corrections to
the inclusive cross-section are very moderate for µ ∼
140− 160 GeV. We also observe a remarkable reduction
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FIG. 5: The transverse momentum distribution of the sec-
ond hardest jet in W + + 3 jet production at the LHC. All
cuts and parameters are described in the text. The leading
color adjustment procedure is applied. The LO distribution is
rescaled by constant factor, to ensure that the LO and NLO
normalizations coincide.

in scale dependence from more than ±30% at leading
order to only ±5% at NLO. While corrections to the ex-
clusive cross-section are larger for similar values of µ, the
scale independence of the exclusive NLO cross-section is
similar to the inclusive one. In Fig.2 the cross-section
for W− + 3 jet production is shown in dependence on
the factorization and renormalization scales. The cross
section is smaller in this case, while the stabilization of
scale dependence that occurs at next-to-leading order is
very similar for W− and W+ production cross-sections.

Given that NLO QCD corrections to the total cross
sections are small, it is tempting to surmise that the
corrections to kinematic distributions should also be in-
significant. As we will now show, the actual situation
is more complex. We consider kinematic distributions
for the inclusive W+ + 3 jet production. We choose
to show the NLO distributions for the dynamical scale

µ0 =
√

p2
T,W + m2

W , where pT,W is the transverse mo-

mentum of the W boson as done e.g. in [38]. We note
that for such a scale the LO cross-section is σLO

W++≥3j =
37.6 pb and the adjusted leading color NLO cross-section
is σNLO,aLC

W++≥3j
= 34.2 pb, consistent with Eq. (4) within

the indicated uncertainties. The radiative corrections to
W + 3 jet production cross-section at scale µ0 are there-
fore small, about −10%. For the following discussion,
scale choices in NLO computations are not very impor-
tant since, as it turns out, shapes of NLO distributions
are fairly insensitive to them.

We begin by studying the transverse momentum dis-
tribution of the leading jet. In Fig. 3 we compare NLO
and LO predictions for scale µ0. We find that the NLO
QCD corrections change the shape of this distribution –
the leading order distribution underestimates the NLO
result at small values of the transverse energy by about
30 percent and systematically exceeds the NLO result for

10
-3

10
-2

10
-1

10
0

 40  60  80  100  120  140  160  180  200

!
N

L
O

/!
 d
!

/d
E

T
,j
3
 [
p
b
/G

e
V

]

ET,j3 [GeV]

NLO, µ0

LO, local µ

FIG. 6: The transverse momentum distribution of the third
hardest jet in W + + 3 jet production at the LHC. All cuts
and parameters are described in the text. The leading color
adjustment procedure is applied. The LO distribution is
rescaled by constant factor, to ensure that the LO and NLO
normalizations coincide.

higher values of the transverse energy. A similar feature
is observed in other distributions related to jet transverse
momenta if the NLO result is compared to LO predictions
with the scale µ0.

The origin of these shape changes was recently dis-
cussed in Ref. [39] using soft-collinear effective theory
and in Refs. [5, 7] in connection with NLO QCD com-
putations for W + 3 jets production at the Tevatron and
the LHC. Here, we recapitulate the explanation of the
inadequacy of the scale µ0 given in Ref. [5]. This inad-
equacy is related to two facts: a) in the region where
the jets have large transverse momentum, the W -boson
transverse momentum spectrum is softer than that of the
jets; b) the probability of parton branching is determined
by the relative transverse momentum of the two daugh-
ter partons produced in that branching; such transverse
momentum should be the appropriate scale for the strong
coupling constant. When these two facts are combined,
one is led to the conclusion that in the kinematic region
where the jets have large transverse momenta, the use of
αs(µ0) in LO computations overestimates the cross sec-
tion. At next-to-leading order, the appropriate scale for
the strong coupling constant µ ∼ pT,j # µ0 is generated
dynamically and the cross section in that region becomes
smaller.

Is it possible to account for the shape modifications by
more sophisticated LO computations? The affirmative
answer to this question was given in Refs. [7, 39], where
particular choices of scales set by e.g. the hadronic in-
variant mass or total transverse energy in an event, were
advocated. It should be emphasized, however, that the
idea to employ scales of the strong coupling that are de-
termined from local kinematics on an event-by-event ba-
sis is not new since it is central to both parton showers
and advanced leading order computations that employ
matrix elements and parton shower matching [40].

Renormalization and 
factorization scale set to 



Scale choice in  V + jets

In a slightly different context, Bauer & Lange (’09) suggest that using a 
dynamical scale LO results do reproduce the NLO shapes

For W+2 jets they suggest 
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spectrum with pT ≥ 100 GeV . For high-pT events the NLO calculation becomes less reliable as statistical fluctuations gain
more prominence.

improves the distributions.
In Figure 9 we compare for n = 3 the LO predictions

for the pT (j, min) spectrum – the smallest of the three
transverse jet momenta – with traditional scale setting
and with the dynamical scale setting. We again observe
that the net effect of resummation is a lowering of the
differential cross section, and that the region of large pT

receives a larger relative correction than the small pT

region, i.e. a correction of the shape of differential cross
section. This agrees qualitatively with the heroic fixed-
order NLO calculation recently performed [11, 12], both
for the pT and similarly for the HT distributions.

It should be noted that the simple scale setting proce-
dure used above gives results at leading order in pertur-
bation theory with the leading logs resummed. The ef-
fective field theory methods introduced, however, can be
used to improve these results by including higher orders
in fixed order perturbation theory and/or higher order
terms in the resummation calculation. NLO corrections,
for example, can be included by calculating the matching
coefficients COij

, CFij
and Eij to higher orders in per-

turbation theory, while higher orders in the resummation
can be included by computing the evolution kernels UOij

and UFij
to higher orders. Note that we expect the rela-

tion between the two evolution kernels given in (6) to be
violated at NLL order, such that the NLL resummation
can not be accomplished by a simple choice of scales in
the parton distribution functions.

In this letter we have investigated the effect of leading-
logarithmic resummation for jet production with associ-
ated vector boson (V = W, Z) production at the LHC.
The resummation is achieved via a series of matching
onto versions of soft-collinear effective theory and run-
ning of the coefficient functions to their natural scales
using their renormalization-group properties. The result
simplifies to the known partonic cross section expression
folded with the appropriate parton distribution functions
if the parton distribution functions are evaluated at a
high scale which scales like the transverse momentum of
the jets. The main purpose of resummation is to improve
the convergence of the perturbative expansion which we
have demonstrated specifically for events with high trans-
verse momenta in pp → V + n jets processes.
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Similarly Berger et al (’09) suggest

(i = any parton)µ = ĤT =
∑

i

pti

µ2 = M2
W + (mhadr/2)2

Bauer & Lange ’09
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For W+2 jets they suggest 

5

replacemen

pT (j, min) [GeV]

dσ
/d

p T
[p

b
/G

eV
]

0 100 200 300 400 500

101

102

10−3

10−2

10−1

100

LO, µ = mW

LO, µ = µdyn

NLO

LO, µ = mW

LO, µ = µdyn

NLO

HT [GeV]

dσ
/d

H
T

[p
b
/G

eV
]

0 200 400 600 800
10−3

10−2

10−1

100

FIG. 8: Comparison between the two scale settings µ = mV (dashed, blue) and µ = µdyn (dotted, red) and the NLO prediction
(solid, black) for the process pp → W + + 2j. Left: pT spectrum of the second jet with a cut of pT ≥ 20 GeV. Right: HT

spectrum with pT ≥ 100 GeV . For high-pT events the NLO calculation becomes less reliable as statistical fluctuations gain
more prominence.

improves the distributions.
In Figure 9 we compare for n = 3 the LO predictions

for the pT (j, min) spectrum – the smallest of the three
transverse jet momenta – with traditional scale setting
and with the dynamical scale setting. We again observe
that the net effect of resummation is a lowering of the
differential cross section, and that the region of large pT

receives a larger relative correction than the small pT

region, i.e. a correction of the shape of differential cross
section. This agrees qualitatively with the heroic fixed-
order NLO calculation recently performed [11, 12], both
for the pT and similarly for the HT distributions.

It should be noted that the simple scale setting proce-
dure used above gives results at leading order in pertur-
bation theory with the leading logs resummed. The ef-
fective field theory methods introduced, however, can be
used to improve these results by including higher orders
in fixed order perturbation theory and/or higher order
terms in the resummation calculation. NLO corrections,
for example, can be included by calculating the matching
coefficients COij

, CFij
and Eij to higher orders in per-

turbation theory, while higher orders in the resummation
can be included by computing the evolution kernels UOij

and UFij
to higher orders. Note that we expect the rela-

tion between the two evolution kernels given in (6) to be
violated at NLL order, such that the NLL resummation
can not be accomplished by a simple choice of scales in
the parton distribution functions.

In this letter we have investigated the effect of leading-
logarithmic resummation for jet production with associ-
ated vector boson (V = W, Z) production at the LHC.
The resummation is achieved via a series of matching
onto versions of soft-collinear effective theory and run-
ning of the coefficient functions to their natural scales
using their renormalization-group properties. The result
simplifies to the known partonic cross section expression
folded with the appropriate parton distribution functions
if the parton distribution functions are evaluated at a
high scale which scales like the transverse momentum of
the jets. The main purpose of resummation is to improve
the convergence of the perturbative expansion which we
have demonstrated specifically for events with high trans-
verse momenta in pp → V + n jets processes.
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The idea of using dynamical scales is not new, it is implemented in all 
matrix element generators (CKKW local scales).
Useful to compare NLO to those state-of-the art LO calculations. 



Same transverse energy distribution 

Local scale choice (CKKW): 

• given a partonic event reconstruct 
a branching history: cluster partons 
into jets using kt-algorithm 

• at each branching the scale in the 
coupling to set to the relative kt of 
the daughter partons 

• local scale = CKKW scale choice, 
but no Sudakov reweighting, no 
parton shower
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jet for W + + 3 jet inclusive production cross section at the
LHC. All cuts and parameters are described in the text. The
leading color adjustment procedure is applied.

tion; details of our implementation are given in [4]. We
use the leading color adjustment procedure described in
that paper to correct for deficiencies of the leading color
approximation, to the extent possible. We note that pro-
duction cross-sections for W+ and W− at the LHC are
not the same; we have chosen to discuss the case of W+

production almost everywhere in this paper. We do, how-
ever, show results for the W− + 3 jet production cross-
section at the LHC in dependence of factorization and
renormalization scales.

We begin by summarizing all the relevant cuts and
input parameters that are employed in the computation.
We take the LHC center-of-mass energy to be 10 TeV. We
require that the transverse momentum and pseudorapid-
ity of the three jets satisfy pT,j > 30 GeV and |ηj | < 3.
We consider the leptonic decay of the W to electron (or
muon) and employ the following restrictions on lepton
transverse momentum, missing transverse energy, lepton
rapidity and W -boson transverse mass, pT,e > 20 GeV,
!ET > 15 GeV, |ηe| < 2.4, MW

T > 30 GeV. We
do not apply an isolation cut on the leptons. To de-
fine jets, we use the SISCone jet-algorithm [35] with
R =

√

∆η2 + ∆φ2 = 0.5 and merging parameter f = 0.5.

We consider the production of on-shell W+ bosons,
that decay into a pair of massless leptons. Finite width
effects are about 1%; they tend to decrease the cross
section. The CKM matrix is set equal to the identity
matrix; this reduces the W + 3 jet production cross sec-
tion at the LHC by less than 1%. All quarks, with the
exception of the top quark, are considered massless. The
top quark is considered infinitely heavy and its contribu-
tion is neglected. The mass of the W boson is taken to be
mW = 80.419 GeV; its couplings to fermions are obtained
from αQED(mZ) = 1/128.802 and sin2 θW = 0.230. We
use CTEQ6L parton distribution functions for leading
order and CTEQ6M for next-to-leading order computa-
tions [36, 37]. Note that we do not include the factor
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FIG. 4: The transverse momentum distribution of the lead-
ing jet for W + + 3 jet inclusive production cross section at
the LHC. All cuts and parameters are described in the text.
The leading color adjustment procedure is applied. All LO
distributions are rescaled by constant factor, to ensure that
the LO and NLO normalizations coincide.

Br(W → lνl) in the results for cross-sections quoted be-
low.

We first discuss results for total cross sections.
We set renormalization and factorization scales µ to
µ = [80, 120, 160, 200, 240] GeV and calculate the cross-
sections with the cuts defined at the beginning of this
Section. The result of the calculation is illustrated in
Fig.1. For full-color leading order cross section we find

σLO,FC
W++≥3j

= 35(10) pb , (2)

where the ±10 pb uncertainty from scale variation is
shown in brackets. Calculating the same cross-section
in the leading color approximation, we find the leading
color adjustment parameter

R = σLO,FC
W++≥3j

/σLO,LC
W++≥3j

= 0.940(5) , (3)

where the uncertainty indicates changes in this ra-
tio that we observe when we change factoriza-
tion/renormalization scales chosen in leading order com-
putations or cuts on the final state particles. We also find
that the R ratio for the W− production is the same as
for the W+. Since R does not depend in any significant
way on the details of the process, applied cuts and chosen
scales, we use the central value for R given in Eq.(3) in
what follows.

At NLO we obtain the adjusted leading-color inclusive
cross-section, σNLO,aLC

W++≥3j
(incl) = R · σNLO,LC

W++≥3j
(incl),

σNLO,aLC
W++≥3j

(incl) = 32.4(1.5) pb . (4)

This result implies (see Fig.1) that for our choice of
cuts and input parameters, NLO QCD corrections to
the inclusive cross-section are very moderate for µ ∼
140− 160 GeV. We also observe a remarkable reduction

Local scale choice (CKKW): 

• given a partonic event reconstruct 
a branching history: cluster partons 
into jets using kt-algorithm 

• at each branching the scale in the 
coupling to set to the relative kt of 
the daughter partons 

• local scale = CKKW scale choice, 
but no Sudakov reweighting, no 
parton shower
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FIG. 3: The transverse momentum distribution of the leading
jet for W + + 3 jet inclusive production cross section at the
LHC. All cuts and parameters are described in the text. The
leading color adjustment procedure is applied.

tion; details of our implementation are given in [4]. We
use the leading color adjustment procedure described in
that paper to correct for deficiencies of the leading color
approximation, to the extent possible. We note that pro-
duction cross-sections for W+ and W− at the LHC are
not the same; we have chosen to discuss the case of W+

production almost everywhere in this paper. We do, how-
ever, show results for the W− + 3 jet production cross-
section at the LHC in dependence of factorization and
renormalization scales.

We begin by summarizing all the relevant cuts and
input parameters that are employed in the computation.
We take the LHC center-of-mass energy to be 10 TeV. We
require that the transverse momentum and pseudorapid-
ity of the three jets satisfy pT,j > 30 GeV and |ηj | < 3.
We consider the leptonic decay of the W to electron (or
muon) and employ the following restrictions on lepton
transverse momentum, missing transverse energy, lepton
rapidity and W -boson transverse mass, pT,e > 20 GeV,
!ET > 15 GeV, |ηe| < 2.4, MW

T > 30 GeV. We
do not apply an isolation cut on the leptons. To de-
fine jets, we use the SISCone jet-algorithm [35] with
R =

√

∆η2 + ∆φ2 = 0.5 and merging parameter f = 0.5.

We consider the production of on-shell W+ bosons,
that decay into a pair of massless leptons. Finite width
effects are about 1%; they tend to decrease the cross
section. The CKM matrix is set equal to the identity
matrix; this reduces the W + 3 jet production cross sec-
tion at the LHC by less than 1%. All quarks, with the
exception of the top quark, are considered massless. The
top quark is considered infinitely heavy and its contribu-
tion is neglected. The mass of the W boson is taken to be
mW = 80.419 GeV; its couplings to fermions are obtained
from αQED(mZ) = 1/128.802 and sin2 θW = 0.230. We
use CTEQ6L parton distribution functions for leading
order and CTEQ6M for next-to-leading order computa-
tions [36, 37]. Note that we do not include the factor
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FIG. 4: The transverse momentum distribution of the lead-
ing jet for W + + 3 jet inclusive production cross section at
the LHC. All cuts and parameters are described in the text.
The leading color adjustment procedure is applied. All LO
distributions are rescaled by constant factor, to ensure that
the LO and NLO normalizations coincide.

Br(W → lνl) in the results for cross-sections quoted be-
low.

We first discuss results for total cross sections.
We set renormalization and factorization scales µ to
µ = [80, 120, 160, 200, 240] GeV and calculate the cross-
sections with the cuts defined at the beginning of this
Section. The result of the calculation is illustrated in
Fig.1. For full-color leading order cross section we find

σLO,FC
W++≥3j

= 35(10) pb , (2)

where the ±10 pb uncertainty from scale variation is
shown in brackets. Calculating the same cross-section
in the leading color approximation, we find the leading
color adjustment parameter

R = σLO,FC
W++≥3j

/σLO,LC
W++≥3j

= 0.940(5) , (3)

where the uncertainty indicates changes in this ra-
tio that we observe when we change factoriza-
tion/renormalization scales chosen in leading order com-
putations or cuts on the final state particles. We also find
that the R ratio for the W− production is the same as
for the W+. Since R does not depend in any significant
way on the details of the process, applied cuts and chosen
scales, we use the central value for R given in Eq.(3) in
what follows.

At NLO we obtain the adjusted leading-color inclusive
cross-section, σNLO,aLC

W++≥3j
(incl) = R · σNLO,LC

W++≥3j
(incl),

σNLO,aLC
W++≥3j

(incl) = 32.4(1.5) pb . (4)

This result implies (see Fig.1) that for our choice of
cuts and input parameters, NLO QCD corrections to
the inclusive cross-section are very moderate for µ ∼
140− 160 GeV. We also observe a remarkable reduction

Local scale choice (CKKW): 

• given a partonic event reconstruct 
a branching history: cluster partons 
into jets using kt-algorithm 

• at each branching the scale in the 
coupling to set to the relative kt of 
the daughter partons 

• local scale = CKKW scale choice, 
but no Sudakov reweighting, no 
parton shower

☛ local scale choice very close to Alpgen+Herwig which reproduces the 

     NLO shape reasonably well 

☛ difference between “LO, local scale” and full Alpgen+Herwig indicative of

     importance of parton shower  
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☛ LO with local scale does a very reasonable job in reproducing shapes

NB: 
normalization of LO remains out of control. LO is normalized to NLO in above plots
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FIG. 5: The transverse momentum distribution of the sec-
ond hardest jet in W + + 3 jet production at the LHC. All
cuts and parameters are described in the text. The leading
color adjustment procedure is applied. The LO distribution is
rescaled by constant factor, to ensure that the LO and NLO
normalizations coincide.

in scale dependence from more than ±30% at leading
order to only ±5% at NLO. While corrections to the ex-
clusive cross-section are larger for similar values of µ, the
scale independence of the exclusive NLO cross-section is
similar to the inclusive one. In Fig.2 the cross-section
for W− + 3 jet production is shown in dependence on
the factorization and renormalization scales. The cross
section is smaller in this case, while the stabilization of
scale dependence that occurs at next-to-leading order is
very similar for W− and W+ production cross-sections.

Given that NLO QCD corrections to the total cross
sections are small, it is tempting to surmise that the
corrections to kinematic distributions should also be in-
significant. As we will now show, the actual situation
is more complex. We consider kinematic distributions
for the inclusive W+ + 3 jet production. We choose
to show the NLO distributions for the dynamical scale

µ0 =
√

p2
T,W + m2

W , where pT,W is the transverse mo-

mentum of the W boson as done e.g. in [38]. We note
that for such a scale the LO cross-section is σLO

W++≥3j =
37.6 pb and the adjusted leading color NLO cross-section
is σNLO,aLC

W++≥3j
= 34.2 pb, consistent with Eq. (4) within

the indicated uncertainties. The radiative corrections to
W + 3 jet production cross-section at scale µ0 are there-
fore small, about −10%. For the following discussion,
scale choices in NLO computations are not very impor-
tant since, as it turns out, shapes of NLO distributions
are fairly insensitive to them.

We begin by studying the transverse momentum dis-
tribution of the leading jet. In Fig. 3 we compare NLO
and LO predictions for scale µ0. We find that the NLO
QCD corrections change the shape of this distribution –
the leading order distribution underestimates the NLO
result at small values of the transverse energy by about
30 percent and systematically exceeds the NLO result for
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FIG. 6: The transverse momentum distribution of the third
hardest jet in W + + 3 jet production at the LHC. All cuts
and parameters are described in the text. The leading color
adjustment procedure is applied. The LO distribution is
rescaled by constant factor, to ensure that the LO and NLO
normalizations coincide.

higher values of the transverse energy. A similar feature
is observed in other distributions related to jet transverse
momenta if the NLO result is compared to LO predictions
with the scale µ0.

The origin of these shape changes was recently dis-
cussed in Ref. [39] using soft-collinear effective theory
and in Refs. [5, 7] in connection with NLO QCD com-
putations for W + 3 jets production at the Tevatron and
the LHC. Here, we recapitulate the explanation of the
inadequacy of the scale µ0 given in Ref. [5]. This inad-
equacy is related to two facts: a) in the region where
the jets have large transverse momentum, the W -boson
transverse momentum spectrum is softer than that of the
jets; b) the probability of parton branching is determined
by the relative transverse momentum of the two daugh-
ter partons produced in that branching; such transverse
momentum should be the appropriate scale for the strong
coupling constant. When these two facts are combined,
one is led to the conclusion that in the kinematic region
where the jets have large transverse momenta, the use of
αs(µ0) in LO computations overestimates the cross sec-
tion. At next-to-leading order, the appropriate scale for
the strong coupling constant µ ∼ pT,j # µ0 is generated
dynamically and the cross section in that region becomes
smaller.

Is it possible to account for the shape modifications by
more sophisticated LO computations? The affirmative
answer to this question was given in Refs. [7, 39], where
particular choices of scales set by e.g. the hadronic in-
variant mass or total transverse energy in an event, were
advocated. It should be emphasized, however, that the
idea to employ scales of the strong coupling that are de-
termined from local kinematics on an event-by-event ba-
sis is not new since it is central to both parton showers
and advanced leading order computations that employ
matrix elements and parton shower matching [40].
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in scale dependence from more than ±30% at leading
order to only ±5% at NLO. While corrections to the ex-
clusive cross-section are larger for similar values of µ, the
scale independence of the exclusive NLO cross-section is
similar to the inclusive one. In Fig.2 the cross-section
for W− + 3 jet production is shown in dependence on
the factorization and renormalization scales. The cross
section is smaller in this case, while the stabilization of
scale dependence that occurs at next-to-leading order is
very similar for W− and W+ production cross-sections.

Given that NLO QCD corrections to the total cross
sections are small, it is tempting to surmise that the
corrections to kinematic distributions should also be in-
significant. As we will now show, the actual situation
is more complex. We consider kinematic distributions
for the inclusive W+ + 3 jet production. We choose
to show the NLO distributions for the dynamical scale

µ0 =
√

p2
T,W + m2

W , where pT,W is the transverse mo-

mentum of the W boson as done e.g. in [38]. We note
that for such a scale the LO cross-section is σLO

W++≥3j =
37.6 pb and the adjusted leading color NLO cross-section
is σNLO,aLC

W++≥3j
= 34.2 pb, consistent with Eq. (4) within

the indicated uncertainties. The radiative corrections to
W + 3 jet production cross-section at scale µ0 are there-
fore small, about −10%. For the following discussion,
scale choices in NLO computations are not very impor-
tant since, as it turns out, shapes of NLO distributions
are fairly insensitive to them.

We begin by studying the transverse momentum dis-
tribution of the leading jet. In Fig. 3 we compare NLO
and LO predictions for scale µ0. We find that the NLO
QCD corrections change the shape of this distribution –
the leading order distribution underestimates the NLO
result at small values of the transverse energy by about
30 percent and systematically exceeds the NLO result for
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higher values of the transverse energy. A similar feature
is observed in other distributions related to jet transverse
momenta if the NLO result is compared to LO predictions
with the scale µ0.

The origin of these shape changes was recently dis-
cussed in Ref. [39] using soft-collinear effective theory
and in Refs. [5, 7] in connection with NLO QCD com-
putations for W + 3 jets production at the Tevatron and
the LHC. Here, we recapitulate the explanation of the
inadequacy of the scale µ0 given in Ref. [5]. This inad-
equacy is related to two facts: a) in the region where
the jets have large transverse momentum, the W -boson
transverse momentum spectrum is softer than that of the
jets; b) the probability of parton branching is determined
by the relative transverse momentum of the two daugh-
ter partons produced in that branching; such transverse
momentum should be the appropriate scale for the strong
coupling constant. When these two facts are combined,
one is led to the conclusion that in the kinematic region
where the jets have large transverse momenta, the use of
αs(µ0) in LO computations overestimates the cross sec-
tion. At next-to-leading order, the appropriate scale for
the strong coupling constant µ ∼ pT,j # µ0 is generated
dynamically and the cross section in that region becomes
smaller.

Is it possible to account for the shape modifications by
more sophisticated LO computations? The affirmative
answer to this question was given in Refs. [7, 39], where
particular choices of scales set by e.g. the hadronic in-
variant mass or total transverse energy in an event, were
advocated. It should be emphasized, however, that the
idea to employ scales of the strong coupling that are de-
termined from local kinematics on an event-by-event ba-
sis is not new since it is central to both parton showers
and advanced leading order computations that employ
matrix elements and parton shower matching [40].
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lepton for W + + 3 jet inclusive production cross section at
the LHC. All cuts and parameters are described in the text.
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menters as tools for understanding properties of W+ jets
process. In order to avoid too busy plots, we choose to
only show leading order results computed with the “lo-
cal” scale choice for the strong coupling constant in what
follows. We stress that for all distributions the normal-
ization of the leading order cross-section is adjusted to
agree with next-to-leading order result. We show the
distribution in transverse energy of the second-hardest
and third-hardest jet in Figs. 5,6, rapidity of the hard-
est jet in Fig. 7 and the distribution in total transverse
energy HT,tot =

∑

jets |pT,j| + pT,l + !pT in Fig.8. We
also show leptonic distributions in Figs. 9 and 10 where
we plot the lepton transverse momentum and the miss-
ing transverse momentum, respectively. As stated, in all
considered cases local scales reproduce shapes of the dis-
tributions quite well.

III. W + 3 JET PRODUCTION AS A MODEL
FOR BACKGROUND TO SUPERSYMMETRIC

SEARCHES

In this Section we investigate QCD corrections to W+3
jet production at the LHC for a set of cuts appropriate
in supersymmetric searches. By construction, these back-
ground cuts seek to suppress the production of W bosons
in association with jets as much as possible, effectively
driving W + jet production to corners of the available
phase-space. It is therefore unclear if QCD radiative ef-
fects in those regions of phase-space are similar to QCD
corrections to the production cross-sections discussed in
the previous Section. To answer this question, we dis-
cuss two types of cuts, very similar to those suggested
by the ATLAS and CMS collaborations, in their planned
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FIG. 10: The missing transverse momentum distribution for
W + +3 jet inclusive production cross section at the LHC. All
cuts and parameters are described in the text. The leading
color adjustment procedure is applied. The LO distribution is
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searches for supersymmetry at the LHC. 3 All the input
parameters are the same as in the previous Section ex-
cept that we use merging parameter f = 0.7 to define
jets using SIScone algorithm.

A. ATLAS setup – faking jets from τ decays

We begin by considering cuts employed by the AT-
LAS collaboration to search for SUSY with R-parity con-
servation. In that case, the typical signal comes from
gluino pair-production. If each gluino decays into two
jets and a neutralino, a SUSY signature will involve 4
jets and missing transverse energy. A dominant back-
ground to this process comes from Z + 4 jet produc-
tion, with the subsequent decay of the Z-boson into
two neutrinos. Another important background comes
from W+ + 3 jet production4, followed by the decays
W+ → τ̄ντ → ν̄τντ + hadrons, so that hadrons from
semileptonic decay of the τ lepton produce the fourth
jet.

One can use peculiar kinematic properties of the fourth
jet to connect it to τ decays and then reject such events
but, because of limited efficiency in identifying τ decays
and because the cross section for W +3 jet production is
almost two orders of magnitude larger than the Z +4 jet

3 We point out that we kept cuts very similar to those used in
the experimental studies done at 14TeV despite the fact that we
use 10 TeV as center-of-mass energy. As a consequence cross-
sections in this section are very small. A more realistic study
would require adapting those cuts to the centre-of mass energy,
but this is beyond the scope of this paper.

4 Clearly, there is also a similar background from W− + 3 jet pro-
duction but we do not consider it here.
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Since such “local” scales capture the kinematics of
complicated events correctly, it is conceivable that they
produce shapes that are close to exact NLO results. We
show the comparison of the NLO prediction with two
leading order results in Fig.4.

One LO distribution is obtained by following the MLM
procedure whose application to W + 3 jet production
is described in Ref. [38]. The MLM procedure and its
close relative the CKKW algorithm [40] are the most ad-
vanced techniques available currently for leading order
predictions, so it is interesting to see how it compares
with NLO computations. We use Alpgen [41] to gener-
ate unweighted events that are matched to the Herwig
[42] parton shower. We produce hard events with up to
five QCD partons in the final state with Alpgen, using a
transverse momentum cut of ptj,min = 20 (25) GeV and
a separation parameter drj = 0.35 (0.45) [41]. To shower
the hard events with Herwig we used Rclus = drj and
Et,clus = ptj,min as matching parameters for the MLM
prescription [41]. We find that results are fairly indepen-
dent of the cuts used in the generation of the hard events
and that samples with five hard partons contribute lit-
tle. This indicates that hard samples with yet higher
multiplicity can be safely neglected.

The other LO prediction shown in Fig. 4 is our im-
plementation of the local scales in the strong coupling
constant; it is close in spirit to the re-weighting part of
the CKKW procedure [40]. To this end, for a given LO
partonic event that passes jet cuts, we cluster partons
according to the measure given by k⊥-jet algorithm2. A

2 We note that the jet cuts can be defined with any jet algorithm;
the k⊥-algorithm is only used to reconstruct the event branching
history.
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FIG. 8: The total transverse energy distribution for W ++3 jet
inclusive production cross section at the LHC. All cuts and pa-
rameters are described in the text. The leading color adjust-
ment procedure is applied. The LO distribution is rescaled
by constant factor, to ensure that the LO and NLO normal-
izations coincide.

repeated clustering gives us a “branching history” that
can be associated with the event; at each branching the
scale of the strong coupling constant is chosen as the rel-
ative momentum of two daughters in the branching. We
will refer to scales of the strong coupling constant chosen
by this algorithm as “local” scales. Note that this pro-
cedure is strictly a simple way to set scales of the strong
coupling constant to reasonable values in W + 5 parton
leading order matrix elements. In doing so, we do not
try to combine matrix elements of different multiplicities
nor do we attempt to shower leading order partonic con-
figuration. Differences between distributions produced
with Alpgen and with the local scale procedure give an
idea of the importance of the parton shower and Sudakov
re-weighting.

We point out that such modifications of leading or-
der computations may lead to large changes in the cross-
sections. For example, Alpgen cross-section is ∼ 22 pb
and the local scale cross-section is ∼ 47 pb, to be com-
pared with ∼ 33 pb NLO cross-section. However, the
normalization of cross-sections is a hard problem where
next-to-leading computations or direct normalization to
data are the only known solutions. To separate issues
of normalization from the shape, we normalize all lead-
ing order results in Fig. 4 to the NLO cross-section. We
observe that both the Alpgen+Herwig distribution and
the local scale distribution describe the NLO result fairly
well. Also, the proximity between the shapes of the two
leading order results tells us that parton shower does rel-
atively little to alter the shape of the distribution.

We find that these observations are generic: leading
order computations obtained with either Alpgen+Herwig
or local scales are similar and they work reasonably well
in reproducing shapes of NLO distributions. We believe
this is important conclusion, especially in the case of
Alpgen+Herwig since those programs are used by experi-
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Since such “local” scales capture the kinematics of
complicated events correctly, it is conceivable that they
produce shapes that are close to exact NLO results. We
show the comparison of the NLO prediction with two
leading order results in Fig.4.

One LO distribution is obtained by following the MLM
procedure whose application to W + 3 jet production
is described in Ref. [38]. The MLM procedure and its
close relative the CKKW algorithm [40] are the most ad-
vanced techniques available currently for leading order
predictions, so it is interesting to see how it compares
with NLO computations. We use Alpgen [41] to gener-
ate unweighted events that are matched to the Herwig
[42] parton shower. We produce hard events with up to
five QCD partons in the final state with Alpgen, using a
transverse momentum cut of ptj,min = 20 (25) GeV and
a separation parameter drj = 0.35 (0.45) [41]. To shower
the hard events with Herwig we used Rclus = drj and
Et,clus = ptj,min as matching parameters for the MLM
prescription [41]. We find that results are fairly indepen-
dent of the cuts used in the generation of the hard events
and that samples with five hard partons contribute lit-
tle. This indicates that hard samples with yet higher
multiplicity can be safely neglected.

The other LO prediction shown in Fig. 4 is our im-
plementation of the local scales in the strong coupling
constant; it is close in spirit to the re-weighting part of
the CKKW procedure [40]. To this end, for a given LO
partonic event that passes jet cuts, we cluster partons
according to the measure given by k⊥-jet algorithm2. A

2 We note that the jet cuts can be defined with any jet algorithm;
the k⊥-algorithm is only used to reconstruct the event branching
history.
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repeated clustering gives us a “branching history” that
can be associated with the event; at each branching the
scale of the strong coupling constant is chosen as the rel-
ative momentum of two daughters in the branching. We
will refer to scales of the strong coupling constant chosen
by this algorithm as “local” scales. Note that this pro-
cedure is strictly a simple way to set scales of the strong
coupling constant to reasonable values in W + 5 parton
leading order matrix elements. In doing so, we do not
try to combine matrix elements of different multiplicities
nor do we attempt to shower leading order partonic con-
figuration. Differences between distributions produced
with Alpgen and with the local scale procedure give an
idea of the importance of the parton shower and Sudakov
re-weighting.

We point out that such modifications of leading or-
der computations may lead to large changes in the cross-
sections. For example, Alpgen cross-section is ∼ 22 pb
and the local scale cross-section is ∼ 47 pb, to be com-
pared with ∼ 33 pb NLO cross-section. However, the
normalization of cross-sections is a hard problem where
next-to-leading computations or direct normalization to
data are the only known solutions. To separate issues
of normalization from the shape, we normalize all lead-
ing order results in Fig. 4 to the NLO cross-section. We
observe that both the Alpgen+Herwig distribution and
the local scale distribution describe the NLO result fairly
well. Also, the proximity between the shapes of the two
leading order results tells us that parton shower does rel-
atively little to alter the shape of the distribution.

We find that these observations are generic: leading
order computations obtained with either Alpgen+Herwig
or local scales are similar and they work reasonably well
in reproducing shapes of NLO distributions. We believe
this is important conclusion, especially in the case of
Alpgen+Herwig since those programs are used by experi-
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lepton for W + + 3 jet inclusive production cross section at
the LHC. All cuts and parameters are described in the text.
The leading color adjustment procedure is applied. The LO
distribution is rescaled by constant factor, to ensure that the
LO and NLO normalizations coincide.

menters as tools for understanding properties of W+ jets
process. In order to avoid too busy plots, we choose to
only show leading order results computed with the “lo-
cal” scale choice for the strong coupling constant in what
follows. We stress that for all distributions the normal-
ization of the leading order cross-section is adjusted to
agree with next-to-leading order result. We show the
distribution in transverse energy of the second-hardest
and third-hardest jet in Figs. 5,6, rapidity of the hard-
est jet in Fig. 7 and the distribution in total transverse
energy HT,tot =

∑

jets |pT,j| + pT,l + !pT in Fig.8. We
also show leptonic distributions in Figs. 9 and 10 where
we plot the lepton transverse momentum and the miss-
ing transverse momentum, respectively. As stated, in all
considered cases local scales reproduce shapes of the dis-
tributions quite well.

III. W + 3 JET PRODUCTION AS A MODEL
FOR BACKGROUND TO SUPERSYMMETRIC

SEARCHES

In this Section we investigate QCD corrections to W+3
jet production at the LHC for a set of cuts appropriate
in supersymmetric searches. By construction, these back-
ground cuts seek to suppress the production of W bosons
in association with jets as much as possible, effectively
driving W + jet production to corners of the available
phase-space. It is therefore unclear if QCD radiative ef-
fects in those regions of phase-space are similar to QCD
corrections to the production cross-sections discussed in
the previous Section. To answer this question, we dis-
cuss two types of cuts, very similar to those suggested
by the ATLAS and CMS collaborations, in their planned
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FIG. 10: The missing transverse momentum distribution for
W + +3 jet inclusive production cross section at the LHC. All
cuts and parameters are described in the text. The leading
color adjustment procedure is applied. The LO distribution is
rescaled by constant factor, to ensure that the LO and NLO
normalizations coincide.

searches for supersymmetry at the LHC. 3 All the input
parameters are the same as in the previous Section ex-
cept that we use merging parameter f = 0.7 to define
jets using SIScone algorithm.

A. ATLAS setup – faking jets from τ decays

We begin by considering cuts employed by the AT-
LAS collaboration to search for SUSY with R-parity con-
servation. In that case, the typical signal comes from
gluino pair-production. If each gluino decays into two
jets and a neutralino, a SUSY signature will involve 4
jets and missing transverse energy. A dominant back-
ground to this process comes from Z + 4 jet produc-
tion, with the subsequent decay of the Z-boson into
two neutrinos. Another important background comes
from W+ + 3 jet production4, followed by the decays
W+ → τ̄ντ → ν̄τντ + hadrons, so that hadrons from
semileptonic decay of the τ lepton produce the fourth
jet.

One can use peculiar kinematic properties of the fourth
jet to connect it to τ decays and then reject such events
but, because of limited efficiency in identifying τ decays
and because the cross section for W +3 jet production is
almost two orders of magnitude larger than the Z +4 jet

3 We point out that we kept cuts very similar to those used in
the experimental studies done at 14TeV despite the fact that we
use 10 TeV as center-of-mass energy. As a consequence cross-
sections in this section are very small. A more realistic study
would require adapting those cuts to the centre-of mass energy,
but this is beyond the scope of this paper.

4 Clearly, there is also a similar background from W− + 3 jet pro-
duction but we do not consider it here.
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Since such “local” scales capture the kinematics of
complicated events correctly, it is conceivable that they
produce shapes that are close to exact NLO results. We
show the comparison of the NLO prediction with two
leading order results in Fig.4.

One LO distribution is obtained by following the MLM
procedure whose application to W + 3 jet production
is described in Ref. [38]. The MLM procedure and its
close relative the CKKW algorithm [40] are the most ad-
vanced techniques available currently for leading order
predictions, so it is interesting to see how it compares
with NLO computations. We use Alpgen [41] to gener-
ate unweighted events that are matched to the Herwig
[42] parton shower. We produce hard events with up to
five QCD partons in the final state with Alpgen, using a
transverse momentum cut of ptj,min = 20 (25) GeV and
a separation parameter drj = 0.35 (0.45) [41]. To shower
the hard events with Herwig we used Rclus = drj and
Et,clus = ptj,min as matching parameters for the MLM
prescription [41]. We find that results are fairly indepen-
dent of the cuts used in the generation of the hard events
and that samples with five hard partons contribute lit-
tle. This indicates that hard samples with yet higher
multiplicity can be safely neglected.

The other LO prediction shown in Fig. 4 is our im-
plementation of the local scales in the strong coupling
constant; it is close in spirit to the re-weighting part of
the CKKW procedure [40]. To this end, for a given LO
partonic event that passes jet cuts, we cluster partons
according to the measure given by k⊥-jet algorithm2. A

2 We note that the jet cuts can be defined with any jet algorithm;
the k⊥-algorithm is only used to reconstruct the event branching
history.
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inclusive production cross section at the LHC. All cuts and pa-
rameters are described in the text. The leading color adjust-
ment procedure is applied. The LO distribution is rescaled
by constant factor, to ensure that the LO and NLO normal-
izations coincide.

repeated clustering gives us a “branching history” that
can be associated with the event; at each branching the
scale of the strong coupling constant is chosen as the rel-
ative momentum of two daughters in the branching. We
will refer to scales of the strong coupling constant chosen
by this algorithm as “local” scales. Note that this pro-
cedure is strictly a simple way to set scales of the strong
coupling constant to reasonable values in W + 5 parton
leading order matrix elements. In doing so, we do not
try to combine matrix elements of different multiplicities
nor do we attempt to shower leading order partonic con-
figuration. Differences between distributions produced
with Alpgen and with the local scale procedure give an
idea of the importance of the parton shower and Sudakov
re-weighting.

We point out that such modifications of leading or-
der computations may lead to large changes in the cross-
sections. For example, Alpgen cross-section is ∼ 22 pb
and the local scale cross-section is ∼ 47 pb, to be com-
pared with ∼ 33 pb NLO cross-section. However, the
normalization of cross-sections is a hard problem where
next-to-leading computations or direct normalization to
data are the only known solutions. To separate issues
of normalization from the shape, we normalize all lead-
ing order results in Fig. 4 to the NLO cross-section. We
observe that both the Alpgen+Herwig distribution and
the local scale distribution describe the NLO result fairly
well. Also, the proximity between the shapes of the two
leading order results tells us that parton shower does rel-
atively little to alter the shape of the distribution.

We find that these observations are generic: leading
order computations obtained with either Alpgen+Herwig
or local scales are similar and they work reasonably well
in reproducing shapes of NLO distributions. We believe
this is important conclusion, especially in the case of
Alpgen+Herwig since those programs are used by experi-
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lepton for W + + 3 jet inclusive production cross section at
the LHC. All cuts and parameters are described in the text.
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menters as tools for understanding properties of W+ jets
process. In order to avoid too busy plots, we choose to
only show leading order results computed with the “lo-
cal” scale choice for the strong coupling constant in what
follows. We stress that for all distributions the normal-
ization of the leading order cross-section is adjusted to
agree with next-to-leading order result. We show the
distribution in transverse energy of the second-hardest
and third-hardest jet in Figs. 5,6, rapidity of the hard-
est jet in Fig. 7 and the distribution in total transverse
energy HT,tot =

∑

jets |pT,j| + pT,l + !pT in Fig.8. We
also show leptonic distributions in Figs. 9 and 10 where
we plot the lepton transverse momentum and the miss-
ing transverse momentum, respectively. As stated, in all
considered cases local scales reproduce shapes of the dis-
tributions quite well.

III. W + 3 JET PRODUCTION AS A MODEL
FOR BACKGROUND TO SUPERSYMMETRIC

SEARCHES

In this Section we investigate QCD corrections to W+3
jet production at the LHC for a set of cuts appropriate
in supersymmetric searches. By construction, these back-
ground cuts seek to suppress the production of W bosons
in association with jets as much as possible, effectively
driving W + jet production to corners of the available
phase-space. It is therefore unclear if QCD radiative ef-
fects in those regions of phase-space are similar to QCD
corrections to the production cross-sections discussed in
the previous Section. To answer this question, we dis-
cuss two types of cuts, very similar to those suggested
by the ATLAS and CMS collaborations, in their planned
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FIG. 10: The missing transverse momentum distribution for
W + +3 jet inclusive production cross section at the LHC. All
cuts and parameters are described in the text. The leading
color adjustment procedure is applied. The LO distribution is
rescaled by constant factor, to ensure that the LO and NLO
normalizations coincide.

searches for supersymmetry at the LHC. 3 All the input
parameters are the same as in the previous Section ex-
cept that we use merging parameter f = 0.7 to define
jets using SIScone algorithm.

A. ATLAS setup – faking jets from τ decays

We begin by considering cuts employed by the AT-
LAS collaboration to search for SUSY with R-parity con-
servation. In that case, the typical signal comes from
gluino pair-production. If each gluino decays into two
jets and a neutralino, a SUSY signature will involve 4
jets and missing transverse energy. A dominant back-
ground to this process comes from Z + 4 jet produc-
tion, with the subsequent decay of the Z-boson into
two neutrinos. Another important background comes
from W+ + 3 jet production4, followed by the decays
W+ → τ̄ντ → ν̄τντ + hadrons, so that hadrons from
semileptonic decay of the τ lepton produce the fourth
jet.

One can use peculiar kinematic properties of the fourth
jet to connect it to τ decays and then reject such events
but, because of limited efficiency in identifying τ decays
and because the cross section for W +3 jet production is
almost two orders of magnitude larger than the Z +4 jet

3 We point out that we kept cuts very similar to those used in
the experimental studies done at 14TeV despite the fact that we
use 10 TeV as center-of-mass energy. As a consequence cross-
sections in this section are very small. A more realistic study
would require adapting those cuts to the centre-of mass energy,
but this is beyond the scope of this paper.

4 Clearly, there is also a similar background from W− + 3 jet pro-
duction but we do not consider it here.

How solid (cut-independent) is this statement ? 

See what happens with different cuts. 

Consider two sets of cuts where W+3jet plays the role of unwanted background
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SUSY signature

SUSY with R-parity: e.g. gluino pair production, 
each decays into 2 jets and neutralino

Typical signature: 4 jets and MET (no lepton) 

Primary, irreducible background: Z (→ νν ) + 4 jets  
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Use peculiar properties of τ-jet to reject W+3jet background but

1) limited efficiency for identifying τ-decays

2)  σ(W +3 j) ~ 100 σ(Z + 4j)

⇒ important to consider this source of background as well  

Other SM background is  W (→ ν τ (→ ν hadr.) ) + 3 jets  



Atlas setup

Cuts designed by ATLAS to suppress W+3j background
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pT,j + ET,miss

ptl < 20 GeV

|ηj | < 3ST > 0.2
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Atlas setup

Cuts designed by ATLAS to suppress W+3j background

pT,j > 50 GeV pT,j1 > 100 GeV

ET,miss > max(100GeV, 0.2HT ) HT =
∑

j

pT,j + ET,miss

ptl < 20 GeV

|ηj | < 3ST > 0.2

• each cut suppresses 
background by factor ~ 3 
without modifying the shape  

12 Will be inserted by the editor

Jet cuts only
+ MET cut
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[W!!!had]+3jet

Fig. 10. Distribution of the effective mass variable, Meff , for the W+3 jet process, with W → τ →
hadrons. The different histograms represent the evolution of the background when additional signal
cuts are imposed to the final state.
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• cut on collinear unsafe 
sphericity ST not applied in 
the following study
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SM background from W+3 jets

Our calculation includes only the leptonic decay of the W (in e, µ or τ) 
but not the hadronic subsequent decay of τ. However

➡ kinematic cuts force τ to be highly boosted ⇒ τ-decay highly collimated 

➡ τ+ essentially decays only into π+(2/3 of energy) and ν (1/3 of energy)

Theoretical robust approximation: 

simulate the W decay as a perfect collinear branching with momentum 
fractions 2/3 (π+ ) and 1/3 (ν) 

boosted τ+ π+  (4th jet)

ν  (➠ MET) τ+  decay



SM background from W+3 jets

Primary observable is HT (previously called Meff) which ‘measures’ the 
SUSY scale: 

HT =
∑

j

pT,j + ET,miss
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Fig. 10. Distribution of the effective mass variable, Meff , for the W+3 jet process, with W → τ →
hadrons. The different histograms represent the evolution of the background when additional signal
cuts are imposed to the final state.
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production cross section, it is important to consider this
source of the background as well.

We begin by listing a typical set of cuts that the AT-
LAS collaboration applies to suppress the W → τ +
3j background [28–30]. First, all jets are required to
have transverse momenta larger than 50 GeV and the
transverse momentum of the leading jet should exceed
100 GeV. Second, missing energy in the event should sat-
isfy "ET > max(100 GeV, 0.2HT ) with HT =

∑

j pT,j +
"ET . Third, no leptons with transverse momenta higher
than 20 GeV should be present. Fourth, jets should be
central |ηj | < 3. Finally, the event is required to be
spherical and the cut ST > 0.2 is applied on the trans-
verse sphericity. We will not employ the sphericity cut in
what follows because this observable is not collinear safe
at parton level. In addition, since we consider semilep-
tonic decays of the τ lepton, no high-pT lepton is present
in our events and we do not need to employ a 20 GeV
lepton cut. The primary observable is the distribution
in the effective mass HT defined above and the range of
a particular interest for SUSY searches, given existing
bounds on gluino masses, is HT

>
∼ 1 TeV.

A clear exposition of the effect that the ATLAS cuts
have on W → τ + 3j background at leading order was
recently given in Ref. [30]. It turns out that these cuts
primarily change the normalization of the background
but do not significantly affect the shape of the effective
mass distribution, especially in the region HT

>
∼ 1 TeV.

We would like to understand the impact of NLO QCD
corrections to W → τ +3 jet on the HT distribution. Our
implementation of radiative corrections incorporates W
decay to any leptonic final state but subsequent hadronic
decays of the τ -lepton are not included. Yet, as we will
argue now, this is not necessary if all we need is an esti-
mate of the QCD effects.

We note that, given the above cuts and, in particular,
the cut on the missing transverse energy, the τ lepton
produced in W decays will be highly boosted and its de-
cay products will be very collimated. We then completely
neglect the angular distribution of the τ decay products
and assume a perfect collinear splitting. If, in addition,
we neglect all the spin correlations in τ decay τ → ντ qiq̄j ,
we conclude that the neutrino has to carry away about a
third of the τ momentum while the hadronic jet formed
by a quark and an anti-quark from τ decay has to carry
away two-thirds of the original τ momentum. We also
expect that, since the τ lepton is highly boosted, all its
hadronic decay channels will contribute to the same jet,
making the inclusive treatment of jet properties a rea-
sonable approximation.

We can implement this set up in our calculation by
producing a W boson and letting it decay to a massless
lepton and a massless neutrino. We then carry through
all the steps required for the NLO QCD computation
until the moment when the kinematics of events is ex-
amined and weights, relevant for various histogram bins,
are calculated. At this point, we assign one-third of the
lepton momentum to additional missing energy carried
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FIG. 11: Distributions in effective mass HT for (W +
→ τ̄)+3

jet sample for ATLAS SUSY cuts described in the text. All
cuts and parameters are described in the text. The leading
color adjustment procedure is applied. The large difference
between LO and NLO distributions can be absorbed by re-
scaling the LO distribution by a constant factor.

away by ντ and two-thirds of the lepton momentum to
the fourth (τ) jet in the event. Note that we do not apply
the jet algorithm to check whether or not the hadronic jet
from τ decay is sufficiently separated from the other three
jets. 5 Since this step is not necessary for infra-red safety,
we feel that it is entirely justified to omit it, given the
approximate nature of our analysis. For next-to-leading
computations, we use the leading color adjustment pro-
cedure; we find that R = 0.93 is an appropriate value of
the re-scaling parameter for ATLAS cuts.

The results of our computation are presented in Fig. 11
where the LO H⊥ distribution for our default local scale
compared to the NLO distribution for the factorization
and renormalization scales set to µ0. We point out that
the shape of the leading order distribution is similar to
that obtained with Alpgen presented in Ref. [30], espe-
cially at high values of the effective mass. At lower val-
ues of the effective mass, there is a dependence on the
modeling of τ → hadrons transition and, given the very
approximate nature of our procedure, it is not surprising
that it tends to fail. It is reassuring, however, that our
procedure seems to work quite well for high values of the
effective mass.

As follows from Fig. 11, the HT mass distribution re-
ceives large positive QCD corrections for ATLAS cuts.
Note that distributions for local scales are not normal-
ized to match the NLO distribution there. We studied
the scale dependence of the leading order predictions by
varying local scales around the central value by a factor
of two. While we observe large ∼ ±50% scale dependence
in the LO result, the NLO QCD corrections are ∼ 100%

5 We did however impose a separation Rlj = 0.5 between the τ -
lepton and the jets.
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production cross section, it is important to consider this
source of the background as well.

We begin by listing a typical set of cuts that the AT-
LAS collaboration applies to suppress the W → τ +
3j background [28–30]. First, all jets are required to
have transverse momenta larger than 50 GeV and the
transverse momentum of the leading jet should exceed
100 GeV. Second, missing energy in the event should sat-
isfy "ET > max(100 GeV, 0.2HT ) with HT =

∑

j pT,j +
"ET . Third, no leptons with transverse momenta higher
than 20 GeV should be present. Fourth, jets should be
central |ηj | < 3. Finally, the event is required to be
spherical and the cut ST > 0.2 is applied on the trans-
verse sphericity. We will not employ the sphericity cut in
what follows because this observable is not collinear safe
at parton level. In addition, since we consider semilep-
tonic decays of the τ lepton, no high-pT lepton is present
in our events and we do not need to employ a 20 GeV
lepton cut. The primary observable is the distribution
in the effective mass HT defined above and the range of
a particular interest for SUSY searches, given existing
bounds on gluino masses, is HT

>
∼ 1 TeV.

A clear exposition of the effect that the ATLAS cuts
have on W → τ + 3j background at leading order was
recently given in Ref. [30]. It turns out that these cuts
primarily change the normalization of the background
but do not significantly affect the shape of the effective
mass distribution, especially in the region HT

>
∼ 1 TeV.

We would like to understand the impact of NLO QCD
corrections to W → τ +3 jet on the HT distribution. Our
implementation of radiative corrections incorporates W
decay to any leptonic final state but subsequent hadronic
decays of the τ -lepton are not included. Yet, as we will
argue now, this is not necessary if all we need is an esti-
mate of the QCD effects.

We note that, given the above cuts and, in particular,
the cut on the missing transverse energy, the τ lepton
produced in W decays will be highly boosted and its de-
cay products will be very collimated. We then completely
neglect the angular distribution of the τ decay products
and assume a perfect collinear splitting. If, in addition,
we neglect all the spin correlations in τ decay τ → ντ qiq̄j ,
we conclude that the neutrino has to carry away about a
third of the τ momentum while the hadronic jet formed
by a quark and an anti-quark from τ decay has to carry
away two-thirds of the original τ momentum. We also
expect that, since the τ lepton is highly boosted, all its
hadronic decay channels will contribute to the same jet,
making the inclusive treatment of jet properties a rea-
sonable approximation.

We can implement this set up in our calculation by
producing a W boson and letting it decay to a massless
lepton and a massless neutrino. We then carry through
all the steps required for the NLO QCD computation
until the moment when the kinematics of events is ex-
amined and weights, relevant for various histogram bins,
are calculated. At this point, we assign one-third of the
lepton momentum to additional missing energy carried
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jet sample for ATLAS SUSY cuts described in the text. All
cuts and parameters are described in the text. The leading
color adjustment procedure is applied. The large difference
between LO and NLO distributions can be absorbed by re-
scaling the LO distribution by a constant factor.

away by ντ and two-thirds of the lepton momentum to
the fourth (τ) jet in the event. Note that we do not apply
the jet algorithm to check whether or not the hadronic jet
from τ decay is sufficiently separated from the other three
jets. 5 Since this step is not necessary for infra-red safety,
we feel that it is entirely justified to omit it, given the
approximate nature of our analysis. For next-to-leading
computations, we use the leading color adjustment pro-
cedure; we find that R = 0.93 is an appropriate value of
the re-scaling parameter for ATLAS cuts.

The results of our computation are presented in Fig. 11
where the LO H⊥ distribution for our default local scale
compared to the NLO distribution for the factorization
and renormalization scales set to µ0. We point out that
the shape of the leading order distribution is similar to
that obtained with Alpgen presented in Ref. [30], espe-
cially at high values of the effective mass. At lower val-
ues of the effective mass, there is a dependence on the
modeling of τ → hadrons transition and, given the very
approximate nature of our procedure, it is not surprising
that it tends to fail. It is reassuring, however, that our
procedure seems to work quite well for high values of the
effective mass.

As follows from Fig. 11, the HT mass distribution re-
ceives large positive QCD corrections for ATLAS cuts.
Note that distributions for local scales are not normal-
ized to match the NLO distribution there. We studied
the scale dependence of the leading order predictions by
varying local scales around the central value by a factor
of two. While we observe large ∼ ±50% scale dependence
in the LO result, the NLO QCD corrections are ∼ 100%

5 We did however impose a separation Rlj = 0.5 between the τ -
lepton and the jets.

☛ universal enhancement (K-factor ~3) of LO without distorting the shape
    NB: same observable with cuts as shown before had K-factor ~ 1

☛ NLO effect similar to that of cuts but works in opposite direction
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CMS style indirect lepton veto cut

Indirect lepton veto = no explicit lepton veto, but other cuts force 
contribution from W+jets to become naturally small 

ET,miss > 200GeV

|ηlead jet| < 1.7

pT,j > 30GeV pT,j1 > 180GeV pT,j2 > 110GeV

HT,24 =
4∑

j=2

pT,j + ET,miss > 500GeV|ηother jets| < 3

How robust is the situation discussed in connection with ATLAS 
cuts ? Take a different set of cuts, which targets the same physics 

CMS Collaboration Journal Phys. G: Nucl. Part. Phys. 34 (2007) 995
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and are thus considerably larger than what the LO scale
variation suggests. The scale dependence of the H⊥ dis-
tribution does decrease considerably at NLO. We find
that NLO QCD effects provide a universal enhancement
of HT distribution without distorting its shape. Inter-
estingly, the cuts on jets and missing energy presented
at the beginning of this Section have a similar impact on
the (W → τ) + 3 jet background – each of the individual
cuts reduces the magnitude of (W → τ) + 3 jet by a fac-
tor between three and four, without affecting the shape
of the HT distribution [30]. NLO QCD effects therefore
are comparable to the effects of the cuts and work in the
opposite direction.

We emphasize that, had we chosen scale µ0 also in LO
computation, we would observe large positive NLO QCD
effects for H⊥ distribution, in sharp contrast with large
negative corrections for such scale choice in high-p⊥,j re-
gions, described in the previous Section (see Fig. 3). This
is not surprising since, in contrast to W + 3 jet signal
cuts, ATLAS cuts require large amount of missing en-
ergy, which forces W transverse momentum to be com-
parable or larger than transverse momenta of hard jets in
the event. Jet branching on the other hand, can occur at
lower relative transverse momenta. Taking the relative
transverse momentum as the correct scale for the strong
coupling constant, it is natural that LO cross sections
for µ = µ0 strongly underestimate the HT distribution.
This is indeed what we see when LO and NLO results
are compared.

We believe that this discussion shows explicitly how
problematic extrapolation from signal to background re-
gion can be since the NLO QCD effects for ATLAS cuts
have no relation whatsoever to the NLO QCD effects for
the total cross section. This mismatch happens because
the kinematic region selected by ATLAS cuts gives negli-
gible contribution to the total cross section. On the other
hand, it appears that one can use low HT < 1 TeV bins
for ATLAS cuts to fix background normalization since
QCD effects seem to be HT -independent and SUSY con-
tamination in low-HT bins is small.

B. CMS indirect lepton veto cut

How robust is the situation discussed in connection
with ATLAS cuts? To answer this question, we study
another example of background cuts. Those cuts are
adopted by the CMS collaboration for SUSY searches
at the LHC [31, 32]. The target signal is gluino pair
production and the final state involves jets and missing
transverse energy.

The CMS collaboration does not veto leptons directly.
Rather, cuts are designed in such a way that the contri-
bution of W +jets becomes naturally small. Such cuts are
usually referred to as indirect lepton veto cuts. We ap-
proximate the CMS indirect lepton veto cut by requiring
that there are three or more jets in the event. The miss-
ing energy in the event should be large, Emiss > 200 GeV.
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FIG. 12: Distributions in reduced transverse mass HT,24 for
W + + 3 jet events with CMS SUSY cuts that define indi-
rect lepton veto procedure as described in the text. All cuts
and parameters are described in the text. The leading color
adjustment procedure is applied.

The leading jet in the event should be very central
|ηlead jet| < 1.7 while all other jets should be in the cen-
tral region |ηother jets| < 3. Jets are defined with the
transverse momentum cut of pT,j > 30 GeV but the
transverse momentum of the leading and sub-leading jets
should be larger that 180 and 110 GeV, respectively. Lep-
tons from W decays should satisfy the same cuts as jets
but lepton transverse momentum can not be the largest
or next-to-largest in a particular event; experimentally,
this requirement is implemented by cutting on the frac-
tion of electromagnetic energy carried by a “jet”. Fi-
nally, a particular effective mass is required to be large

HT,24 =
4
∑

j=2

pT,j + Emiss > 500 GeV. To calculate the

sum in this formula one orders leptons and jets accord-
ing to their hardness, disregards the leading jet and sums
over transverse momenta of second-to-leading, third-to-
leading and fourth-to-leading particles/jets.

We show the result of our computation of the NLO
QCD corrections to the W + 3 jet cross section in case
of CMS-style cuts in Figs. 12,13, where distributions in
HT,24 and missing energy are plotted. We again use µ0,
as the factorization and renormalization scales and vary
it by a factor two up and down to estimate scale uncer-
tainties. The NLO corrections for these cuts change the
LO result by −40% to −10% depending on the scale cho-
sen in LO computations. For µ = µ0, the corrections are
about −10% and no significant changes of shape are ob-
served. In this case, the scale variation at leading order
gives a good indication of the size of NLO QCD correc-
tions.

It is striking that the magnitude of NLO QCD correc-
tions for CMS cuts is in strong contrast with the magni-
tude of NLO QCD effects for ATLAS cuts, discussed in
the previous Section. This emphasizes the dependence of
NLO QCD corrections on exact implementation of kine-
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FIG. 13: Distributions in the missing transverse energy for
W + + 3 jet events with CMS SUSY cuts that define indi-
rect lepton veto procedure as described in the text. All cuts
and parameters are described in the text. The leading color
adjustment procedure is applied.

matic cuts even if such cuts are designed to target very
similar physics beyond the Standard Model. On the other
hand, we find that shapes of basic distributions employed
in supersymmetric searches are described fairly well by
leading order computations, for both ATLAS and CMS
cuts. If one can verify that, say, low-H⊥ bins are not
contaminated by New Physics, those bins can be used to
determine the normalization of the background.

IV. CONCLUSIONS

We have discussed the NLO QCD corrections to W +3
jet production at the LHC. We found that the inclusion
of NLO QCD corrections leads to a significant reduction
in dependence of LO results on the renormalization and
factorization scales; the residual uncertainty associated
with the total cross section is ±5%. We showed that
small corrections to total cross sections do not necessar-
ily imply that corrections to differential distributions are
small and there is a high degree of non-uniformity in
these corrections across the available phase-space.

It should be stressed that the last statement depends
upon renormalization and factorization scales chosen in
leading order computations. In particular if leading order

calculations are done with the scale µ =
√

p2
T,W + m2

W

we find a large difference in shapes between LO and NLO
distributions. On the other hand, it is clear a’priori that
better results are achievable if scales are chosen based on
local probabilities for jet branching. Here we have shown
explicitly that when a local scale choice for the strong
coupling constant is employed in leading order compu-
tations, such computations reproduce shapes of various
NLO distributions quite well. Note that any leading or-
der computation matched to parton shower in the spirit
of CKKW procedure [40] does employ such local scales
and our NLO analysis therefore confirms that, as far as
shapes of various kinematic distributions are concerned,
this is a very reasonable procedure.

The production of W -bosons in association with three
jets is an important background for SUSY searches in
jets + missing energy channels. We studied NLO QCD
corrections to cuts employed by ATLAS and CMS col-
laborations for SUSY searches and found that such cor-
rections are not at all correlated with corrections to the
total cross sections. It is peculiar that the magnitude of
NLO QCD corrections to, say, effective transverse mass
distributions, is very different for ATLAS and CMS cuts
in spite of the fact that these cuts are designed to serve
the same purpose. We find large (∼ 100%) corrections
for ATLAS and small (∼ 10%) QCD corrections for CMS
cuts. We believe that this non-uniformity of corrections
and their apparent strong dependence of the experimen-
tal set-up emphasizes the need for extending NLO QCD
studies to other relevant backgrounds such as W + 4 jets
and Z + 3, 4 jets. We hope that techniques for NLO
QCD computations developed in recent years make such
computations possible.
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Primary search observables

distribution in transverse missing energy  and total effective mass HT,24

• NLO correction to cross-section small, K-factor ~ 1

• shapes of LO mostly OK, but moderate shape distortion at high HT,24 
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all this emphasized the need to extend NLO corrections to other 
processes (Z+3j, W+4j ... )
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efficient computers

hard work: several techniques developed, implemented, tested
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NLO QCD will provide solid basis for a successful program at the LHC 


