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Codimension 2 ADE singularities give rise to non-abelian
gauge symmetries in F-theory and type IIA string theory

IIA: Curve of ADE singularities in a Calabi-Yau threefold
F-theory: singular fibers over a surface in the threefold
base of an elliptically fibered Calabi-Yau fourfold

Gauge theory realized by stacks of D7 branes wrapping the
singular locus

Worsening of the singularities in codimension 3 gives rise
to charged matter
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IN THE CONTEXT OF THIS TALK.

In IIA, additional matter appears as four-dimensional
solitons
When we consider worldvolume theories, obtain analogous
results for enhanced gauge symmetries and matter, but
details are different
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EQUATIONS OF ADE SURFACE SINGULARITIES.

An xy + zn+1 = 0

Dn x2 + y2z + zn−1 = 0

E6 x2 + y3 + z4 = 0

E7 x2 + y3 + yz3 = 0

E8 x2 + y3 + z5 = 0
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RESOLUTIONS OF ADE SINGULARITIES.
Kähler deformations.

ADE surface singularities S can be resolved by surfaces S̃
Exceptional P1’s intersect according to the dual graph of
the corresponding Dynkin diagram with n vertices

An : • − • − · · · − • − •

•
Dn : |

• − • − · · · − • − •

•
En : |

• − • − · · · − • − • − •
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DEFORMATIONS.

The versal deformation space Res of the resolved
singularity S̃ can be identified with the root space of the
corresponding ADE root system
The versal deformation space Def of the singularity S can
be identified with the quotient of Res by the corresponding
Weyl group
References

Kas, in Global Analysis, University of Tokyo Press,
289–294.
Tyurina, Func. Anal. Appl. 4 (1970), 68–73.
K and Morrison, alg-geom/9202002
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THE An CASE.

Consider the An case xy + zn+1 = 0
The exceptional curves Ci ⊂ S̃ are parametrized by
z i/x , i = 1, . . . ,n.
Now S̃ can be deformed.
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VERSAL DEFORMATION OF S̃, THE An CASE.

Introduce deformation parameters of Res(An):
(t1, . . . , tn+1),

∑
ti = 0

Deform singularity to St : xy +
∏n+1

i=1 (z + ti) = 0
If ti = tj , then St is singular at (x , y , z) = (0,0,−ti),
generically A1.
Can blow up to resolve singularities

Sheldon Katz Gauge Theories from Geometry



Overview
Geometry of ADE singularities

Gauge Theory Description
Summary

Surface singularities
Singular curves in Calabi-Yau threefolds

VERSAL DEFORMATION OF S̃, THE An CASE.

Introduce deformation parameters of Res(An):
(t1, . . . , tn+1),

∑
ti = 0

Deform singularity to St : xy +
∏n+1

i=1 (z + ti) = 0
If ti = tj , then St is singular at (x , y , z) = (0,0,−ti),
generically A1.
Can blow up to resolve singularities

Sheldon Katz Gauge Theories from Geometry



Overview
Geometry of ADE singularities

Gauge Theory Description
Summary

Surface singularities
Singular curves in Calabi-Yau threefolds

VERSAL DEFORMATION OF S̃, THE An CASE.

Introduce deformation parameters of Res(An):
(t1, . . . , tn+1),

∑
ti = 0

Deform singularity to St : xy +
∏n+1

i=1 (z + ti) = 0
If ti = tj , then St is singular at (x , y , z) = (0,0,−ti),
generically A1.
Can blow up to resolve singularities

Sheldon Katz Gauge Theories from Geometry



Overview
Geometry of ADE singularities

Gauge Theory Description
Summary

Surface singularities
Singular curves in Calabi-Yau threefolds

VERSAL DEFORMATION OF S̃, THE An CASE.

Introduce deformation parameters of Res(An):
(t1, . . . , tn+1),

∑
ti = 0

Deform singularity to St : xy +
∏n+1

i=1 (z + ti) = 0
If ti = tj , then St is singular at (x , y , z) = (0,0,−ti),
generically A1.
Can blow up to resolve singularities

Sheldon Katz Gauge Theories from Geometry



Overview
Geometry of ADE singularities

Gauge Theory Description
Summary

Surface singularities
Singular curves in Calabi-Yau threefolds

THE An ROOT SYSTEM.

An Cartan subalgebra h = {(t1, . . . , tn+1) |
∑

ti = 0}
Roots in h∗: e∗i − e∗j for i 6= j

This root is orthogonal to the hyperplane ti = tj in h.

Positive simple roots vi = e∗i − e∗i+1.
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DEFORMATIONS OF S̃, An CASE.

Over ti = ti+1 (the hyperplane orthogonal to vi ), the
deformed Ci is parametrized by
(z + t1)(z + t2) · · · (z + ti)/x .
Over ti = tj (the hyperplane orthogonal to vi + . . .+ vj−1),
the curve Ci + Ci+1 + . . .+ Cj−1 deforms

Sheldon Katz Gauge Theories from Geometry



Overview
Geometry of ADE singularities

Gauge Theory Description
Summary

Surface singularities
Singular curves in Calabi-Yau threefolds

DEFORMATIONS OF S̃, An CASE.

Over ti = ti+1 (the hyperplane orthogonal to vi ), the
deformed Ci is parametrized by
(z + t1)(z + t2) · · · (z + ti)/x .
Over ti = tj (the hyperplane orthogonal to vi + . . .+ vj−1),
the curve Ci + Ci+1 + . . .+ Cj−1 deforms

Sheldon Katz Gauge Theories from Geometry



Overview
Geometry of ADE singularities

Gauge Theory Description
Summary

Surface singularities
Singular curves in Calabi-Yau threefolds

VERSAL DEFORMATION OF S, THE An CASE.

Rewrite St as xy + zn+1 +
∑n+1

i=2 σizn+1−i

The σi are the elementary symmetric functions of the
t1, . . . , tn+1.
(σ2, . . . , σn+1) are coordinates on Def(An)

Def(An) is the quotient of Res(An) by the Weyl group Sn+1
of An; parametrizes deformations of S.
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GENERAL ADE SURFACE SINGULARITIES.

Positive simple roots correspond to components of
exceptional curves in S̃
Positive roots correspond to exceptional divisors (not
necessarily irreducible) in S̃
The complex structure deformation space Res of the
resolved ADE is parametrized by the root space of the
corresponding root system

Exceptional divisors persist over the hyperplane orthogonal
to the corresponding root

The deformation space Def of the singularity is
parametrized by the quotient of Res by the corresponding
Weyl group

Singularities persist over the hypersurfaces covered by the
above hyperplanes
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THE LOCAL An CASE.

Fiber the ADE geometry over a smooth curve B of genus g
xy +zn+1 = 0, x ∈ L, y ∈ K n+1

B ⊗L⊗−1, z ∈ KB

Singularity can be resolved by n exceptional divisors Ei ,
each fibered over B by curves Ci

Can deform this threefold before or after the resolution of
singularities
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DEFORMATIONS OF LOCAL An.

xy + zn+1 +
∑n+1

i=2 σizn+1−i = 0, σi ∈ H0(B,K⊗i
B )

deforms the threefold
Number of parameters∑n−1

i=2 (2i − 1)(g − 1) = (n2 − 1)(g − 1)

When the deformation is of the form
xy +

∏n+1
i=1 (z + ωi) = 0, ωi ∈ H0(B,KB), the

deformation can be resolved to become a deformation of
the resolved geometry

Unlike the surface case, the existence of a factorization is
not generic — only ng parameters.
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GLOBAL CASE.

Can have compact models of Calabi-Yau threefold X
containing a curve B of ADE singularities
Many global examples arise as Calabi-Yau hypersurfaces
in singular toric varieties (e.g. weighted projective spaces).
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GAUGE SYMMETRIES AND MATTER IN IIA STRING
THEORY.

Compactification of IIA on Calabi-Yau threefold X yields
N = 2 theory in 4 dimensions
Kähler moduli of X contained in vector multiplets

Effective U(1)h1,1(X) gauge theory at generic points of
Kähler moduli
U(1) factors associated with elements D ∈ H2(X ,Z)

Complex structure moduli of X contained in neutral
hypermultiplets
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MATTER ASSOCIATED WITH CONTRACTING
CURVES.

D2-branes wrapping holomorphic curves C appear as
solitons in 4d, part of charges given by intersections D · C

Hypermultiplets become massless when area of C goes to
zero

U(1)n factor associated with exceptional divisors of
resolution of ADE singularity at generic points in moduli
D2-branes wrapping fibers Ci charged under U(1)n,
parametrized by curve B.

Effectively a twisted gauge theory on B × R4

Even cohomology of B gives vectors in 4d
Odd cohomology of B gives hypermultiplets in 4d
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MULTIPLET STRUCTURE OF THE MATTER.

The U(1)n gauge factor is enhanced to the full ADE group.
The n vectors associated with the Kähler moduli of the
exceptional divisors combine with the vectors associated
with the branes (corresponding to the nontrivial roots) to
realize a non-abelian gauge theory with the corresponding
ADE group.

The effective theory contains g adjoint hypermultiplets
The ng hypermultiplets corresponding to the complex
moduli of the resolution combine with the hypermultiplets
associated with the branes (corresponding to the nontrivial
roots) to form g adjoint hypermultiplets.

Reference: K, Morrison, Plesser, hep-th/9601108
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EFFECTIVE THEORY.

Rewrite in N = 1 superfield notation
N = 2 vector is an N = 1 vector and an N = 1 chiral

Va adjoint vector, field strength W a
α

Adjoint chiral Φa

Each of the g N = 2 hypermultiplets is a pair of N = 1
chirals

Adjoint chirals M i
a and M̃ i

a, 1 ≤ i ≤ g
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EFFECTIVE LAGRANGIAN.

The effective Lagrangian is

L = Im
[

Tr
∫

d4θ
(

M†i eV M i + M̃†ieV M̃i + Φ†eV Φ
)

+
τ

2

∫
d2θTrW 2 + i

∫
d2θW

]
whereW = TrM̃ i [Φ,Mi ] is the superpotential
the scalar potential is

Tr
[
[mi ,m†i ]2 + [m̃i , m̃†i ]2 + [φ, φ†]2

+2
(

[m†i , φ][φ†,mi ] + [m̃†i , φ][φ†, m̃i ] + [mi , m̃i ][m̃†j ,m
†j ]
)]

Each summand is of the form TrAA†, so each vanishes
separately as the condition for a supersymmetric vacuum
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COULOMB AND HIGGS BRANCHES.

V = Tr
[
[mi ,m†i ]2 + [m̃i , m̃†i ]2 + [φ, φ†]2

+2
(

[m†i , φ][φ†,mi ] + [m̃†i , φ][φ†, m̃i ] + [mi , m̃i ][m̃†j ,m
†j ]
)]

Generic vev φ gives the Coulomb branch
[φ, φ†] = 0 implies φ = diag(φ1, . . . , φn+1) up to gauge,∑
φi = 0

These vevs are only well defined up to the Weyl group
Gauge symmetry spontaneously broken to U(1)n

Generic vevs mi , m̃i give the Higgs branch
Requires φ = 0, gauge group completely broken
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DETECTING THE GAUGE THEORY IN THE
GEOMETRY.

A suggestive way to parametrize g adjoint hypermultiplets
in the An case is as a traceless n× n matrix of holomorphic
1-forms on B, up to conjugation by a scalar matrix.
In this case, the singularity can be deformed by the
equation xy + det(zIn + A) = 0.
The resulting number of deformation parameters
(n2 − 1)(g − 1) is as it must be from Higgsing g adjoints.
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Outline

1 Overview

2 Geometry of ADE singularities
Surface singularities
Singular curves in Calabi-Yau threefolds

3 Gauge Theory Description
Enhanced Gauge Symmetries
Adjoint Breaking
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MATTER FROM GEOMETRY.

Additional charged matter localizes at points of B where
ADE singularity gets worse
Matter arises from adjoint breaking mechanism
G→ H × U(1) K and Vafa hep-th/96006086

Remark: The terminology refers to the breaking of a 6d
gauge symmetry. In 4d, this turns into the decomposition of
hypermultiplets in the adjoint representation of the larger 6d
gauge group into irreducible representations of the 4d
gauge group. There is no broken gauge symmetry in 4d.
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ADJOINT BREAKING.

Suppose singularity gets worse over t = 0 ∈ B,
corresponding to gauge group G in 6d.
D-branes wrap cycles corresponding to roots of G
As we move away from t = 0 some of the 2-cycles pick up
a mass and the wave functions of the 2-branes are
concentrated near t = 0. This breaks the gauge group to
H ⊂ G corresponding to the generic singularity type.

In F-theory, the open strings correspondingly pick up a
mass for t 6= 0

t is identified with a vev in a U(1) ⊂ G. The broken part of
the adjoint of G survives in hypermultiplets charged under
H, the commutant of U(1)
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As we move away from t = 0 some of the 2-cycles pick up
a mass and the wave functions of the 2-branes are
concentrated near t = 0. This breaks the gauge group to
H ⊂ G corresponding to the generic singularity type.

In F-theory, the open strings correspondingly pick up a
mass for t 6= 0

t is identified with a vev in a U(1) ⊂ G. The broken part of
the adjoint of G survives in hypermultiplets charged under
H, the commutant of U(1)
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SU(6)→ SU(5).

Identify t with a SU(6) Cartan generator: (t , t , t , t , t ,−5t)
xy + (z + t)5(z − 5t) = 0 has generic SU(5) enhanced to
SU(6) at t = 0
Unbroken SU(5)

Roots e∗i − e∗j , 1 ≤ i , j ≤ 5; ±(e∗i − e∗6)

The former move over B and fill out the SU(5) vector, the
latter fill out hypermultiplet matter in the 5 and 5 of SU(5)

35→ 24 + 5 + 5 + 1
Localized matter in 5 and 5 of SU(5)
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SO(10)→ SU(5)

Identify t with SO(10) Cartan generator (t , t , t , t , t)
Unbroken SU(5)

Roots e∗i − e∗j , ±(e∗i + e∗j )

The former move over B and fill out the SU(5) vector, the
latter fill out hypermultiplet matter in the 10 and 10 of
SU(5)

45→ 24 + 10 + 10 + 1
Localized matter in 10 and 10 of SU(5)
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D5 → A4 GEOMETRY.

x2 + y2z + ((z + t2)5 − t10)/z) + 2t5y = 0
Singular at (x , y , z) = (0, t3,−t2)

D5 for t = 0
Near z = −t2, this equation has leading behavior
x2 − t2(y − t3)2 − (z+t2)5

t2 = 0 so A4 for t 6= 0.
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Summary

Codimension 2 ADE singularities give nonabelian gauge
symmetries
Worsening of the singularities in codimension 3 gives
localized charged matter
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