On toric Weierstrass models: Work in progress

Antonella Grassi, Vittorio Perduca

University of Pennsylvania

January 6 2010

Antonella Grassi, Vittorio Perduca (University

On Weierstrass models

January 6 2010 1 / 30

< ロ > < 同 > < 三 > < 三 >

3

<ロ> (日) (日) (日) (日) (日)

and hypersurfaces in toric Fano varieties.

< ロ > < 同 > < 三 > < 三 >

and hypersurfaces in toric Fano varieties.

< ロ > < 同 > < 三 > < 三 >

and hypersurfaces in toric Fano varieties.

Assume: elliptic fibration is induced by the toric structure.

3

(日) (同) (三) (三)

and hypersurfaces in toric Fano varieties.

Assume: elliptic fibration is induced by the toric structure.

Want: dictionary between

algebraic geometry \longleftrightarrow combinatorics property of polytopes.

< ロ > < 同 > < 三 > < 三 >

and hypersurfaces in toric Fano varieties.

Assume: elliptic fibration is induced by the toric structure.

Want: dictionary between

algebraic geometry \longleftrightarrow combinatorics property of polytopes.

For example: we look at

< ロ > < 同 > < 三 > < 三 >

and hypersurfaces in toric Fano varieties.

Assume: elliptic fibration is induced by the toric structure.

Want: dictionary between

algebraic geometry \longleftrightarrow combinatorics property of polytopes.

For example: we look at (Toric) sections of the fibrations \leftrightarrow ??

and hypersurfaces in toric Fano varieties.

Assume: elliptic fibration is induced by the toric structure.

Want: dictionary between

algebraic geometry \longleftrightarrow combinatorics property of polytopes.

For example: we look at (Toric) sections of the fibrations \leftrightarrow ?? Is there a *toric* Weierstrass model? \leftarrow ??

and hypersurfaces in toric Fano varieties.

Assume: elliptic fibration is induced by the toric structure.

Want: dictionary between

algebraic geometry \longleftrightarrow combinatorics property of polytopes.

For example: we look at (Toric) sections of the fibrations \leftrightarrow ?? Is there a *toric* Weierstrass model? \leftrightarrow ?? Mordell-Weil group of sections \leftrightarrow ??

and hypersurfaces in toric Fano varieties.

Assume: elliptic fibration is induced by the toric structure.

Want: dictionary between

algebraic geometry \longleftrightarrow combinatorics property of polytopes.

For example: we look at (Toric) sections of the fibrations \leftrightarrow ?? Is there a *toric* Weierstrass model? \leftrightarrow ?? Mordell-Weil group of sections \leftrightarrow ?? Investigate F-theory set up in this context.

and hypersurfaces in toric Fano varieties.

Assume: elliptic fibration is induced by the toric structure.

Want: dictionary between

algebraic geometry \longleftrightarrow combinatorics property of polytopes.

For example: we look at (Toric) sections of the fibrations \leftrightarrow ?? Is there a *toric* Weierstrass model? \leftrightarrow ?? Mordell-Weil group of sections \leftrightarrow ?? Investigate F-theory set up in this context.

Credits: We used the computer program Sage to first test our conjectures.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

1 Toric Geometry

- Calabi-Yau, Elliptic Fibration
- Calabi Yau as hypersurfaces in toric varieties
- Elliptically fibered Calabi Yau
 K3 toric elliptic

3 Toric Weierstrass models

- Review: Weierstrass models
- Toric Weierstrass model
- Semistable polytopes
- Sections
- Applications

Toric geometry

Toric varieties (projective):

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Toric geometry

Toric varieties (*projective*): defined by fans and/or polytopes.

Toric varieties (projective): defined by fans and/or polytopes.

From fans, via homogeneous coordinates To every fan Σ in $N \simeq \mathbb{Z}^n$, a lattice, one associates X_{Σ} of dimension n

(日) (同) (三) (三)

(日) (四) (三) (三) (三)

Antonella Grassi, Vittorio Perduca (University

イロン イヨン イヨン イヨン

Example ₽2 • $(v_x, v_y, v_z) \leftrightarrow (x, y, z)$ "homogeneous coordinates" Define: V_V $X_{\Sigma} := \mathbb{C}^3 - Z_{\Sigma} / \sim$ V_X with $Z_{\Sigma} = \{\mathbf{0}\}$ and quotient action: $(x, y, z) \sim (\lambda^{q_x} x, \lambda^{q_y} y, \lambda^{q_z} z) = (\lambda x, \lambda y, \lambda z),$ Vwith $\lambda \in \mathbb{C}^* = G \subset (\mathbb{C}^*)^2$

イロト イロト イヨト ・ヨ

Calabi-Yau, Elliptic Fibration

V is a <u>Calabi-Yau variety</u> if $K_V \sim \mathcal{O}(V)$, $h^i(\mathcal{O}(V)) = 0$, 0 < i < dimV. dimV = 1, V: is an elliptic curve, T^2 , cubic in \mathbb{P}^2 . dimV = 2, V: is a K3 surface, e, g, quartic in \mathbb{P}^3 $\pi_V : V \to B_V$ is an <u>elliptic fibration with section</u> $\leftrightarrow \pi_V^{-1}(p)$ is a elliptic curve with a marked point.

Toric divisors

Fact

Rays $\Sigma \iff (\mathbb{C}^*)^n$ -invariant irreducible hypersurfaces (divisors) of X_{Σ} . These are the toric divisors

< ロ > < 同 > < 三 > < 三 >

Toric divisors

Fact

Rays $\Sigma \iff (\mathbb{C}^*)^n$ -invariant irreducible hypersurfaces (divisors) of X_{Σ} . These are the toric divisors

Example

 $-K_{X_{\Sigma}} = \sum D_i$, D_i invariant toric divisors.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Calabi Yau as hypersurfaces in Fano toric varieties Let X_{Σ} be a toric variety

▶ (Batyrev et al.) $V \subset X_{\Sigma}$ is a Calabi-Yau variety \iff

(日) (同) (三) (三)

- Let X_{Σ} be a toric variety
 - ▶ (Batyrev et al.) $V \subset X_{\Sigma}$ is a Calabi-Yau variety \iff
 - ► the polytope $\Delta \subset M \stackrel{\text{def.}}{=} N^{\vee} \subset \mathbb{Z}^n$ associated to $(X_{\Sigma}, \mathcal{L}_{\Delta} = -K_{X_{\Sigma}})$ is reflexive, \iff

- Let X_{Σ} be a toric variety
 - ▶ (Batyrev et al.) $V \subset X_{\Sigma}$ is a Calabi-Yau variety \iff
 - ► the polytope $\Delta \subset M \stackrel{\text{def.}}{=} N^{\vee} \subset \mathbb{Z}^n$ associated to $(X_{\Sigma}, \mathcal{L}_{\Delta} = -K_{X_{\Sigma}})$ is reflexive, \iff
 - ► the codim 1 faces are defined by equations = -1, and 0 is the only lattice point in the interior of Δ.

- Let X_{Σ} be a toric variety
 - ▶ (Batyrev et al.) $V \subset X_{\Sigma}$ is a Calabi-Yau variety \iff
 - the polytope Δ ⊂ M ^{def.} N[∨] ⊂ Zⁿ associated to (X_Σ, L_Δ = −K_{XΣ}) is reflexive, ⇐⇒
 - ► the codim 1 faces are defined by equations = -1, and 0 is the only lattice point in the interior of Δ.

• If Δ is reflexive

Let X_{Σ} be a toric variety

- ▶ (Batyrev et al.) $V \subset X_{\Sigma}$ is a Calabi-Yau variety \iff
- ► the polytope $\Delta \subset M \stackrel{\text{def.}}{=} N^{\vee} \subset \mathbb{Z}^n$ associated to $(X_{\Sigma}, \mathcal{L}_{\Delta} = -K_{X_{\Sigma}})$ is reflexive, \iff
- ► the codim 1 faces are defined by equations = -1, and 0 is the only lattice point in the interior of Δ.
- If Δ is reflexive
- $\Delta \leftrightarrow (\mathbb{P}_{\Delta}, \mathcal{L}_{\Delta})$, where $\mathbb{P}_{\Delta} := X_{\Sigma}$ is a toric variety over the fan Σ on the faces of ∇ , and

$$X_{\Sigma} \hookrightarrow \mathbb{P}^k$$
, where $|\Delta \cap M| = k+1$

Let X_{Σ} be a toric variety

- ▶ (Batyrev et al.) $V \subset X_{\Sigma}$ is a Calabi-Yau variety \iff
- ► the polytope $\Delta \subset M \stackrel{\text{def.}}{=} N^{\vee} \subset \mathbb{Z}^n$ associated to $(X_{\Sigma}, \mathcal{L}_{\Delta} = -K_{X_{\Sigma}})$ is reflexive, \iff
- ► the codim 1 faces are defined by equations = -1, and 0 is the only lattice point in the interior of Δ.
- If Δ is reflexive
- $\Delta \leftrightarrow (\mathbb{P}_{\Delta}, \mathcal{L}_{\Delta})$, where $\mathbb{P}_{\Delta} := X_{\Sigma}$ is a toric variety over the fan Σ on the faces of ∇ , and

 $X_{\Sigma} \hookrightarrow \mathbb{P}^k$, where $|\Delta \cap M| = k + 1$

 V ∈ |L| is a hypersurface in X_Σ; get explicit equation from Δ, homogeneous coordinates:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQの

- Let X_{Σ} be a toric variety
 - ▶ (Batyrev et al.) $V \subset X_{\Sigma}$ is a Calabi-Yau variety \iff
 - ► the polytope $\Delta \subset M \stackrel{\text{def.}}{=} N^{\vee} \subset \mathbb{Z}^n$ associated to $(X_{\Sigma}, \mathcal{L}_{\Delta} = -K_{X_{\Sigma}})$ is reflexive, \iff
 - ► the codim 1 faces are defined by equations = -1, and 0 is the only lattice point in the interior of Δ.
 - If Δ is reflexive
 - $\Delta \leftrightarrow (\mathbb{P}_{\Delta}, \mathcal{L}_{\Delta})$, where $\mathbb{P}_{\Delta} := X_{\Sigma}$ is a toric variety over the fan Σ on the faces of ∇ , and

 $X_{\Sigma} \hookrightarrow \mathbb{P}^k$, where $|\Delta \cap M| = k + 1$

 V ∈ |L| is a hypersurface in X_Σ; get explicit equation from Δ, homogeneous coordinates:
 If z₁,..., z_N are the homogeneous coordinates, L_Δ is generated by {z₁^{⟨v₁,ω⟩+1}z₂^{⟨v₂,ω⟩+1} · · z_N^{⟨v_N,ω⟩+1}}, ∀ω ∈ Δ ∩ M

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ● ● ● ●

Example $(\mathbb{P}^2, 3H = -K_{\mathbb{P}^2})$, 3H gives a generic cubic V in $\mathbb{P}^2 \iff \Delta$.

3

 $\mathbb{P}^2_{[x,y,z]}$

 $(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(3))$

イロト イ押ト イヨト イヨト

Fact: ∇ reflexive $\iff \Delta$ reflexive.

 $(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(3))$

Fact: ∇ reflexive $\iff \Delta$ reflexive. Note: $D_x + D_y + D_z = -K_{\mathbb{P}^2}$, V elliptic curve, Calabi Yau

Antonella Grassi, Vittorio Perduca (University

 $\mathbb{P}^2_{[x,y,z]}$

On Weierstrass models

Toric fibrations

A toric fibration $X_{\Sigma}^1 :\to X_{\Sigma}^2$, is a morphism between toric varieties which sends fans into fans.

< ロ > < 同 > < 三 > < 三 >
Toric fibrations

A toric fibration $X_{\Sigma}^1 :\to X_{\Sigma}^2$, is a morphism between toric varieties which sends fans into fans.

Example

$$\pi: \mathbb{P}^1 \times \mathbb{P}^1_{[z_1, z_2, z_3, z_4]} \to \mathbb{P}^1_{[z_3, z_4]},$$

fiber: $X_{\nabla_f} = \mathbb{P}^1_{[z_1, z_2]}.$

 $\nabla \subset \mathit{N}_{\mathbb{R}}$

▶ If there exists a toric fibration, say $X_{\Sigma} \rightarrow B$, with fiber $f_{\Sigma'}$, toric

3

イロト イヨト イヨト イヨト

- ▶ If there exists a toric fibration, say $X_{\Sigma} \rightarrow B$, with fiber $f_{\Sigma'}$, toric
- and $V \subset X_{\Sigma}$ is generic,

- 31

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- ▶ If there exists a toric fibration, say $X_{\Sigma} \rightarrow B$, with fiber $f_{\Sigma'}$, toric
- and $V \subset X_{\Sigma}$ is generic,
- ▶ then there exists an induced fibration $V \rightarrow B$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- ▶ If there exists a toric fibration, say $X_{\Sigma} \to B$, with fiber $f_{\Sigma'}$, toric
- and $V \subset X_{\Sigma}$ is generic,
- then there exists an induced fibration $V \rightarrow B$.
- In the previous example: X_Σ = P¹ × P¹ → P¹ = B,
 X_Σ ∈ L = O(-2, -2) is an elliptic curve (1-dim Calabi-Yau)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

- ▶ If there exists a toric fibration, say $X_{\Sigma} \to B$, with fiber $f_{\Sigma'}$, toric
- and $V \subset X_{\Sigma}$ is generic,
- then there exists an induced fibration $V \rightarrow B$.
- In the previous example: X_Σ = P¹ × P¹ → P¹ = B,
 X_Σ ∈ L = O(-2, -2) is an elliptic curve (1-dim Calabi-Yau)
- $X \to \mathbb{P}^1$ is fibered by two points. Two points in \mathbb{P}^1 are a 0-dim Calabi-Yau.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらで

Assume:

► n = 3. $\Delta \subset M_{\mathbb{R}}$ reflexive, Σ fan on $\nabla \subset N_{\mathbb{R}}$; $V \in |-K_{X_{\Sigma}}|$ K3 generic in X_{Σ} , Fano;

3

Assume:

- n = 3. Δ ⊂ M_ℝ reflexive, Σ fan on ∇ ⊂ N_ℝ;
 V ∈ | − K_{XΣ} | K3 generic in X_Σ, Fano;
- $X_{\Sigma} \to \mathbb{P}^1$, toric such that general fiber $f_{\Sigma'}$ is also Fano.

- 32

Assume:

- ► n = 3. $\Delta \subset M_{\mathbb{R}}$ reflexive, Σ fan on $\nabla \subset N_{\mathbb{R}}$; $V \in |-K_{X_{\Sigma}}|$ K3 generic in X_{Σ} , Fano;
- $X_{\Sigma} \to \mathbb{P}^1$, toric such that general fiber $f_{\Sigma'}$ is also Fano.
- ► Then:

- 32

(日) (同) (三) (三)

Assume:

- ► n = 3. $\Delta \subset M_{\mathbb{R}}$ reflexive, Σ fan on $\nabla \subset N_{\mathbb{R}}$; $V \in |-K_{X_{\Sigma}}|$ K3 generic in X_{Σ} , Fano;
- $X_{\Sigma} \to \mathbb{P}^1$, toric such that general fiber $f_{\Sigma'}$ is also Fano.
- ► Then:
- $\blacktriangleright \longleftrightarrow \text{ reflexive two-dim polytope } \nabla_f \subset \nabla,$

(日)

Assume:

- ► n = 3. $\Delta \subset M_{\mathbb{R}}$ reflexive, Σ fan on $\nabla \subset N_{\mathbb{R}}$; $V \in |-K_{X_{\Sigma}}|$ K3 generic in X_{Σ} , Fano;
- $X_{\Sigma} \to \mathbb{P}^1$, toric such that general fiber $f_{\Sigma'}$ is also Fano.
- ► Then:
- \longleftrightarrow reflexive two-dim polytope $\nabla_f \subset \nabla_f$,
- $E \in |-K_{f_{\Sigma'}}|$ is a generic elliptic curve in $f_{\Sigma'}$,

Assume:

- ► n = 3. $\Delta \subset M_{\mathbb{R}}$ reflexive, Σ fan on $\nabla \subset N_{\mathbb{R}}$; $V \in |-K_{X_{\Sigma}}|$ K3 generic in X_{Σ} , Fano;
- $X_{\Sigma} \to \mathbb{P}^1$, toric such that general fiber $f_{\Sigma'}$ is also Fano.
- ► Then:
- \longleftrightarrow reflexive two-dim polytope $\nabla_f \subset \nabla_f$,
- $E \in |-K_{f_{\Sigma'}}|$ is a generic elliptic curve in $f_{\Sigma'}$,
- $\pi: V \to \mathbb{P}^1$, is an elliptic fibred K3.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらで

◆□→ ◆圖→ ◆理→ ◆理→ 「理」

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assume there is a section $\sigma : \mathbb{P}^1 \to V$ of $\pi : V \to \mathbb{P}^1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Assume there is a section $\sigma : \mathbb{P}^1 \to V$ of $\pi : V \to \mathbb{P}^1$ induced by a toric section $\mathbb{P}^1 \to X_{\Sigma}$ of $X_{\Sigma} \to \mathbb{P}^1$.

Assume there is a section $\sigma : \mathbb{P}^1 \to V$ of $\pi : V \to \mathbb{P}^1$ induced by a toric section $\mathbb{P}^1 \to X_{\Sigma}$ of $X_{\Sigma} \to \mathbb{P}^1$.

We show:

Assume there is a section $\sigma : \mathbb{P}^1 \to V$ of $\pi : V \to \mathbb{P}^1$ induced by a toric section $\mathbb{P}^1 \to X_{\Sigma}$ of $X_{\Sigma} \to \mathbb{P}^1$.

We show:

Under some conditions there exists a Weierstrass model *adapted* to the toric environment.

Assume there is a section $\sigma : \mathbb{P}^1 \to V$ of $\pi : V \to \mathbb{P}^1$ induced by a toric section $\mathbb{P}^1 \to X_{\Sigma}$ of $X_{\Sigma} \to \mathbb{P}^1$.

We show:

Under some conditions there exists a Weierstrass model *adapted* to the toric environment.

We will call this the Weierstrass toric model.

Assume there is a section $\sigma : \mathbb{P}^1 \to V$ of $\pi : V \to \mathbb{P}^1$ induced by a toric section $\mathbb{P}^1 \to X_{\Sigma}$ of $X_{\Sigma} \to \mathbb{P}^1$.

We show:

Under some conditions there exists a Weierstrass model *adapted* to the toric environment.

We will call this the Weierstrass toric model.

We describe the combinatorial properties of $\nabla,\,\Delta$ which characterize the Weierstrass toric models.

Review: Weierstrass models

Goal: suitably generalize the 1-dimensional case: torus $E = \mathbb{C}/\mathbb{Z}^2 \hookrightarrow \mathbb{C}^2$: as $y^2 = x^3 + ax + b$, $a, b, \in \mathbb{C}$,

3

Review: Weierstrass models

Goal: suitably generalize the 1-dimensional case: torus $E = \mathbb{C}/\mathbb{Z}^2 \hookrightarrow \mathbb{C}^2$: as $y^2 = x^3 + ax + b$, $a, b, \in \mathbb{C}$, *Weierstrass model* of *E*.

(日)

Review: Weierstrass models

Goal: suitably generalize the 1-dimensional case: torus $E = \mathbb{C}/\mathbb{Z}^2 \hookrightarrow \mathbb{C}^2$: as $y^2 = x^3 + ax + b$, $a, b, \in \mathbb{C}$, *Weierstrass model* of *E*.

Know (Nakayama): Given $\pi: X \to B$, *elliptic*, with section $\sigma: B \to X$, the Weierstrass model $\pi_W: W \to B$ is birational to X:

Nakayama: $W \hookrightarrow \mathbf{P} = \mathbb{P}(\mathcal{O}_B \oplus \mathcal{L}^2 \oplus \mathcal{L}^3)$, where $\mathcal{L} \simeq p_* \mathcal{O}_T(T)$. If X is a K3 surface, $B \simeq \mathbb{P}^1$, and $\mathcal{L} \simeq \mathcal{O}_{\mathbb{P}^1}(-2)$:

Weierstrass model: $W \hookrightarrow \mathbf{P} = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-4) \oplus \mathcal{O}_{\mathbb{P}^1}(-6)).$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ● ① ○ ○ ○

Nakayama: $W \hookrightarrow \mathbf{P} = \mathbb{P}(\mathcal{O}_B \oplus \mathcal{L}^2 \oplus \mathcal{L}^3)$, where $\mathcal{L} \simeq p_* \mathcal{O}_T(T)$. If X is a K3 surface, $B \simeq \mathbb{P}^1$, and $\mathcal{L} \simeq \mathcal{O}_{\mathbb{P}^1}(-2)$:

Weierstrass model: $W \hookrightarrow \mathbf{P} = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-4) \oplus \mathcal{O}_{\mathbb{P}^1}(-6)).$

W is described by the equation $y^2 = x^3 + ax + b$, a(s, t) b(s, t) homogeneous, deg = 8, 12.

Nakayama: $W \hookrightarrow \mathbf{P} = \mathbb{P}(\mathcal{O}_B \oplus \mathcal{L}^2 \oplus \mathcal{L}^3)$, where $\mathcal{L} \simeq p_*\mathcal{O}_T(T)$. If X is a K3 surface, $B \simeq \mathbb{P}^1$, and $\mathcal{L} \simeq \mathcal{O}_{\mathbb{P}^1}(-2)$: Weierstrass model: $W \hookrightarrow \mathbf{P} = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-4) \oplus \mathcal{O}_{\mathbb{P}^1}(-6))$. W is described by the equation $y^2 = x^3 + ax + b$, $a(s, t) \ b(s, t)$ homogeneous, deg = 8, 12.

In general:

In affine coordinates $(*)y^2 = x^3 + a(s)x + b(s)$, a, b functions on B;

Nakayama: $W \hookrightarrow \mathbf{P} = \mathbb{P}(\mathcal{O}_B \oplus \mathcal{L}^2 \oplus \mathcal{L}^3)$, where $\mathcal{L} \simeq p_*\mathcal{O}_T(T)$. If X is a K3 surface, $B \simeq \mathbb{P}^1$, and $\mathcal{L} \simeq \mathcal{O}_{\mathbb{P}^1}(-2)$: Weierstrass model: $W \hookrightarrow \mathbf{P} = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-4) \oplus \mathcal{O}_{\mathbb{P}^1}(-6))$.

W is described by the equation $y^2 = x^3 + ax + b$, a(s, t) b(s, t) homogeneous, deg = 8, 12.

In general:

In affine coordinates $(*)y^2 = x^3 + a(s)x + b(s)$, a, b functions on B; Fix $P \in B$: (*) is a the Weierstrass equation of the elliptic curve (fiber).

Nakayama: $W \hookrightarrow \mathbf{P} = \mathbb{P}(\mathcal{O}_B \oplus \mathcal{L}^2 \oplus \mathcal{L}^3)$, where $\mathcal{L} \simeq p_*\mathcal{O}_T(T)$. If X is a K3 surface, $B \simeq \mathbb{P}^1$, and $\mathcal{L} \simeq \mathcal{O}_{\mathbb{P}^1}(-2)$: Weierstrass model: $W \hookrightarrow \mathbf{P} = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-4) \oplus \mathcal{O}_{\mathbb{P}^1}(-6))$.

W is described by the equation $y^2 = x^3 + ax + b$, a(s, t) b(s, t) homogeneous, deg = 8, 12.

In general:

In affine coordinates $(*)y^2 = x^3 + a(s)x + b(s)$, *a*, *b* functions on *B*; Fix $P \in B$: (*) is a the Weierstrass equation of the elliptic curve (fiber).

Problem: $W \subset \mathbf{P}$, \mathbf{P} toric, but not Fano;

Nakayama: $W \hookrightarrow \mathbf{P} = \mathbb{P}(\mathcal{O}_B \oplus \mathcal{L}^2 \oplus \mathcal{L}^3)$, where $\mathcal{L} \simeq p_*\mathcal{O}_T(T)$. If X is a K3 surface, $B \simeq \mathbb{P}^1$, and $\mathcal{L} \simeq \mathcal{O}_{\mathbb{P}^1}(-2)$:

Weierstrass model: $W \hookrightarrow \mathbf{P} = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-4) \oplus \mathcal{O}_{\mathbb{P}^1}(-6)).$

W is described by the equation $y^2 = x^3 + ax + b$, a(s, t) b(s, t) homogeneous, deg = 8, 12.

In general:

In affine coordinates $(*)y^2 = x^3 + a(s)x + b(s)$, *a*, *b* functions on *B*; Fix $P \in B$: (*) is a the Weierstrass equation of the elliptic curve (fiber).

Problem: $W \subset \mathbf{P}$, \mathbf{P} toric, but not Fano;

But: in the toric context, X_{Σ} , E already come with equations.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Nakayama: $W \hookrightarrow \mathbf{P} = \mathbb{P}(\mathcal{O}_B \oplus \mathcal{L}^2 \oplus \mathcal{L}^3)$, where $\mathcal{L} \simeq p_* \mathcal{O}_T(T)$. If X is a K3 surface, $B \simeq \mathbb{P}^1$, and $\mathcal{L} \simeq \mathcal{O}_{\mathbb{P}^1}(-2)$:

Weierstrass model: $W \hookrightarrow \mathbf{P} = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-4) \oplus \mathcal{O}_{\mathbb{P}^1}(-6)).$

W is described by the equation $y^2 = x^3 + ax + b$, a(s, t) b(s, t) homogeneous, deg = 8, 12.

In general:

In affine coordinates $(*)y^2 = x^3 + a(s)x + b(s)$, *a*, *b* functions on *B*; Fix $P \in B$: (*) is a the Weierstrass equation of the elliptic curve (fiber).

Problem: $W \subset \mathbf{P}$, \mathbf{P} toric, but not Fano;

But: in the toric context, X_{Σ} , E already come with equations.

Let us see some examples:

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

1.

1.

After acting with the toric automorphims:

1.

After acting with the toric automorphims: Equation: $y^2 = x^3 + a(s, t)xz^4 + b(s, t)z^6 \text{ con } a, b \text{ polynomial generic in } s, t \text{ of}$ degree 8 and 12.

1.

After acting with the toric automorphims: Equation: $y^2 = x^3 + a(s, t)xz^4 + b(s, t)z^6 \text{ con } a, b \text{ polynomial generic in } s, t \text{ of}$ degree 8 and 12.

z = 0:

1.

After acting with the toric automorphims: Equation: $y^2 = x^3 + a(s, t)xz^4 + b(s, t)z^6 \text{ con } a, b \text{ polynomial generic in } s, t \text{ of}$ degree 8 and 12.

$$z = 0$$
: ∞ -section: $[1, 1, 0, s, t]$,
1.

After acting with the toric automorphims: Equation: $y^2 = x^3 + a(s, t)xz^4 + b(s, t)z^6 \text{ con } a, b \text{ polynomial generic in } s, t \text{ of}$ degree 8 and 12.

$$z = 0$$
: ∞ -section: $[1, 1, 0, s, t]$, flex point on E .

On Weierstrass models

Antonella Grassi, Vittorio Perduca (University

2.

2. No toric automorphims:

2.

No toric automorphims: Equation: $x^3 = y^3 + a(s, t)xyz + b(s, t)z^3$ with a, b polynomial generic in s, t.

2.

No toric automorphims: Equation: $x^3 = y^3 + a(s, t)xyz + b(s, t)z^3$ with a, b polynomial generic in s, t.

z = 0:

2.

No toric automorphims: Equation: $x^3 = y^3 + a(s, t)xyz + b(s, t)z^3$ with a, b polynomial generic in s, t.

$$z = 0$$
: ∞ -section: $[1, 1, 0, s, t]$

2.

No toric automorphims: Equation: $x^3 = y^3 + a(s, t)xyz + b(s, t)z^3$ with a, b polynomial generic in s, t.

z = 0: ∞ -section: [1, 1, 0, s, t], flex point on E.

On Weierstrass models

Antonella Grassi, Vittorio Perduca (University

On Weierstrass models

January 6 2010 20 / 30

◆□▶ ◆圖▶ ◆温▶ ◆温▶ 「温

3. Diamond:

Antonella Grassi, Vittorio Perduca (University

イロト イロト イヨト イヨト 二日

3. Diamond:

Equation: $ax^3 + axyz + az^6 + ay^2 + axz^4 + ax^2z^2 + ayz^3 = 0$ with $a(s,t) = a_0s^2 + a_1st + a_2t^2$

イロト 不得 トイヨト イヨト 二日

3. Diamond:

Equation: $ax^3 + axyz + az^6 + ay^2 + axz^4 + ax^2z^2 + ayz^3 = 0$ with $a(s, t) = a_0s^2 + a_1st + a_2t^2$ z = 0:

3. Diamond:

Equation:
$$ax^3 + axyz + az^6 + ay^2 + axz^4 + ax^2z^2 + ayz^3 = 0$$
 with
 $a(s, t) = a_0s^2 + a_1st + a_2t^2$
 $z = 0$: is a section: $[*(s, t), **(s, t), 0, s, t]$,

◆□> ◆□> ◆臣> ◆臣> ○臣

3. Diamond:

Equation:
$$ax^3 + axyz + az^6 + ay^2 + axz^4 + ax^2z^2 + ayz^3 = 0$$
 with $a(s,t) = a_0s^2 + a_1st + a_2t^2$
 $z = 0$: is a section: $[*(s,t), **(s,t), 0, s, t]$, but not an ∞ section.

Antonella Grassi, Vittorio Perduca (University

On Weierstrass models

January 6 2010 21 / 30

◆□> ◆□> ◆臣> ◆臣> ○臣

1. $\pi: X_{\Sigma} \to \mathbb{P}^1$, X_{Σ} Fano, general fiber $f_{\Sigma'}$ Fano: dim $X_{\Sigma} = 3$, dim $f_{\Sigma'} = 2$;

1. $\pi: X_{\Sigma} \to \mathbb{P}^1$, X_{Σ} Fano, general fiber $f_{\Sigma'}$ Fano: dim $X_{\Sigma} = 3$, dim $f_{\Sigma'} = 2$;

2. $V \subset X_{\Sigma}$ generic K3, $E \subset f_{\Sigma'}$ generic elliptic;

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト 一 画 - - のへで

1. $\pi: X_{\Sigma} \to \mathbb{P}^1$, X_{Σ} Fano, general fiber $f_{\Sigma'}$ Fano: dim $X_{\Sigma} = 3$, dim $f_{\Sigma'} = 2$;

2. $V \subset X_{\Sigma}$ generic K3, $E \subset f_{\Sigma'}$ generic elliptic; π induces $V \to \mathbb{P}^1$ with general fiber E, elliptic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

1. $\pi: X_{\Sigma} \to \mathbb{P}^1$, X_{Σ} Fano, general fiber $f_{\Sigma'}$ Fano: dim $X_{\Sigma} = 3$, dim $f_{\Sigma'} = 2$;

2. $V \subset X_{\Sigma}$ generic K3, $E \subset f_{\Sigma'}$ generic elliptic; π induces $V \to \mathbb{P}^1$ with general fiber E, elliptic.

3. There exists $\sigma : \mathbb{P}^1 \to X_{\Sigma}$, section of π such that $\sigma(\mathbb{P}^1) = D$ is a toric divisor.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらで

1. $\pi: X_{\Sigma} \to \mathbb{P}^1$, X_{Σ} Fano, general fiber $f_{\Sigma'}$ Fano: dim $X_{\Sigma} = 3$, dim $f_{\Sigma'} = 2$;

2. $V \subset X_{\Sigma}$ generic K3, $E \subset f_{\Sigma'}$ generic elliptic; π induces $V \to \mathbb{P}^1$ with general fiber E, elliptic.

3. There exists $\sigma : \mathbb{P}^1 \to X_{\Sigma}$, section of π such that $\sigma(\mathbb{P}^1) = D$ is a toric divisor. In Cox coordinate, we take z = 0, equation of such divisor.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらで

1. $\pi: X_{\Sigma} \to \mathbb{P}^1$, X_{Σ} Fano, general fiber $f_{\Sigma'}$ Fano: dim $X_{\Sigma} = 3$, dim $f_{\Sigma'} = 2$;

2. $V \subset X_{\Sigma}$ generic K3, $E \subset f_{\Sigma'}$ generic elliptic; π induces $V \to \mathbb{P}^1$ with general fiber E, elliptic.

3. There exists $\sigma : \mathbb{P}^1 \to X_{\Sigma}$, section of π such that $\sigma(\mathbb{P}^1) = D$ is a toric divisor. In Cox coordinate, we take z = 0, equation of such divisor.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらで

Antonella Grassi, Vittorio Perduca (University

On Weierstrass models

January 6 2010 22 / 30

◆ロシ ◆聞シ ◆臣と ◆臣と 三臣。

What makes $V \to \mathbb{P}^1$ a *toric* Weierstrass model *W*?

What makes $V \to \mathbb{P}^1$ a *toric* Weierstrass model *W*?

Is there a combinatorial description of this (i.e. can we tell from the polytope?)

ヘロト 人間 とくほ とくほう

What makes $V \to \mathbb{P}^1$ a *toric* Weierstrass model *W*?

Is there a combinatorial description of this (i.e. can we tell from the polytope?)

Can we identify a section from the combinatorics?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

- $\mathcal{W} \subset X_{\Sigma}$ is a Weierstrass toric model \longleftrightarrow
- 1. f defining W is f defining E with coefficients functions in (s, t)

2. $f_{|z=0}$ does not depend on s, t: there is an ∞ section (through a flex of E).

<ロ> <問> <問> < 回> < =>

Definition

- $W \subset X_{\Sigma}$ is a Weierstrass toric model \longleftrightarrow
- 1. f defining W is f defining E with coefficients functions in (s, t)

2. $f_{|z=0}$ does not depend on s, t: there is an ∞ section (through a flex of E).

The toric Weierstrass model satisfies properties of Weierstrass model (as defined by Nakayama).

< ロ > < 四 > < 回 > < 回 > < 回 >

Definition

- $W \subset X_{\Sigma}$ is a Weierstrass toric model \longleftrightarrow
- 1. f defining W is f defining E with coefficients functions in (s, t)

```
2. f_{|z=0} does not depend on s, t: there is an \infty section (through a flex of E).
```

The toric Weierstrass model satisfies properties of Weierstrass model (as defined by Nakayama).

Theorem

W is a Weierstrass model $\iff v_z$ is in the interior of an edge *e*. $\{e, \nabla f\}$ generate $N \otimes \mathbb{R}$.

< ロ > < 四 > < 回 > < 回 > < 回 >

Definition

- $\mathcal{W} \subset X_{\Sigma}$ is a Weierstrass toric model \longleftrightarrow
- 1. f defining W is f defining E with coefficients functions in (s, t)

```
2. f_{|z=0} does not depend on s, t: there is an \infty section (through a flex of E).
```

The toric Weierstrass model satisfies properties of Weierstrass model (as defined by Nakayama).

Theorem

W is a Weierstrass model $\iff v_z$ is in the interior of an edge *e*. $\{e, \nabla f\}$ generate $N \otimes \mathbb{R}$.

Assume that W is a Weierstrass model:

イロト 不得下 イヨト イヨト 二日

Definition

- $\mathcal{W} \subset X_{\Sigma}$ is a Weierstrass toric model \longleftrightarrow
- 1. f defining W is f defining E with coefficients functions in (s, t)

```
2. f_{|z=0} does not depend on s, t: there is an \infty section (through a flex of E).
```

The toric Weierstrass model satisfies properties of Weierstrass model (as defined by Nakayama).

Theorem

W is a Weierstrass model $\iff v_z$ is in the interior of an edge *e*. $\{e, \nabla f\}$ generate $N \otimes \mathbb{R}$.

Assume that W is a Weierstrass model: Case 1. $\{e, \nabla f_{\Sigma'}\}$ generate N over \mathbb{Z} .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

- $W \subset X_{\Sigma}$ is a Weierstrass toric model \longleftrightarrow
- 1. f defining W is f defining E with coefficients functions in (s, t)

```
2. f_{|z=0} does not depend on s, t: there is an \infty section (through a flex of E).
```

The toric Weierstrass model satisfies properties of Weierstrass model (as defined by Nakayama).

Theorem

W is a Weierstrass model $\iff v_z$ is in the interior of an edge *e*. $\{e, \nabla f\}$ generate $N \otimes \mathbb{R}$.

Assume that W is a Weierstrass model: **Case 1**. $\{e, \nabla f_{\Sigma'}\}$ generate N over \mathbb{Z} . **Case 2**. $\{e, \nabla f_{\Sigma'}\}$ generate $N' \subset N$ sublattice of finite index.

イロト 不得 トイヨト イヨト 二日

Definition

- $W \subset X_{\Sigma}$ is a Weierstrass toric model \longleftrightarrow
- 1. f defining W is f defining E with coefficients functions in (s, t)

```
2. f_{|z=0} does not depend on s, t: there is an \infty section (through a flex of E).
```

The toric Weierstrass model satisfies properties of Weierstrass model (as defined by Nakayama).

Theorem

W is a Weierstrass model $\iff v_z$ is in the interior of an edge *e*. $\{e, \nabla f\}$ generate $N \otimes \mathbb{R}$.

Assume that W is a Weierstrass model: **Case 1**. $\{e, \nabla f_{\Sigma'}\}$ generate N over \mathbb{Z} . **Case 2**. $\{e, \nabla f_{\Sigma'}\}$ generate $N' \subset N$ sublattice of finite index. Can reduce to Case 1 via *finite maps*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

- $W \subset X_{\Sigma}$ is a Weierstrass toric model \longleftrightarrow
- 1. f defining W is f defining E with coefficients functions in (s, t)

```
2. f_{|z=0} does not depend on s, t: there is an \infty section (through a flex of E).
```

The toric Weierstrass model satisfies properties of Weierstrass model (as defined by Nakayama).

Theorem

W is a Weierstrass model $\iff v_z$ is in the interior of an edge *e*. $\{e, \nabla f\}$ generate $N \otimes \mathbb{R}$.

Assume that W is a Weierstrass model: **Case 1**. $\{e, \nabla f_{\Sigma'}\}$ generate N over \mathbb{Z} . **Case 2**. $\{e, \nabla f_{\Sigma'}\}$ generate $N' \subset N$ sublattice of finite index. Can reduce to Case 1 via *finite maps*. *From now on: we assume Case 1*.

- 32

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

- $W \subset X_{\Sigma}$ is a Weierstrass toric model \longleftrightarrow
- 1. f defining W is f defining E with coefficients functions in (s, t)

```
2. f_{|z=0} does not depend on s, t: there is an \infty section (through a flex of E).
```

The toric Weierstrass model satisfies properties of Weierstrass model (as defined by Nakayama).

Theorem

W is a Weierstrass model $\iff v_z$ is in the interior of an edge *e*. $\{e, \nabla f\}$ generate $N \otimes \mathbb{R}$.

Assume that W is a Weierstrass model:

Case 1. $\{e, \nabla f_{\Sigma'}\}$ generate N over \mathbb{Z} .

Case 2. $\{e, \nabla f_{\Sigma'}\}$ generate $N' \subset N$ sublattice of finite index.

Can reduce to Case 1 via *finite maps*. *From now on: we assume Case 1*. [The "stick" in Candelas-Font] Fact: 1. Any polytope: $\{\nabla f, e\}$, with e of length 2 is reflexive.

(日) (四) (三) (三) (三)

Fact: 1. Any polytope: $\{\nabla f, e\}$, with *e* of length 2 is reflexive.

Definition We call these: semistable polytopes.

<ロ> <問> <問> < 回> < =>
Definition

We call these: semistable polytopes.

Fact: 2. The fibers of these elliptic K3 are semistable (Kodaira type I_n). Picture

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

We call these: semistable polytopes.

Fact: 2. The fibers of these elliptic K3 are semistable (Kodaira type I_n). Picture

Fact 3. Using toric automorphisms can write the equations in standard forms

(日)

Definition

We call these: semistable polytopes.

Fact: 2. The fibers of these elliptic K3 are semistable (Kodaira type I_n). Picture

Fact 3. Using toric automorphisms can write the equations in standard forms (useful for arithmetic computations.)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

We call these: semistable polytopes.

Fact: 2. The fibers of these elliptic K3 are semistable (Kodaira type I_n). Picture

Fact 3. Using toric automorphisms can write the equations in standard forms (useful for arithmetic computations.)

Fact 4. Any $V \subset X_{\Sigma}$ has a toric Weierstrass model $\longleftrightarrow \Delta_{X_{\Sigma}}$ is a subpolytope of Δ_W , some W semistable.

イロト イポト イヨト イヨト 二日

Let D_z be a toric divisor of X_{Σ} Case 1: D_{zV} splits into a sum of irreducible divisors, then each of them is a section.

< ロ > < 同 > < 三 > < 三

Let D_z be a toric divisor of X_{Σ}

Case 1: D_{zV} splits into a sum of irreducible divisors, then each of them is a section.

(Note: rk(MW) > 0).

イロト イポト イヨト イヨ

Let D_z be a toric divisor of X_{Σ} Case 1: D_{zV} splits into a sum of irreducible divisors, then each of them is a section. (Note: rk(MW) > 0).

 $(\mathsf{NOLE}, \mathsf{IK}(\mathsf{NIN}) > 0).$

Case 2: D_{zV} is irreducible:

Let D_z be a toric divisor of X_{Σ}

Case 1: D_{zV} splits into a sum of irreducible divisors, then each of them is a section.

(Note: rk(MW) > 0).

Case 2: D_{zV} is irreducible: D_z is a section if and only if $\Leftrightarrow v_z = v_1 + v_2$.

Let D_z be a toric divisor of X_{Σ} Case 1: D_{zV} splits into a sum of irreducible divisors, then each of them is a section. (Note: rk(MW) > 0).

Case 2: D_{zV} is irreducible: D_z is a section if and only if $\Leftrightarrow v_z = v_1 + v_2$.

Example: (Next page)

Example

Take two ∇f , reflexive, as below:

Antonella Grassi, Vittorio Perduca (University

On Weierstrass models

January 6 2010 27 / 30

All the irreducible sections for the 16 (up to $SL(2,\mathbb{Z})$) two-dimensional reflexive polytopes :

Antonella Grassi, Vittorio Perduca (University

On Weierstrass models

January 6 2010 28 / 30

- 4 同 ト - 4 三 ト - 4

Applications...

Recap:

- criterion for toric and non toric sections
- toric Weierstrass model: definition
- toric Weierstrass model: criteria
- semistable politopes

3

Applications...

Recap:

- criterion for toric and non toric sections
- toric Weierstrass model: definition
- ► toric Weierstrass model: criteria
- semistable politopes

Arithmetic & Physics:

- Compute: Mordell Weil lattice of sections
- Find: Torsion sections
- Use: degenerations of K3 to rational elliptic surfaces (which arise also in F-theory-Heterotic Duality)

Applications...

In progress:

- Toric Jacobian of elliptic toric fibration without a sections
- Higher dimension: Calabi-Yau threefold, fourfolds.
- Compute height of sections.
- Is a Toricall Weierstrass model unique (torically)?
- ▶ Find the "Narrow" MW lattice.

3