## Seeing Jets in Color Sorting Events by Color Superstructure

Jason Gallicchio

Harvard

Nov 13, 2009

### Jumping Right In

Improve search for  $H \to b\bar{b}$  associated with a Z for  $m_H \approx 120$  GeV.



Higgs Signal

bs form color singlet

### Jumping Right In

Improve search for  $H \to b\bar{b}$  associated with a Z for  $m_H \approx 120$  GeV.



Higgs Signal

bs form color singlet



 $Z + b\bar{b}$  Background

bs are color connected to beam

#### Higgs + Z

Kinematic variables to distinguish signal from background somewhat...

Good ones are  $P_T^H$ ,  $P_T^Z$ ,  $\Delta \eta_{bb}$ ,  $\Delta \phi_{bb}$ 





## For given kinematics, color structure is different











## Higgs Event Example 1



### Higgs Event Example 2



# Background Event Example 1



# Background Example 2



## Showering Same Event Millions of Times



### Showering Same Event Millions of Times



### Showering Same Event Millions of Times



Higgs:

$$\Delta \eta_{b\bar{b}} = 1$$
  
 $\Delta \phi_{b\bar{b}} = 2$ 

Add up  $E_T$  in each cell:



# Signal vs Background Accumulated $E_T$



# Probability that a GeV of $E_T$ somewhere is from Higgs





Important discrimination isn't at jet center — it's  $\Delta R \approx 0.5 - 1.5$  away.

# Probabilities for Pt Deposits



## Different Jet Separations



Given that you saw a few GeV here and there, what's the probability that the event you're looking at is Higgs?

Given that you saw a few GeV here and there, what's the probability that the event you're looking at is Higgs?

We have:  $P(GeV@(\eta, \phi) \mid \text{Higgs})$ and  $P(GeV@(\eta, \phi) \mid \text{Background})$ 

Given that you saw a few GeV here and there, what's the probability that the event you're looking at is Higgs?

```
We have: P(GeV@(\eta,\phi) \mid \text{Higgs})
and P(GeV@(\eta,\phi) \mid \text{Background})
You See: 50 GeV @ (\eta_1,\phi_1),
20 GeV @ (\eta_2,\phi_2),
...
```

Given that you saw a few GeV here and there, what's the probability that the event you're looking at is Higgs?

```
We have: P(GeV@(\eta, \phi) \mid \text{Higgs})
and P(GeV@(\eta, \phi) \mid \text{Background})
```

You See: 50 GeV @ 
$$(\eta_1, \phi_1)$$
,  
20 GeV @  $(\eta_2, \phi_2)$ ,  
...

We Want: 
$$P(\text{Higgs} \mid E_1@(\eta_1, \phi_1) \& E_2@(\eta_2, \phi_2) \& ...)$$

...

Given that you saw a few GeV here and there, what's the probability that the event you're looking at is Higgs?

```
We have: P(GeV@(\eta, \phi) \mid \text{Higgs})
and P(GeV@(\eta, \phi) \mid \text{Background})
You See: 50 GeV @ (\eta_1, \phi_1),
20 GeV @ (\eta_2, \phi_2),
```

We Want:  $P(\text{Higgs} \mid E_1@(\eta_1, \phi_1) \& E_2@(\eta_2, \phi_2) \& ...)$ assuming each GeV is independent,

...

Given that you saw a few GeV here and there, what's the probability that the event you're looking at is Higgs?

We have: 
$$P(GeV@(\eta,\phi) \mid \text{Higgs})$$
  
and  $P(GeV@(\eta,\phi) \mid \text{Background})$   
You See: 50 GeV @  $(\eta_1,\phi_1)$ ,  
20 GeV @  $(\eta_2,\phi_2)$ ,

We Want: P (Higgs |  $E_1@(\eta_1, \phi_1) \& E_2@(\eta_2, \phi_2) \& ...$ ) assuming each GeV is independent,  $= \prod_i P_{higgs}(\eta_{is} \phi_i)^{E_i/E_{event}}$ 

#### Event-By-Event Estimate



(this plot includes only events with well-separated jets)

#### Event-By-Event Estimate



(this plot includes only events with well-separated jets)

Switching to more general technique looking more locally at each jet...

### Traditional Jet Shapes



... but our jet "shapes" seem to have angular information ...

#### Jet Moment or "pull"

Add up particles or calorimeter energy deposits within a jet:



#### Jet Moment or "pull"

Add up particles or calorimeter energy deposits within a jet:



$$\vec{m} = \sum_{i} \frac{E_{T}^{i} \left| r_{i} \right| \vec{r}_{i}}{E_{T}^{jet}} \qquad \text{where} \qquad \vec{r}_{i} = (\eta_{i} - \eta_{jet}, \phi_{i} - \phi_{jet})$$

$$\vec{r}_i = (\eta_i - \eta_{jet}, \phi_i - \phi_{jet})$$

#### Jet Moment or "pull"

Add up particles or calorimeter energy deposits within a jet:



$$\vec{m} = \sum_{i} \frac{E_T^i \left| r_i \right| \vec{r}_i}{E_T^{jet}}$$
 where  $\vec{r}_i = (\eta_i - \eta_{jet}, \phi_i - \phi_{jet})$ 

- Angle of moment gives "pointing" direction of teardrop
- Length of moment gives measure of confidence
  - not used today... didn't find it helped much

### Jet Moments for one b for $\Delta \eta_{jj} = 0$ and $\Delta \phi_{jj} = 1$

Higgs Signal (Toward Other Jet)



Uncrossed Background (Toward Left Beam)



Crossed Background (Toward Right Beam)



### Jet Moments for one b for $\Delta \eta_{jj} = 0$ and $\Delta \phi_{jj} = 1$



# Moment Angles for Higgs and Background



Back-to-back Higgs & (and glue) are elliptical, not teardrop shaped.

## Moment Angles for Higgs and Background

Moment Angles for full Higgs signal /  $Z + b\bar{b}$  background :

Angle toward other b-jet:



Angle toward closest beam:



## Correlations of Moment Angle with Kinematic Variables

Angle toward other b-jet is nicely independent of kinematics:

No correlation with  $P_T$  of Higgs



No correlation with jet orientation



etc

## How Much Does This Help?



### DØ Data from hep-ex/9908017

Found relatively more radiation in jet toward and away from beam as compared to "control" sample  $W \to \ell \nu$ .

## DØ Data from hep-ex/9908017

Found relatively more radiation in jet toward and away from beam as compared to "control" sample  $W \to \ell \nu$ .

- Started with W + 1 jet events with strict location cuts
- Counted particles in 7 anular wedges around the W and the jet
- Took the ratio of each wedge



Annulus: 0.7 < R < 1.5



## LEP L3 Data from mildly boosted Ws hep-ex/0303042



# LEP L3 Data from mildly boosted Ws hep-ex/0303042



Particles as func. of rescaled angle. b) same W c) btw. different Ws

Motivation: Bias in  $m_W$  as compared to  $WW \to q\bar{q}\ell\nu$ .

Result: No significant colour reconnection between Ws.

Same for DELPHI arXiv:0704.0597



Nov 13, 2009

■ B-Tagging gives heavy-quark jets

- B-Tagging gives heavy-quark jets
- $\blacksquare$  Must know if it's a light q or g jet and know the color connection.

- B-Tagging gives heavy-quark jets
- lacktriangle Must know if it's a light q or g jet and know the color connection.
- Turn to  $t\bar{t}$  semileptonic events

# Semileptonic $t/\bar{t}$



- Look for W's lepton and missing E<sub>T</sub> and two b tags that reconstruct tt̄
- The two b jets are color-connected to the beam (like  $Z + b\bar{b}$  background earlier)
- The two light quark jets from W are color-connected to each other

# Semileptonic $t/\bar{t}$



- Look for W's lepton and missing E<sub>T</sub> and two b tags that reconstruct tt̄
- The two b jets are color-connected to the beam (like  $Z + b\bar{b}$  background earlier)
- The two light quark jets from W are color-connected to each other

Test QCD and the Monte Carlos: Given b tags and dean top sample, what do the moments look like?

# Semileptonic $t/\bar{t}$



- Look for W's lepton and missing E<sub>T</sub> and two b tags that reconstruct tt̄
- The two b jets are color-connected to the beam (like  $Z + b\bar{b}$  background earlier)
- The two light quark jets from W are color-connected to each other

Test QCD and the Monte Carlos: Given b tags and dean top sample, what do the moments look like?

#### Test the pairing technique:

Given the four jet moments, how well can we find the W color-singlet pair?

# $t\bar{t}$ Event Example 1



## $t\bar{t}$ Event Example 2



# Pairing the 4 tt Jets in 3 Ways: 2 Wrong, 1 Right



#### tt Likelihood

#### Likelihood for Angles Only



#### Likelihood for Angles, $\Delta \eta_{jj}$ , $\Delta \phi_{jj}$



### $tar{t}$ Improvements



meh ... but I didn't look to see if jets point toward the beam jet ...

- lacksquare Distinguishing between events: H+Z signal vs QCD Background
  - Global energy deposits / track momenta / particle counts in event
  - Moment "pulls" on jets: toward other jets or toward beam

- lacksquare Distinguishing between events: H+Z signal vs QCD Background
  - Global energy deposits / track momenta / particle counts in event
  - Moment "pulls" on jets: toward other jets or toward beam
- Pairing jets within an event:  $t\bar{t} \rightarrow \ell + \nu + 4$  jets

- lacksquare Distinguishing between events: H+Z signal vs QCD Background
  - Global energy deposits / track momenta / particle counts in event
  - Moment "pulls" on jets: toward other jets or toward beam
- Pairing jets within an event:  $t\bar{t} \rightarrow \ell + \nu + 4$  jets
  - $t\bar{t} \rightarrow 6$  jets,  $Ht\bar{t} \rightarrow 6$  or 8 jets, ...
  - SUSY Decay chains with colored and non-colored intermediates

- lacksquare Distinguishing between events: H+Z signal vs QCD Background
  - Global energy deposits / track momenta / particle counts in event
  - Moment "pulls" on jets: toward other jets or toward beam
- Pairing jets within an event:  $t\bar{t} \rightarrow \ell + \nu + 4$  jets
  - $t\bar{t} \rightarrow 6$  jets,  $Ht\bar{t} \rightarrow 6$  or 8 jets, ...
  - SUSY Decay chains with colored and non-colored intermediates

#### Warnings on limitations of today's talk:

- Only Pythia (but data confirmed some of its model)
  - How sensitive is this to parton shower and hadronization models?
  - How much is 1st hard emission vs soft spray?

- lacksquare Distinguishing between events: H+Z signal vs QCD Background
  - Global energy deposits / track momenta / particle counts in event
  - Moment "pulls" on jets: toward other jets or toward beam
- Pairing jets within an event:  $t\bar{t} \rightarrow \ell + \nu + 4$  jets
  - $t\bar{t} \rightarrow 6$  jets,  $Ht\bar{t} \rightarrow 6$  or 8 jets, ...
  - SUSY Decay chains with colored and non-colored intermediates

#### Warnings on limitations of today's talk:

- Only Pythia (but data confirmed some of its model)
  - How sensitive is this to parton shower and hadronization models?
  - How much is 1st hard emission vs soft spray?
- Only quark jets
  - Gluon jets have two "pulls,"
  - Will examine ellipse eccentricity and rotation...
  - ...which is also useful for back-to-back color-singlet quark jets