On toric Weierstrass models: Work in progress

Antonella Grassi, Vittorio Perduca

University of Pennsylvania

January 62010

We consider: K3 surfaces, Calabi-Yau varieties which are elliptically fibered,

We consider: K3 surfaces, Calabi-Yau varieties which are elliptically fibered, and hypersurfaces in toric Fano varieties.

We consider: K3 surfaces, Calabi-Yau varieties which are elliptically fibered, and hypersurfaces in toric Fano varieties.

We consider: K3 surfaces, Calabi-Yau varieties which are elliptically fibered, and hypersurfaces in toric Fano varieties.

Assume: elliptic fibration is induced by the toric structure.

We consider: K3 surfaces, Calabi-Yau varieties which are elliptically fibered, and hypersurfaces in toric Fano varieties.

Assume: elliptic fibration is induced by the toric structure.
Want: dictionary between
algebraic geometry \longleftrightarrow combinatorics property of polytopes.

We consider: K3 surfaces, Calabi-Yau varieties which are elliptically fibered, and hypersurfaces in toric Fano varieties.

Assume: elliptic fibration is induced by the toric structure.
Want: dictionary between
algebraic geometry \longleftrightarrow combinatorics property of polytopes.

For example: we look at

We consider: K3 surfaces, Calabi-Yau varieties which are elliptically fibered,
and hypersurfaces in toric Fano varieties.
Assume: elliptic fibration is induced by the toric structure.
Want: dictionary between
algebraic geometry \longleftrightarrow combinatorics property of polytopes.

For example: we look at
(Toric) sections of the fibrations \longleftrightarrow ??

We consider: K3 surfaces, Calabi-Yau varieties which are elliptically fibered, and hypersurfaces in toric Fano varieties.

Assume: elliptic fibration is induced by the toric structure.
Want: dictionary between
algebraic geometry \longleftrightarrow combinatorics property of polytopes.

For example: we look at
(Toric) sections of the fibrations \longleftrightarrow ??
Is there a toric Weierstrass model? \longleftrightarrow ??

We consider: K3 surfaces, Calabi-Yau varieties which are elliptically fibered,
and hypersurfaces in toric Fano varieties.
Assume: elliptic fibration is induced by the toric structure.
Want: dictionary between
algebraic geometry \longleftrightarrow combinatorics property of polytopes.

For example: we look at
(Toric) sections of the fibrations \longleftrightarrow ??
Is there a toric Weierstrass model? \longleftrightarrow ??
Mordell-Weil group of sections \longleftrightarrow ??

We consider: K3 surfaces, Calabi-Yau varieties which are elliptically fibered,
and hypersurfaces in toric Fano varieties.
Assume: elliptic fibration is induced by the toric structure.
Want: dictionary between
algebraic geometry \longleftrightarrow combinatorics property of polytopes.

For example: we look at
(Toric) sections of the fibrations \longleftrightarrow ??
Is there a toric Weierstrass model? \longleftrightarrow ??
Mordell-Weil group of sections \longleftrightarrow ??
Investigate F-theory set up in this context.

We consider: K3 surfaces, Calabi-Yau varieties which are elliptically fibered,
and hypersurfaces in toric Fano varieties.
Assume: elliptic fibration is induced by the toric structure.
Want: dictionary between
algebraic geometry \longleftrightarrow combinatorics property of polytopes.

For example: we look at
(Toric) sections of the fibrations \longleftrightarrow ??
Is there a toric Weierstrass model? \longleftrightarrow ??
Mordell-Weil group of sections \longleftrightarrow ??
Investigate F-theory set up in this context.
Credits: We used the computer program Sage to first test our conjectures.
(1) Toric Geometry

- Calabi-Yau, Elliptic Fibration
- Calabi Yau as hypersurfaces in toric varieties
(2) Elliptically fibered Calabi Yau
- K3 toric elliptic
(3) Toric Weierstrass models
- Review: Weierstrass models
- Toric Weierstrass model
- Semistable polytopes
- Sections
- Applications

Toric geometry

Toric varieties (projective):

Toric geometry

Toric varieties (projective): defined by fans and/or polytopes.

Toric geometry

Toric varieties (projective): defined by fans and/or polytopes.

From fans, via homogeneous coordinates
To every fan Σ in $N \simeq \mathbb{Z}^{n}$, a lattice, one associates X_{Σ} of dimension n

Example \mathbb{P}^{2}

Example

\mathbb{P}^{2}
$\triangleright\left(v_{x}, v_{y}, v_{z}\right) \leftrightarrow(x, y, z)$ "homogeneous coordinates"

Example

\mathbb{P}^{2}

- $\left(v_{x}, v_{y}, v_{z}\right) \leftrightarrow(x, y, z)$ "homogeneous coordinates"
- Define:

$$
X_{\Sigma}:=\mathbb{C}^{3}-Z_{\Sigma} / \sim
$$

with $Z_{\Sigma}=\{\mathbf{0}\}$ and quotient action:

$$
\begin{aligned}
& \quad(x, y, z) \sim\left(\lambda^{q_{x}} x, \lambda^{q_{y}} y, \lambda^{q_{z}} z\right)=(\lambda x, \lambda y, \lambda z), \\
& \text { with } \lambda \in \mathbb{C}^{*}=G \subset\left(\mathbb{C}^{*}\right)^{2}
\end{aligned}
$$

Example

\mathbb{P}^{2}

- $\left(v_{x}, v_{y}, v_{z}\right) \leftrightarrow(x, y, z)$ "homogeneous coordinates"
- Define:

$$
X_{\Sigma}:=\mathbb{C}^{3}-Z_{\Sigma} / \sim
$$

with $Z_{\Sigma}=\{\mathbf{0}\}$ and quotient action:

$$
(x, y, z) \sim\left(\lambda^{q_{x}} x, \lambda^{q_{y}} y, \lambda^{q_{z}} z\right)=(\lambda x, \lambda y, \lambda z)
$$

with $\lambda \in \mathbb{C}^{*}=G \subset\left(\mathbb{C}^{*}\right)^{2}$

- Z_{Σ}, G, quotient action $\left(q_{i}\right)$,
are determined by the fan.

Calabi-Yau, Elliptic Fibration

V is a Calabi-Yau variety if $K_{V} \sim \mathcal{O}(V), h^{i}(\mathcal{O}(V))=0,0<i<\operatorname{dim} V$. $\operatorname{dim} V=1, V$: is an elliptic curve, T^{2}, cubic in \mathbb{P}^{2}. $\operatorname{dim} V=2, V$: is a $K 3$ surface, e, g, quartic in \mathbb{P}^{3} $\pi_{V}: V \rightarrow B_{V}$ is an elliptic fibration with section $\leftrightarrow \pi_{V}^{-1}(p)$ is a elliptic curve with a marked point.

Toric divisors

Fact

Rays $\Sigma \Longleftrightarrow\left(\mathbb{C}^{*}\right)^{n}$-invariant irreducible hypersurfaces (divisors) of X_{Σ}. These are the toric divisors

Toric divisors

Fact

Rays $\Sigma \Longleftrightarrow\left(\mathbb{C}^{*}\right)^{n}$-invariant irreducible hypersurfaces (divisors) of X_{Σ}. These are the toric divisors

Example

$-K_{X_{\Sigma}}=\sum D_{i}, D_{i}$ invariant toric divisors.

Calabi Yau as hypersurfaces in Fano toric varieties

Let X_{Σ} be a toric variety

- (Batyrev et al.) $V \subset X_{\Sigma}$ is a Calabi-Yau variety \Longleftrightarrow

Calabi Yau as hypersurfaces in Fano toric varieties

Let X_{Σ} be a toric variety

- (Batyrev et al.) $V \subset X_{\Sigma}$ is a Calabi-Yau variety \Longleftrightarrow
- the polytope $\Delta \subset M \stackrel{\text { def. }}{=} N^{\vee} \subset \mathbb{Z}^{n}$ associated to $\left(X_{\Sigma}, \mathcal{L}_{\Delta}=-K_{X_{\Sigma}}\right)$ is reflexive, \Longleftrightarrow

Calabi Yau as hypersurfaces in Fano toric varieties

Let X_{Σ} be a toric variety

- (Batyrev et al.) $V \subset X_{\Sigma}$ is a Calabi-Yau variety \Longleftrightarrow
- the polytope $\Delta \subset M \stackrel{\text { def. }}{=} N^{\vee} \subset \mathbb{Z}^{n}$ associated to $\left(X_{\Sigma}, \mathcal{L}_{\Delta}=-K_{X_{\Sigma}}\right)$ is reflexive, \Longleftrightarrow
- the codim 1 faces are defined by equations $=-1$, and 0 is the only lattice point in the interior of $\boldsymbol{\Delta}$.

Calabi Yau as hypersurfaces in Fano toric varieties

Let X_{Σ} be a toric variety

- (Batyrev et al.) $V \subset X_{\Sigma}$ is a Calabi-Yau variety \Longleftrightarrow
- the polytope $\Delta \subset M \stackrel{\text { def. }}{=} N^{\vee} \subset \mathbb{Z}^{n}$ associated to $\left(X_{\Sigma}, \mathcal{L}_{\Delta}=-K_{X_{\Sigma}}\right)$ is reflexive, \Longleftrightarrow
- the codim 1 faces are defined by equations $=-1$, and 0 is the only lattice point in the interior of $\boldsymbol{\Delta}$.
- If Δ is reflexive

Calabi Yau as hypersurfaces in Fano toric varieties

Let X_{Σ} be a toric variety

- (Batyrev et al.) $V \subset X_{\Sigma}$ is a Calabi-Yau variety \Longleftrightarrow
- the polytope $\Delta \subset M \stackrel{\text { def. }}{=} N^{\vee} \subset \mathbb{Z}^{n}$ associated to $\left(X_{\Sigma}, \mathcal{L}_{\Delta}=-K_{X_{\Sigma}}\right)$ is reflexive, \Longleftrightarrow
- the codim 1 faces are defined by equations $=-1$, and 0 is the only lattice point in the interior of $\boldsymbol{\Delta}$.
- If Δ is reflexive
- $\Delta \leftrightarrow\left(\mathbb{P}_{\Delta}, \mathcal{L}_{\Delta}\right)$, where $\mathbb{P}_{\Delta}:=X_{\Sigma}$ is a toric variety over the fan Σ on the faces of ∇, and

$$
X_{\Sigma} \hookrightarrow \mathbb{P}^{k}, \text { where }|\Delta \cap M|=k+1
$$

Calabi Yau as hypersurfaces in Fano toric varieties

Let X_{Σ} be a toric variety

- (Batyrev et al.) $V \subset X_{\Sigma}$ is a Calabi-Yau variety \Longleftrightarrow
- the polytope $\Delta \subset M^{\text {def. }}=N^{\vee} \subset \mathbb{Z}^{n}$ associated to ($X_{\Sigma}, \mathcal{L}_{\Delta}=-K_{X_{\Sigma}}$) is reflexive, \Longleftrightarrow
- the codim 1 faces are defined by equations $=-1$, and 0 is the only lattice point in the interior of $\boldsymbol{\Delta}$.
- If Δ is reflexive
- $\Delta \leftrightarrow\left(\mathbb{P}_{\Delta}, \mathcal{L}_{\Delta}\right)$, where $\mathbb{P}_{\Delta}:=X_{\Sigma}$ is a toric variety over the fan Σ on the faces of ∇, and

$$
X_{\Sigma} \hookrightarrow \mathbb{P}^{k}, \text { where }|\Delta \cap M|=k+1
$$

- $V \in|\mathcal{L}|$ is a hypersurface in X_{Σ};
get explicit equation from Δ, homogeneous coordinates:

Calabi Yau as hypersurfaces in Fano toric varieties

Let X_{Σ} be a toric variety

- (Batyrev et al.) $V \subset X_{\Sigma}$ is a Calabi-Yau variety
- the polytope $\Delta \subset M \stackrel{\text { def. }}{=} N^{\vee} \subset \mathbb{Z}^{n}$ associated to $\left(X_{\Sigma}, \mathcal{L}_{\Delta}=-K_{X_{\Sigma}}\right)$ is reflexive, \Longleftrightarrow
- the codim 1 faces are defined by equations $=-1$, and 0 is the only lattice point in the interior of $\boldsymbol{\Delta}$.
- If Δ is reflexive
- $\Delta \leftrightarrow\left(\mathbb{P}_{\Delta}, \mathcal{L}_{\Delta}\right)$, where $\mathbb{P}_{\Delta}:=X_{\Sigma}$ is a toric variety over the fan Σ on the faces of ∇, and

$$
X_{\Sigma} \hookrightarrow \mathbb{P}^{k}, \text { where }|\Delta \cap M|=k+1
$$

- $V \in|\mathcal{L}|$ is a hypersurface in X_{Σ}; get explicit equation from Δ, homogeneous coordinates:
- If z_{1}, \ldots, z_{N} are the homogeneous coordinates, \mathcal{L}_{Δ} is generated by

$$
\left\{z_{1}^{\left\langle v_{1}, \omega\right\rangle+1} z_{2}^{\left\langle v_{2}, \omega\right\rangle+1} \cdot \ldots \cdot z_{N}^{\left\langle v_{N}, \omega\right\rangle+1}\right\}, \forall \omega \in \Delta \cap M
$$

Example $\left(\mathbb{P}^{2}, 3 H=-K_{\mathbb{P}^{2}}\right), 3 H$ gives a generic cubic V in $\mathbb{P}^{2} \Longleftrightarrow \Delta$.

Example $\left(\mathbb{P}^{2}, 3 H=-K_{\mathbb{P}^{2}}\right), 3 H$ gives a generic cubic V in $\mathbb{P}^{2} \Longleftrightarrow \Delta$. $X_{\Sigma} \hookrightarrow \mathbb{P}^{9}$ (Veronese).

Example $\left(\mathbb{P}^{2}, 3 H=-K_{\mathbb{P}^{2}}\right), 3 H$ gives a generic cubic V in $\mathbb{P}^{2} \Longleftrightarrow \Delta$. $X_{\Sigma} \hookrightarrow \mathbb{P}^{9}$ (Veronese).

Example $\left(\mathbb{P}^{2}, 3 H=-K_{\mathbb{P}^{2}}\right), 3 H$ gives a generic cubic V in $\mathbb{P}^{2} \Longleftrightarrow \Delta$. $X_{\Sigma} \hookrightarrow \mathbb{P}^{9}$ (Veronese).

Fact: ∇ reflexive $\Longleftrightarrow \Delta$ reflexive.

Example $\left(\mathbb{P}^{2}, 3 H=-K_{\mathbb{P}^{2}}\right), 3 H$ gives a generic cubic V in $\mathbb{P}^{2} \Longleftrightarrow \Delta$. $X_{\Sigma} \hookrightarrow \mathbb{P}^{9}$ (Veronese).

$$
\begin{equation*}
\mathbb{P}_{[x, y, z]}^{2} \tag{2}
\end{equation*}
$$

Fact: ∇ reflexive $\Longleftrightarrow \Delta$ reflexive.
Note: $D_{x}+D_{y}+D_{z}=-K_{\mathbb{P}^{2}}, V$ elliptic curve, Calabi Yau

Toric fibrations

A toric fibration $X_{\Sigma}^{1}: \rightarrow X_{\Sigma}^{2}$, is a morphism between toric varieties which sends fans into fans.

Toric fibrations

A toric fibration $X_{\Sigma}^{1}: \rightarrow X_{\Sigma}^{2}$, is a morphism between toric varieties which sends fans into fans.

Example

```
\(\pi: \mathbb{P}^{1} \times \mathbb{P}_{\left[z_{1}, z_{2}, z_{3}, z_{4}\right]}^{1} \rightarrow \mathbb{P}_{\left[z_{3}, z_{4}\right]}^{1}\),
fiber: \(X_{\nabla_{f}}=\mathbb{P}_{\left[z_{1}, z_{2}\right]}^{1}\).
```

$\nabla \subset N_{\mathbb{R}}$

In our situation: $V \subset X_{\Sigma}, V$ Calabi-Yau, X_{Σ} toric Fano:

- If there exists a toric fibration, say $X_{\Sigma} \rightarrow B$, with fiber $f_{\Sigma^{\prime}}$, toric

In our situation: $V \subset X_{\Sigma}, V$ Calabi-Yau, X_{Σ} toric Fano:

- If there exists a toric fibration, say $X_{\Sigma} \rightarrow B$, with fiber $f_{\Sigma^{\prime}}$, toric - and $V \subset X_{\Sigma}$ is generic,

In our situation: $V \subset X_{\Sigma}, V$ Calabi-Yau, X_{Σ} toric Fano:

- If there exists a toric fibration, say $X_{\Sigma} \rightarrow B$, with fiber $f_{\Sigma^{\prime}}$, toric
- and $V \subset X_{\Sigma}$ is generic,
- then there exists an induced fibration $V \rightarrow B$.

In our situation: $V \subset X_{\Sigma}, V$ Calabi-Yau, X_{Σ} toric Fano:

- If there exists a toric fibration, say $X_{\Sigma} \rightarrow B$, with fiber $f_{\Sigma^{\prime}}$, toric
- and $V \subset X_{\Sigma}$ is generic,
- then there exists an induced fibration $V \rightarrow B$.
- In the previous example: $X_{\Sigma}=\mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}=B$, $X_{\Sigma} \in \mathcal{L}=\mathcal{O}(-2,-2)$ is an elliptic curve (1 -dim Calabi-Yau)

In our situation: $V \subset X_{\Sigma}, V$ Calabi-Yau, X_{Σ} toric Fano:

- If there exists a toric fibration, say $X_{\Sigma} \rightarrow B$, with fiber $f_{\Sigma^{\prime}}$, toric
- and $V \subset X_{\Sigma}$ is generic,
- then there exists an induced fibration $V \rightarrow B$.
- In the previous example: $X_{\Sigma}=\mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}=B$, $X_{\Sigma} \in \mathcal{L}=\mathcal{O}(-2,-2)$ is an elliptic curve (1 -dim Calabi-Yau)
- $X \rightarrow \mathbb{P}^{1}$ is fibered by two points.

Two points in \mathbb{P}^{1} are a 0 -dim Calabi-Yau.

Example

$\pi: \mathbb{P}^{1} \times \mathbb{P}_{\left[z_{1}, z_{2}, z_{3}, z_{4}\right]}^{1} \rightarrow \mathbb{P}_{\left[z_{3}, z_{4}\right]}^{1}$,
fiber: $X_{\nabla_{f}}=\mathbb{P}_{\left[z_{1}, z_{2}\right]}^{1}$.

From now on: K3 toric elliptic

Assume:

- $n=3 . \Delta \subset M_{\mathbb{R}}$ reflexive, Σ fan on $\nabla \subset N_{\mathbb{R}}$; $V \in\left|-K_{X_{\Sigma}}\right| K 3$ generic in X_{Σ}, Fano;

From now on: K3 toric elliptic

Assume:

- $n=3 . \Delta \subset M_{\mathbb{R}}$ reflexive, Σ fan on $\nabla \subset N_{\mathbb{R}}$;
$V \in\left|-K_{X_{\Sigma}}\right| K 3$ generic in X_{Σ}, Fano;
- $X_{\Sigma} \rightarrow \mathbb{P}^{1}$, toric such that general fiber $f_{\Sigma^{\prime}}$ is also Fano.

From now on: K3 toric elliptic

Assume:

- $n=3 . \Delta \subset M_{\mathbb{R}}$ reflexive, Σ fan on $\nabla \subset N_{\mathbb{R}}$;
$V \in\left|-K_{X_{\Sigma}}\right| K 3$ generic in X_{Σ}, Fano;
- $X_{\Sigma} \rightarrow \mathbb{P}^{1}$, toric such that general fiber $f_{\Sigma^{\prime}}$ is also Fano.
- Then:

From now on: K3 toric elliptic

Assume:

- $n=3 . \Delta \subset M_{\mathbb{R}}$ reflexive, Σ fan on $\nabla \subset N_{\mathbb{R}}$;
$V \in\left|-K_{X_{\Sigma}}\right| K 3$ generic in X_{Σ}, Fano;
- $X_{\Sigma} \rightarrow \mathbb{P}^{1}$, toric such that general fiber $f_{\Sigma^{\prime}}$ is also Fano.
- Then:
\longleftrightarrow reflexive two-dim polytope $\nabla_{f} \subset \nabla$,

From now on: K3 toric elliptic

Assume:

- $n=3 . \Delta \subset M_{\mathbb{R}}$ reflexive, Σ fan on $\nabla \subset N_{\mathbb{R}}$;
$V \in\left|-K_{X_{\Sigma}}\right| K 3$ generic in X_{Σ}, Fano;
- $X_{\Sigma} \rightarrow \mathbb{P}^{1}$, toric such that general fiber $f_{\Sigma^{\prime}}$ is also Fano.
- Then:
- \longleftrightarrow reflexive two-dim polytope $\nabla_{f} \subset \nabla$,
- $E \in\left|-K_{f_{\Sigma^{\prime}}}\right|$ is a generic elliptic curve in $f_{\Sigma^{\prime}}$,

From now on: K3 toric elliptic

Assume:

- $n=3 . \Delta \subset M_{\mathbb{R}}$ reflexive, Σ fan on $\nabla \subset N_{\mathbb{R}}$;
$V \in\left|-K_{X_{\Sigma}}\right| K 3$ generic in X_{Σ}, Fano;
- $X_{\Sigma} \rightarrow \mathbb{P}^{1}$, toric such that general fiber $f_{\Sigma^{\prime}}$ is also Fano.
- Then:
- \longleftrightarrow reflexive two-dim polytope $\nabla_{f} \subset \nabla$,
- $E \in\left|-K_{f_{\Sigma^{\prime}}}\right|$ is a generic elliptic curve in $f_{\Sigma^{\prime}}$,
- $\pi: V \rightarrow \mathbb{P}^{1}$, is an elliptic fibred $K 3$.

Example

All the possible fibrations of $K 3$ in toric threefolds are \sim classified (F. Rohsiepe).

All the possible fibrations of $K 3$ in toric threefolds are \sim classified (F. Rohsiepe).

Assume there is a section $\sigma: \mathbb{P}^{1} \rightarrow V$ of $\pi: V \rightarrow \mathbb{P}^{1}$

All the possible fibrations of $K 3$ in toric threefolds are \sim classified (F. Rohsiepe).

Assume there is a section $\sigma: \mathbb{P}^{1} \rightarrow V$ of $\pi: V \rightarrow \mathbb{P}^{1}$ induced by a toric section $\mathbb{P}^{1} \rightarrow X_{\Sigma}$ of $X_{\Sigma} \rightarrow \mathbb{P}^{1}$.

All the possible fibrations of $K 3$ in toric threefolds are \sim classified (F. Rohsiepe).

Assume there is a section $\sigma: \mathbb{P}^{1} \rightarrow V$ of $\pi: V \rightarrow \mathbb{P}^{1}$ induced by a toric section $\mathbb{P}^{1} \rightarrow X_{\Sigma}$ of $X_{\Sigma} \rightarrow \mathbb{P}^{1}$.

We show:

All the possible fibrations of $K 3$ in toric threefolds are \sim classified (F. Rohsiepe).

Assume there is a section $\sigma: \mathbb{P}^{1} \rightarrow V$ of $\pi: V \rightarrow \mathbb{P}^{1}$ induced by a toric section $\mathbb{P}^{1} \rightarrow X_{\Sigma}$ of $X_{\Sigma} \rightarrow \mathbb{P}^{1}$.

We show:
Under some conditions there exists a Weierstrass model adapted to the toric environment.

All the possible fibrations of $K 3$ in toric threefolds are \sim classified (F. Rohsiepe).

Assume there is a section $\sigma: \mathbb{P}^{1} \rightarrow V$ of $\pi: V \rightarrow \mathbb{P}^{1}$ induced by a toric section $\mathbb{P}^{1} \rightarrow X_{\Sigma}$ of $X_{\Sigma} \rightarrow \mathbb{P}^{1}$.

We show:
Under some conditions there exists a Weierstrass model adapted to the toric environment.

We will call this the Weierstrass toric model.

All the possible fibrations of $K 3$ in toric threefolds are \sim classified (F . Rohsiepe).

Assume there is a section $\sigma: \mathbb{P}^{1} \rightarrow V$ of $\pi: V \rightarrow \mathbb{P}^{1}$
induced by a toric section $\mathbb{P}^{1} \rightarrow X_{\Sigma}$ of $X_{\Sigma} \rightarrow \mathbb{P}^{1}$.
We show:
Under some conditions there exists a Weierstrass model adapted to the toric environment.

We will call this the Weierstrass toric model.
We describe the combinatorial properties of ∇, Δ which characterize the Weierstrass toric models.

Review: Weierstrass models

Goal: suitably generalize the 1-dimensional case: torus $E=\mathbb{C} / \mathbb{Z}^{2} \hookrightarrow \mathbb{C}^{2}$: as $y^{2}=x^{3}+a x+b, \quad a, b, \in \mathbb{C}$,

Review: Weierstrass models

Goal: suitably generalize the 1-dimensional case: torus $E=\mathbb{C} / \mathbb{Z}^{2} \hookrightarrow \mathbb{C}^{2}$: as $y^{2}=x^{3}+a x+b, \quad a, b, \in \mathbb{C}$, Weierstrass mode of E.

Review: Weierstrass models

Goal: suitably generalize the 1-dimensional case: torus $E=\mathbb{C} / \mathbb{Z}^{2} \hookrightarrow \mathbb{C}^{2}$: as $y^{2}=x^{3}+a x+b, \quad a, b, \in \mathbb{C}$, Weierstrass mode of E.

Know (Nakayama): Given $\pi: X \rightarrow B$, elliptic, with section $\sigma: B \rightarrow X$, the Weierstrass model $\pi_{W}: W \rightarrow B$ is birational to X :

Nakayama: $W \hookrightarrow \mathbf{P}=\mathbb{P}\left(\mathcal{O}_{B} \oplus \mathcal{L}^{2} \oplus \mathcal{L}^{3}\right)$, where $\mathcal{L} \simeq p_{*} \mathcal{O}_{T}(T)$.
If X is a $K 3$ surface, $B \simeq \mathbb{P}^{1}$, and $\mathcal{L} \simeq \mathcal{O}_{\mathbb{P}^{1}}(-2)$:
Weierstrass model: $W \hookrightarrow \mathbf{P}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-4) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-6)\right)$.

Nakayama: $W \hookrightarrow \mathbf{P}=\mathbb{P}\left(\mathcal{O}_{B} \oplus \mathcal{L}^{2} \oplus \mathcal{L}^{3}\right)$, where $\mathcal{L} \simeq p_{*} \mathcal{O}_{T}(T)$.
If X is a $K 3$ surface, $B \simeq \mathbb{P}^{1}$, and $\mathcal{L} \simeq \mathcal{O}_{\mathbb{P}^{1}}(-2)$:
Weierstrass model: $W \hookrightarrow \mathbf{P}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-4) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-6)\right)$.
W is described by the equation $y^{2}=x^{3}+a x+b, a(s, t) b(s, t)$ homogeneous, deg $=8,12$.

Nakayama: $W \hookrightarrow \mathbf{P}=\mathbb{P}\left(\mathcal{O}_{B} \oplus \mathcal{L}^{2} \oplus \mathcal{L}^{3}\right)$, where $\mathcal{L} \simeq p_{*} \mathcal{O}_{T}(T)$.
If X is a $K 3$ surface, $B \simeq \mathbb{P}^{1}$, and $\mathcal{L} \simeq \mathcal{O}_{\mathbb{P}^{1}}(-2)$:
Weierstrass model: $W \hookrightarrow \mathbf{P}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-4) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-6)\right)$.
W is described by the equation $y^{2}=x^{3}+a x+b, a(s, t) b(s, t)$ homogeneous, deg $=8,12$.

In general:
In affine coordinates $(*) y^{2}=x^{3}+a(s) x+b(s), a, b$ functions on B;

Nakayama: $W \hookrightarrow \mathbf{P}=\mathbb{P}\left(\mathcal{O}_{B} \oplus \mathcal{L}^{2} \oplus \mathcal{L}^{3}\right)$, where $\mathcal{L} \simeq p_{*} \mathcal{O}_{T}(T)$.
If X is a $K 3$ surface, $B \simeq \mathbb{P}^{1}$, and $\mathcal{L} \simeq \mathcal{O}_{\mathbb{P}^{1}}(-2)$:
Weierstrass model: $W \hookrightarrow \mathbf{P}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-4) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-6)\right)$.
W is described by the equation $y^{2}=x^{3}+a x+b, a(s, t) b(s, t)$ homogeneous, deg $=8,12$.

In general:
In affine coordinates $(*) y^{2}=x^{3}+a(s) x+b(s), a, b$ functions on B; Fix $P \in B:(*)$ is a the Weierstrass equation of the elliptic curve (fiber).

Nakayama: $W \hookrightarrow \mathbf{P}=\mathbb{P}\left(\mathcal{O}_{B} \oplus \mathcal{L}^{2} \oplus \mathcal{L}^{3}\right)$, where $\mathcal{L} \simeq p_{*} \mathcal{O}_{T}(T)$.
If X is a $K 3$ surface, $B \simeq \mathbb{P}^{1}$, and $\mathcal{L} \simeq \mathcal{O}_{\mathbb{P}^{1}}(-2)$:
Weierstrass model: $W \hookrightarrow \mathbf{P}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-4) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-6)\right)$.
W is described by the equation $y^{2}=x^{3}+a x+b, a(s, t) b(s, t)$ homogeneous, deg $=8,12$.

In general:
In affine coordinates $(*) y^{2}=x^{3}+a(s) x+b(s), a, b$ functions on B; Fix $P \in B:(*)$ is a the Weierstrass equation of the elliptic curve (fiber).

Problem: $W \subset \mathbf{P}, \mathbf{P}$ toric, but not Fano;

Nakayama: $W \hookrightarrow \mathbf{P}=\mathbb{P}\left(\mathcal{O}_{B} \oplus \mathcal{L}^{2} \oplus \mathcal{L}^{3}\right)$, where $\mathcal{L} \simeq p_{*} \mathcal{O}_{T}(T)$.
If X is a $K 3$ surface, $B \simeq \mathbb{P}^{1}$, and $\mathcal{L} \simeq \mathcal{O}_{\mathbb{P}^{1}}(-2)$:
Weierstrass model: $W \hookrightarrow \mathbf{P}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-4) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-6)\right)$.
W is described by the equation $y^{2}=x^{3}+a x+b, a(s, t) b(s, t)$ homogeneous, $\operatorname{deg}=8,12$.

In general:
In affine coordinates $(*) y^{2}=x^{3}+a(s) x+b(s), a, b$ functions on B; Fix $P \in B:(*)$ is a the Weierstrass equation of the elliptic curve (fiber).

Problem: $W \subset \mathbf{P}, \mathbf{P}$ toric, but not Fano;
But: in the toric context, X_{Σ}, E already come with equations.

Nakayama: $W \hookrightarrow \mathbf{P}=\mathbb{P}\left(\mathcal{O}_{B} \oplus \mathcal{L}^{2} \oplus \mathcal{L}^{3}\right)$, where $\mathcal{L} \simeq p_{*} \mathcal{O}_{T}(T)$.
If X is a $K 3$ surface, $B \simeq \mathbb{P}^{1}$, and $\mathcal{L} \simeq \mathcal{O}_{\mathbb{P}^{1}}(-2)$:
Weierstrass model: $W \hookrightarrow \mathbf{P}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-4) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-6)\right)$.
W is described by the equation $y^{2}=x^{3}+a x+b, a(s, t) b(s, t)$ homogeneous, $\operatorname{deg}=8,12$.

In general:
In affine coordinates $(*) y^{2}=x^{3}+a(s) x+b(s), a, b$ functions on B; Fix $P \in B:(*)$ is a the Weierstrass equation of the elliptic curve (fiber).

Problem: $W \subset \mathbf{P}, \mathbf{P}$ toric, but not Fano;
But: in the toric context, X_{Σ}, E already come with equations.
Let us see some examples:

Example

1.

Example

1.

After acting with the toric automorphims:

Example

1.

After acting with the toric automorphims: Equation: $y^{2}=x^{3}+a(s, t) x z^{4}+b(s, t) z^{6}$ con a, b polynomial generic in s, t of degree 8 and 12 .

Example

1.

After acting with the toric automorphims: Equation: $y^{2}=x^{3}+a(s, t) x z^{4}+b(s, t) z^{6}$ con a, b polynomial generic in s, t of degree 8 and 12 .
$z=0$:

Example

1.

After acting with the toric automorphims: Equation: $y^{2}=x^{3}+a(s, t) x z^{4}+b(s, t) z^{6}$ con a, b polynomial generic in s, t of degree 8 and 12 .
$z=0: \infty$-section: $[1,1,0, s, t]$,

Example

1.

After acting with the toric automorphims: Equation: $y^{2}=x^{3}+a(s, t) x z^{4}+b(s, t) z^{6}$ con a, b polynomial generic in s, t of degree 8 and 12 .
$z=0: \infty$-section: $[1,1,0, s, t]$, flex point on E.

Example

2.

Example

2.

Example

2.

No toric automorphims:

Example

2.

No toric automorphims: Equation: $x^{3}=y^{3}+a(s, t) x y z+b(s, t) z^{3}$ with a, b polynomial generic in s, t.

Example

2.

No toric automorphims: Equation: $x^{3}=y^{3}+a(s, t) x y z+b(s, t) z^{3}$ with a, b polynomial generic in s, t.
$z=0:$

Example

2.

No toric automorphims: Equation: $x^{3}=y^{3}+a(s, t) x y z+b(s, t) z^{3}$ with a, b polynomial generic in s, t.
$z=0: \infty$-section: $[1,1,0, s, t]$,

Example

2.

No toric automorphims: Equation: $x^{3}=y^{3}+a(s, t) x y z+b(s, t) z^{3}$ with a, b polynomial generic in s, t.
$z=0: \infty$-section: $[1,1,0, s, t]$, flex point on E.

Example

3.

Example
 3. Diamond:

Example

3. Diamond:

Equation: $a x^{3}+a x y z+a z^{6}+a y^{2}+a x z^{4}+a x^{2} z^{2}+a y z^{3}=0$ with $a(s, t)=a_{0} s^{2}+a_{1} s t+a_{2} t^{2}$

Example

3. Diamond:

Equation: $a x^{3}+a x y z+a z^{6}+a y^{2}+a x z^{4}+a x^{2} z^{2}+a y z^{3}=0$ with $a(s, t)=a_{0} s^{2}+a_{1} s t+a_{2} t^{2}$
$z=0$:

Example

3. Diamond:

Equation: $a x^{3}+a x y z+a z^{6}+a y^{2}+a x z^{4}+a x^{2} z^{2}+a y z^{3}=0$ with $a(s, t)=a_{0} s^{2}+a_{1} s t+a_{2} t^{2}$
$z=0$: is a section: $[*(s, t), * *(s, t), 0, s, t]$,

Example

3. Diamond:

Equation: $a x^{3}+a x y z+a z^{6}+a y^{2}+a x z^{4}+a x^{2} z^{2}+a y z^{3}=0$ with $a(s, t)=a_{0} s^{2}+a_{1} s t+a_{2} t^{2}$
$z=0$: is a section: $[*(s, t), * *(s, t), 0, s, t]$, but not an ∞ section.

Recap:

Recap:

1. $\pi: X_{\Sigma} \rightarrow \mathbb{P}^{1}, X_{\Sigma}$ Fano, general fiber $f_{\Sigma^{\prime}}$ Fano: $\operatorname{dim} X_{\Sigma}=3$, $\operatorname{dim} f_{\Sigma^{\prime}}=2$;

Recap:

1. $\pi: X_{\Sigma} \rightarrow \mathbb{P}^{1}, X_{\Sigma}$ Fano, general fiber $f_{\Sigma^{\prime}}$ Fano: $\operatorname{dim} X_{\Sigma}=3$, $\operatorname{dim} f_{\Sigma^{\prime}}=2$;
2. $V \subset X_{\Sigma}$ generic $K 3, E \subset f_{\Sigma^{\prime}}$ generic elliptic;

Recap:

1. $\pi: X_{\Sigma} \rightarrow \mathbb{P}^{1}, X_{\Sigma}$ Fano, general fiber $f_{\Sigma^{\prime}}$ Fano: $\operatorname{dim} X_{\Sigma}=3$, $\operatorname{dim} f_{\Sigma^{\prime}}=2$;
2. $V \subset X_{\Sigma}$ generic $K 3, E \subset f_{\Sigma^{\prime}}$ generic elliptic; π induces $V \rightarrow \mathbb{P}^{1}$ with general fiber E, elliptic.

Recap:

1. $\pi: X_{\Sigma} \rightarrow \mathbb{P}^{1}, X_{\Sigma}$ Fano, general fiber $f_{\Sigma^{\prime}}$ Fano: $\operatorname{dim} X_{\Sigma}=3$, $\operatorname{dim} f_{\Sigma^{\prime}}=2$;
2. $V \subset X_{\Sigma}$ generic $K 3, E \subset f_{\Sigma^{\prime}}$ generic elliptic; π induces $V \rightarrow \mathbb{P}^{1}$ with general fiber E, elliptic.
3. There exists $\sigma: \mathbb{P}^{1} \rightarrow X_{\Sigma}$, section of π such that $\sigma\left(\mathbb{P}^{1}\right)=D$ is a toric divisor.

Recap:

1. $\pi: X_{\Sigma} \rightarrow \mathbb{P}^{1}, X_{\Sigma}$ Fano, general fiber $f_{\Sigma^{\prime}}$ Fano: $\operatorname{dim} X_{\Sigma}=3$, $\operatorname{dim} f_{\Sigma^{\prime}}=2$;
2. $V \subset X_{\Sigma}$ generic $K 3, E \subset f_{\Sigma^{\prime}}$ generic elliptic; π induces $V \rightarrow \mathbb{P}^{1}$ with general fiber E, elliptic.
3. There exists $\sigma: \mathbb{P}^{1} \rightarrow X_{\Sigma}$, section of π such that $\sigma\left(\mathbb{P}^{1}\right)=D$ is a toric divisor. In Cox coordinate, we take $z=0$, equation of such divisor.

Recap:

1. $\pi: X_{\Sigma} \rightarrow \mathbb{P}^{1}, X_{\Sigma}$ Fano, general fiber $f_{\Sigma^{\prime}}$ Fano: $\operatorname{dim} X_{\Sigma}=3$, $\operatorname{dim} f_{\Sigma^{\prime}}=2$;
2. $V \subset X_{\Sigma}$ generic $K 3, E \subset f_{\Sigma^{\prime}}$ generic elliptic; π induces $V \rightarrow \mathbb{P}^{1}$ with general fiber E, elliptic.
3. There exists $\sigma: \mathbb{P}^{1} \rightarrow X_{\Sigma}$, section of π such that $\sigma\left(\mathbb{P}^{1}\right)=D$ is a toric divisor. In Cox coordinate, we take $z=0$, equation of such divisor.

Example

What makes $V \rightarrow \mathbb{P}^{1}$ a toric Weierstrass model W ?

What makes $V \rightarrow \mathbb{P}^{1}$ a toric Weierstrass model W ?
Is there a combinatorial description of this (i.e. can we tell from the polytope?)

What makes $V \rightarrow \mathbb{P}^{1}$ a toric Weierstrass model W ?
Is there a combinatorial description of this (i.e. can we tell from the polytope?)

Can we identify a section from the combinatorics?

Fix v_{z}, assume it is a section:

Definition

$W \subset X_{\Sigma}$ is a Weierstrass toric model \longleftrightarrow

1. f defining W is f defining E with coefficients functions in (s, t)
2. $f_{\mid z=0}$ does not depend on s, t : there is an ∞ section (through a flex of $E)$.

Fix v_{z}, assume it is a section:

Definition

$W \subset X_{\Sigma}$ is a Weierstrass toric model \longleftrightarrow

1. f defining W is f defining E with coefficients functions in (s, t)
2. $f_{\mid z=0}$ does not depend on s, t : there is an ∞ section (through a flex of $E)$.

The toric Weierstrass model satisfies properties of Weierstrass model (as defined by Nakayama).

Fix v_{z}, assume it is a section:

Definition
 $W \subset X_{\Sigma}$ is a Weierstrass toric model \longleftrightarrow
 1. f defining W is f defining E with coefficients functions in (s, t)
 2. $f_{\mid z=0}$ does not depend on s, t : there is an ∞ section (through a flex of $E)$.

The toric Weierstrass model satisfies properties of Weierstrass model (as defined by Nakayama).

Theorem
W is a Weierstrass model $\Longleftrightarrow v_{z}$ is in the interior of an edge e. $\{e, \nabla f\}$ generate $N \otimes \mathbb{R}$.

Fix v_{z}, assume it is a section:

Definition
 $W \subset X_{\Sigma}$ is a Weierstrass toric model \longleftrightarrow
 1. f defining W is f defining E with coefficients functions in (s, t)
 2. $f_{\mid z=0}$ does not depend on s, t : there is an ∞ section (through a flex of $E)$.

The toric Weierstrass model satisfies properties of Weierstrass model (as defined by Nakayama).

Theorem
W is a Weierstrass model $\Longleftrightarrow v_{z}$ is in the interior of an edge e. $\{e, \nabla f\}$ generate $N \otimes \mathbb{R}$.

Assume that W is a Weierstrass model:

Fix v_{z}, assume it is a section:

Definition

$W \subset X_{\Sigma}$ is a Weierstrass toric model \longleftrightarrow

1. f defining W is f defining E with coefficients functions in (s, t)
2. $f_{\mid z=0}$ does not depend on s, t : there is an ∞ section (through a flex of $E)$.

The toric Weierstrass model satisfies properties of Weierstrass model (as defined by Nakayama).

Theorem
W is a Weierstrass model $\Longleftrightarrow v_{z}$ is in the interior of an edge e. $\{e, \nabla f\}$ generate $N \otimes \mathbb{R}$.

Assume that W is a Weierstrass model:
Case 1. $\left\{e, \nabla f_{\Sigma^{\prime}}\right\}$ generate N over \mathbb{Z}.

Fix v_{z}, assume it is a section:

Definition

$W \subset X_{\Sigma}$ is a Weierstrass toric model \longleftrightarrow

1. f defining W is f defining E with coefficients functions in (s, t)
2. $f_{\mid z=0}$ does not depend on s, t : there is an ∞ section (through a flex of $E)$.

The toric Weierstrass model satisfies properties of Weierstrass model (as defined by Nakayama).

Theorem
W is a Weierstrass model $\Longleftrightarrow v_{z}$ is in the interior of an edge e. $\{e, \nabla f\}$ generate $N \otimes \mathbb{R}$.

Assume that W is a Weierstrass model:
Case 1. $\left\{e, \nabla f_{\Sigma^{\prime}}\right\}$ generate N over \mathbb{Z}.
Case 2. $\left\{e, \nabla f_{\Sigma^{\prime}}\right\}$ generate $N^{\prime} \subset N$ sublattice of finite index.

Fix v_{z}, assume it is a section:

Definition

$W \subset X_{\Sigma}$ is a Weierstrass toric model \longleftrightarrow

1. f defining W is f defining E with coefficients functions in (s, t)
2. $f_{\mid z=0}$ does not depend on s, t : there is an ∞ section (through a flex of $E)$.

The toric Weierstrass model satisfies properties of Weierstrass model (as defined by Nakayama).

Theorem

W is a Weierstrass model $\Longleftrightarrow v_{z}$ is in the interior of an edge e. $\{e, \nabla f\}$ generate $N \otimes \mathbb{R}$.

Assume that W is a Weierstrass model:
Case 1. $\left\{e, \nabla f_{\Sigma^{\prime}}\right\}$ generate N over \mathbb{Z}.
Case 2. $\left\{e, \nabla f_{\Sigma^{\prime}}\right\}$ generate $N^{\prime} \subset N$ sublattice of finite index.
Can reduce to Case 1 via finite maps.

Fix v_{z}, assume it is a section:

Definition

$W \subset X_{\Sigma}$ is a Weierstrass toric model

1. f defining W is f defining E with coefficients functions in (s, t)
2. $f_{\mid z=0}$ does not depend on s, t : there is an ∞ section (through a flex of $E)$.

The toric Weierstrass model satisfies properties of Weierstrass model (as defined by Nakayama).

Theorem

W is a Weierstrass model $\Longleftrightarrow v_{z}$ is in the interior of an edge e. $\{e, \nabla f\}$ generate $N \otimes \mathbb{R}$.

Assume that W is a Weierstrass model:
Case 1. $\left\{e, \nabla f_{\Sigma^{\prime}}\right\}$ generate N over \mathbb{Z}.
Case 2. $\left\{e, \nabla f_{\Sigma^{\prime}}\right\}$ generate $N^{\prime} \subset N$ sublattice of finite index.
Can reduce to Case 1 via finite maps. From now on: we assume Case 1.

Fix v_{z}, assume it is a section:

Definition

$W \subset X_{\Sigma}$ is a Weierstrass toric model \longleftrightarrow

1. f defining W is f defining E with coefficients functions in (s, t)
2. $f_{\mid z=0}$ does not depend on s, t : there is an ∞ section (through a flex of $E)$.

The toric Weierstrass model satisfies properties of Weierstrass model (as defined by Nakayama).

Theorem

W is a Weierstrass model $\Longleftrightarrow v_{z}$ is in the interior of an edge e. $\{e, \nabla f\}$ generate $N \otimes \mathbb{R}$.

Assume that W is a Weierstrass model:
Case 1. $\left\{e, \nabla f_{\Sigma^{\prime}}\right\}$ generate N over \mathbb{Z}.
Case 2. $\left\{e, \nabla f_{\Sigma^{\prime}}\right\}$ generate $N^{\prime} \subset N$ sublattice of finite index.
Can reduce to Case 1 via finite maps. From now on: we assume Case 1.
[The "stick" in Candelas-Font]

Fact: 1. Any polytope: $\{\nabla f, e\}$, with e of length 2 is reflexive.

Fact: 1. Any polytope: $\{\nabla f, e\}$, with e of length 2 is reflexive.

Definition

We call these: semistable polytopes.

Fact: 1. Any polytope: $\{\nabla f, e\}$, with e of length 2 is reflexive.

Definition

We call these: semistable polytopes.

Fact: 2. The fibers of these elliptic $K 3$ are semistable (Kodaira type I_{n}). Picture

Fact: 1. Any polytope: $\{\nabla f, e\}$, with e of length 2 is reflexive.

Definition
 We call these: semistable polytopes.

Fact: 2. The fibers of these elliptic $K 3$ are semistable (Kodaira type I_{n}). Picture

Fact 3. Using toric automorphisms can write the equations in standard forms

Fact: 1. Any polytope: $\{\nabla f, e\}$, with e of length 2 is reflexive.

Definition
 We call these: semistable polytopes.

Fact: 2. The fibers of these elliptic $K 3$ are semistable (Kodaira type I_{n}). Picture

Fact 3. Using toric automorphisms can write the equations in standard forms (useful for arithmetic computations.)

Fact: 1. Any polytope: $\{\nabla f, e\}$, with e of length 2 is reflexive.

Definition
 We call these: semistable polytopes.

Fact: 2. The fibers of these elliptic $K 3$ are semistable (Kodaira type I_{n}). Picture

Fact 3. Using toric automorphisms can write the equations in standard forms (useful for arithmetic computations.)
Fact 4. Any $V \subset X_{\Sigma}$ has a toric Weierstrass model $\longleftrightarrow \Delta_{X_{\Sigma}}$ is a subpolytope of Δ_{W}, some W semistable.

Where are the toric sections?

Let D_{z} be a toric divisor of X_{Σ}
Case 1: $D_{z} V$ splits into a sum of irreducible divisors, then each of them is a section.

Where are the toric sections?

Let D_{z} be a toric divisor of X_{Σ}
Case 1: $D_{z} V$ splits into a sum of irreducible divisors, then each of them is a section.
(Note: $r k(M W)>0)$.

Where are the toric sections?

Let D_{z} be a toric divisor of X_{Σ}
Case 1: $D_{z V}$ splits into a sum of irreducible divisors, then each of them is a section.
(Note: $r k(M W)>0)$.
Case 2: $D_{z} v$ is irreducible:

Where are the toric sections?

Let D_{z} be a toric divisor of X_{Σ}
Case 1: $D_{z V}$ splits into a sum of irreducible divisors, then each of them is a section.
(Note: $r k(M W)>0)$.
Case 2: $D_{z} v$ is irreducible:
D_{z} is a section if and only if $\Leftrightarrow v_{z}=v_{1}+v_{2}$.

Where are the toric sections?

Let D_{z} be a toric divisor of X_{Σ}
Case 1: $D_{z} V$ splits into a sum of irreducible divisors, then each of them is a section.
(Note: $r k(M W)>0)$.
Case 2: $D_{z} v$ is irreducible:
D_{z} is a section if and only if $\Leftrightarrow v_{z}=v_{1}+v_{2}$.
Example: (Next page)

Example

Take two ∇f, reflexive, as below:

$\nabla_{f}: \mathbb{P}^{2}$

$$
\nabla_{f}: \mathbb{P}^{(2,1,1)} / \mathbb{Z}_{2}
$$

■ = irreducible toric section

All the irreducible sections for the 16 (up to $S L(2, \mathbb{Z})$) two-dimensional reflexive polytopes :

Applications...

Recap:

- criterion for toric and non toric sections
- toric Weierstrass model:
definition
- toric Weierstrass model: criteria
- semistable politopes

Applications...

Recap:

- criterion for toric and non toric sections
- toric Weierstrass model: definition
- toric Weierstrass model: criteria
- semistable politopes

Arithmetic \& Physics:

- Compute: Mordell Weil lattice of sections
- Find: Torsion sections
- Use: degenerations of K3 to rational elliptic surfaces (which arise also in F-theory-Heterotic Duality)

Applications...

In progress:

- Toric Jacobian of elliptic toric fibration without a sections
- Higher dimension: Calabi-Yau threefold, fourfolds.
- Compute height of sections.
- Is a Toricall Weierstrass model unique (torically)?
- Find the "Narrow" MW lattice.

