More updates on warped brane inflation

Jinn-Ouk Gong

Instituut-Lorentz for Theoretical Physics Universteit Leiden 2333CA Leiden The Netherlands

Focus week on string cosmology IPMU, University of Tokyo 7th October, 2010

《曰》《聞》《臣》《臣》 [] 臣

Based on

- H.-Y. Chen, JG and G. Shiu, JHEP0809, 001 (2009) arXiv:0807.1927 [hep-th]
- H.-Y. Chen and JG, Phys. Rev. D80:063507 (2009) arXiv:0812.4649 [hep-th]
- H.-Y. Chen, JG, K. Koyama and G. Tasinato, arXiv:1007.2068 [hep-th]

Introduction

2 Towards more complete descriptions

- D3-brane potential in the entire throat
- Multi-field effects
- Bulk corrections

3 Conclusions

イロト イ団ト イヨト イヨト

Inflation and string theory

Inflation

- Leading candidate to solve cosmological problems e.g. horizon
- Initial conditions for successful hot big bang
- Strongly supported by observations: WMAP, SDSS, etc
 BSM
 - No inflaton candidate in SM

cf. F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659, 703 (2008): SM Higgs = inflaton?

- Better description of high energy physics
- Plenty of scalar fields = inflaton candidates

SUSY, SUGRA, string theory

Most fundamental?

< ロ > < 同 > < 回 > < 回 > < 回 > <

Inflation in string theory: warped brane inflation

The points to be addressed:

- Concrete construction of the inflaton potential $V(\phi)$
- Ø Multi-field effects and further phenomenology
- Possible corrections to $V(\phi)$

Conclusion first: STILL FAR TO GO

Deformed conifold: IR description

Complete Infrared description

- Precise identification of the CMB scales
- Non-trivial post-inflationary evolutions
- Further significant modifications: e.g. low scale inflation

A case study: Kuperstein embedding

Non-perturbative superpotential

$$W(z^{\alpha},\rho) = W_0 + A(z^{\alpha})e^{-a\rho}$$

Kuperstein embedding: embedding function $f(z^{\alpha}) = z_1 - \mu$

$$A(z^{\alpha}) = A_0 \left[\frac{f(z^{\alpha})}{f(0)}\right]^{1/n} = A_0 \left(1 - \frac{z_1}{\mu}\right)^{1/n}$$

• Highly symmetric

② Full $SO(4) \rightarrow SO(3)$ isometry of the deformed conifold Inflaton potential for the *full deformed conifold*

$$\begin{split} V(\phi) &= \frac{2a^2 |A_0|^2 e^{-2a\sigma_\star(\tau)}}{\{U[\tau, \sigma_\star(\tau)]\}^2} |g(\tau)|^{2/n} \left\{ \frac{U[\tau, \sigma_\star(\tau)]}{6} + \frac{1}{a} \left(1 - \frac{|W_0|}{|A_0|} \frac{e^{a\sigma_\star(\tau)}}{[g(\tau)]^{1/n}} \right) + F(\tau) \right\} \\ &+ \frac{1}{\{U[\tau, \sigma_\star(\tau)]\}^2} \left[D_0 \left(1 - \frac{27D_0}{64\pi^2 \phi^4} \right) + D_{\text{others}} \right] \end{split}$$

Sample results

H.-Y. Chen and JG, Phys. Rev. D80:063507 (2009) arXiv:0812.4649 [hep-th]

Э

Sample results

H.-Y. Chen and JG, Phys. Rev. D80:063507 (2009) arXiv:0812.4649 [hep-th]

5900

▶ < Ξ</p>

Trajectories in multi-field inflation

There are more than one orthogonal directions into which the field can be "*kicked*"

Trajectories in multi-field inflation

There are more than one orthogonal directions into which the field can be "*kicked*"

• • • • • • • • • • • • •

Trajectories in multi-field inflation

There are more than one orthogonal directions into which the field can be "*kicked*"

Trajectories in multi-field inflation

There are more than one orthogonal directions into which the field can be "*kicked*"

Multi-field trajectory in warped throat

- Radial and angular directions: multi-field system in principle
- Kuperstein embedding: angular stable trajectory $z_1 = -\epsilon \cosh(\tau/2)$ *throughout the whole throat*
 - D. H. Lyth, JCAP 0511, 006 (2005)
- We need different embedding

< < >> < <</>

Conclusions

Ouyang embedding

With $w_1 = (z_1 + iz_2)/\sqrt{2}$, the embedding function is given by

 $f(w_1) = \mu - w_1$

Slow-roll inflation is possible **BEFORE** instability

More updates on warped brane inflation

Jinn-Ouk Gong

nar

Instabilities in angular directions

Angular masses become tachyonic near the tip

But still inflation: at instability $\varepsilon \approx 3.6 \times 10^{-4}$

Conclusions

Multi-field potential

Angular fields become dynamically relevant

- Periodic along angular directions
- INDF/DF smoothly connected
- More to consider:
 - More inflation along angular directions?
 - Long enough inflation?
 - DBI-ness?
 - Reheating?

UV completion of inflation

Importance of UV completion

• η problem: with nearly constant V_0

$$\Delta V \sim \mathcal{O}_4 \phi^2 \to \Delta \eta \sim \frac{\langle \mathcal{O}_4 \rangle}{V_0} \sim \mathcal{O}(1)$$
?

• Higher derivatives: most general Lagrangian

$$\mathscr{L} = \mathscr{L} \left[\phi, \partial_{\mu} \phi, (\partial_{\mu} \phi)^{2}, \cdots \right] \to c_{s} \text{ dependence}$$
$$V(\phi) = \underbrace{V_{\text{stb}}(\phi) + V_{\text{D3}\overline{\text{D3}}}(\phi)}_{\text{local throat}} + \underbrace{V_{\text{bulk}}(\phi)}_{\text{local throat}}$$

Q: How to calculate the unknown bulk effects?

< ロ > < 同 > < 回 > < 回 > < 回 > <

Conclusions

Incorporating bulk effects

Bulk physics parametrized from AdS/CFT

D. Baumann, A. Dymarsky, S. Kachru, I. R. Klebanov and L. McAllister, JHEP **0903**, 093 (2009) [arXiv:0808.2811 [hep-th]]

$$V_{\text{bulk}} = -c_{\Delta} a_0^4 T_3 \left(\frac{\phi}{\phi_{\text{UV}}}\right)^{\Delta}$$

= - |V_{\text{stb}}(0)| $c_{\Delta}' \alpha^{2\Delta/3} \left[\int_{\tau} \frac{d\tau'}{K(\tau')}\right]^{\Delta} \left[\Delta = \begin{cases} 3/2(\text{chiral})\\2(\text{non-chiral}) \end{cases}$

nar

Disturbance from the bulk

We need unnaturally small couplings

H. Y. Chen and JG, Phys. Rev. D80:063507 (2009) arXiv:0812.4649 [hep-th]

			10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10^{-6}
c _{3/2}	Distant	$\mathscr{P}_{\mathscr{R}} \times 10^9$	2.71386	3.17635	13.7483	26670.1
	sources	$n_{\mathcal{R}}$	0.932540	0.927506	0.883792	0.657621
	Coulomb	$\mathscr{P}_{\mathscr{R}} \times 10^9$	2.53682	2.95080	11.9644	11348.2
	interaction	$n_{\mathcal{R}}$	0.931448	0.926480	0.883233	0.657668
<i>c</i> ₂	Distant	$\mathscr{P}_{\mathscr{R}} \times 10^9$	2.74701	3.58118	37.8218	0.0559217*
	sources	$n_{\mathcal{R}}$	0.932149	0.923750	0.856258	0.552413
	Coulomb	$\mathscr{P}_{\mathscr{R}} \times 10^9$	2.56657	3.31098	31.2301	0.0138777*
	interaction	$n_{\mathcal{R}}$	0.931062	0.922766	0.855908	0.552458

- Fine tuning of $c_{3/2}$, $c_2 \sim 10^{-9}$ or even smaller
- Marginalized scanning?
- Angular directions: sensitive or not?

イロト イポト イヨト イヨト

Summary and challenges

Towards more concrete descriptions

- Full local potential: under specific embeddings
- Multi-field effects: dependent on setup
- Bulk disturbance: severe fine tuning?
- A list of challenges (selected by personal prejudice)
 - General construction: ever be possible at all?
 - ④ Gravitino
 - in the simplest KKLT, $H \lesssim m_{3/2}$
 - $m_{3/2} \gg \mathcal{O}(\text{TeV})$ (bad for LHC) or $H \ll \mathcal{O}(\text{TeV})$ (bad for Planck)
 - Can we find $H \gg m_{3/2} \sim \mathcal{O}(\text{TeV})$?
 - Post-inflationary evolution: (multiple) curvaton, reheating, etc We need fully specified scenarios
 - And further: cosmic (super)strings, modified gravity, etc.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Next generation observables

In the coming decade, we will find

- Tensor-to-scalar ratio *r*: $V_{\text{Inf}}^{1/4}(\ll, \sim, \gtrsim)M_{\text{GUT}}$?
- Non-linear parameter *f*_{NL}: beyond simplest paradigm?
- Isocurvature perturbation *S*: signature of multi-field?
- Running of the index *α*: geometry of the field space?

Even stronger constraints on inflation and the underlying theory

Next generation observables

In the coming decade, we will find

- Tensor-to-scalar ratio *r*: $V_{\text{Inf}}^{1/4}(\ll, \sim, \gtrsim)M_{\text{GUT}}$?
- Non-linear parameter *f*_{NL}: beyond simplest paradigm?
- Isocurvature perturbation *S*: signature of multi-field?
- Running of the index *α*: geometry of the field space?

Even stronger constraints on inflation and the underlying theory

WHAT WILL BE OUR FUTURE?

