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• Motivation: Big Bang, Inflation and High Energy Physics
• Basics of cosmological inflation
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• New: F(R) supergravity (N = 1 in 4D)
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History of our Universe
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Inflation in Early Universe

• Cosmological inflation (a phase of ‘rapid’ accelerated expansion) predicts
homogeneity of our Universe at large scales, its spatial flatness, large size and
entropy, and the almost scale-invariant spectrum of cosmological perturbations
(in agreement with the WMAP measurements of the CMB radiation spectrum)

• Inflation is a paradigm, not a theory! Known theoretical mechanisms of
inflation use a slow-roll scalar field (called inflaton) with proper scalar potential

• The scale of inflation is well beyond the electro-weak scale (near/below the
Grand Unification scale) – it is High-Energy Physics beyond the SM !

• The nature of the inflaton and the origin of its scalar potential are the big
mysteries. Einstein gravity alone is not enough.
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CMB radiation (Mona Lisa of Cosmology)
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FLRW metric and cosmological acceleration (Dark Energy)

• The main Cosmological Principle of a spatially homogeneous and isotropic
(1 + 3)-dimensional universe (at large scales) gives rise to the FLRW metric

ds2FLRW = dt2 − a2(t)

[
dr2

1 − kr2
+ r2dΩ2

]

where the function a(t) is known as the scale factor in ‘cosmic’ (co-moving) co-
ordinates (t, r, θ, φ), and k is the FLRW topology index, k = (−1,0,+1). The
FLRWmetric (1) admits a 6-dimensional isometry groupG that is either SO(1,3),
E(3) or SO(4), acting on the orbits G/SO(3), with the spatial 3-dimensional
sectionsH3, E3 or S3, respectively. Important notice: Weyl tensor CFLRW

ijkl = 0.
• The early Universe inflation (acceleration) means

••
a (t) > 0 , or equivalently ,

d

dt

(
H−1

a

)

< 0

where H =
•
a /a is Hubble function. The amount of inflation (# e-foldings) is

given by

Ne = ln
a(tend)

a(tstart)
=

∫ tend

tstart
H dt ≈

1

M2
Pl

∫ φ

φend

V

V ′ dφ
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Our preferences (part of our motivation and working philosophy)

• Going beyond Einstein is a must, both from the experimental viewpoint (eg.,
due to the existence of DE) and from the theoretical viewpoint (eg., due to the UV
incompleteness of Einstein Gravity, and the need of quantum unification of Gravity
and SM)

• DE is unclustered, seen by gravitational interaction only. Like Einstein grav-
ity, the origin of DE should be geometrical, ie. be closely related to space-time
and gravity. We opt for introducing the higher-order curvature terms on the l.h.s.
of Einstein equations, and extending gravity to supergravity. Both are required by
Superstrings too.

• I am going to talk about inflation (primordial DE) in gravity and supergravity.
It is the scalar curvature dependence of the gravitational effective action that is
(arguably) most relevant to the large-scale dynamics a(t).
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Simple example: Starobinsky model (1980)

In 4 dimensions, all the independent quadratic curvature invariants areRµνλρRµνλρ ,
RµνRµν and R2. However,

∫
d4x

√
−g

(
RµνλρRµνλρ − 4RµνRµν + R2

)

is topological for any metric, while
∫

d4x
√
−g

(
3RµνRµν − R2

)

is also topological for any FLRW metric. Hence, the FLRW-relevant quadratically-
corrected gravity action is (8πGN = 1)

S = −
1

2

∫
d4x

√
−g

(
R − αR2

)

known as the Starobinsky model. It has a stable inflationary solution (attractor!).
In particular, for H % M , one finds

H ≈
(

M

6

)2
(tend − t)

It is the realization of chaotic inflation (chaotic = chaotic initial conditions).
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f(R)-gravity equations in (flat) FLRW Universe

The Starobinsky model is the special case of the f(R)-gravity models

Sf = −
1

16πGN

∫
d4x

√
−g f(R)

In the absence of matter, the gravitational (trace) equation of motion is of the
4th-order with respect to the time derivative,

3

a3
d

dt

(

a3df ′(R)

dt

)

+ Rf ′(R) − 2f(R) = 0

where we have used H =
•
a
a and R = −6(

•
H +2H2). The static de-Sitter

solutions correspond to the roots of the equation Rf ′(R) = 2f(R).

The 00-component of the gravitational equaqtions is of the 3rd order:

3H
df ′(R)

dt
− 3(

•
H +H2)f ′(R) −

1

2
f(R) = 0

The (classical and quantum) stability conditions are f ′(R) > 0 and f ′′(R) < 0,
resp.
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f(R)-gravity = scalar-tensor gravity

Any f(R) gravity is (classically) equivalent to the scalar-tensor gravity having the
(extra) propagating scalar field φ (Whitt, Maeda).

The equivalence is established via a Legendre-Weyl transform. First, the f(R)-
gravity action can be rewritten to

SA =
−1

2κ2

∫
d4x

√
−g {AR − Z(A)}

where the real scalar A(x) is related to the scalar curvature R by the Legendre
transformation,

R = Z ′(A) and f(R) = RA(R) − Z(A(R))

and κ2 = 8πGN = M−2
Pl .

Second, a Weyl transformation of the metric

gµν(x) → exp

[
2κφ(x)√

6

]

gµν(x)
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with the arbitrary field parameter φ(x) yields

√
−g R →

√
−g exp

[
2κφ(x)√

6

] {

R −
√

6

−g
∂µ

(√
−ggµν∂νφ

)
κ− κ2gµν∂µφ∂νφ

}

Hence, when choosing

A(κφ) = exp

[
−2κφ(x)√

6

]

and ignoring a total derivative, we can rewrite the action to the form

S[gµν, φ] =
∫

d4x
√
−g

{
−R

2κ2 +
1

2
gµν∂µφ∂νφ +

1

2κ2 exp

[
4κφ(x)√

6

]

Z(A(κφ))

}

in terms of the physical (and canonically normalized) scalar field φ(x) (no higher
derivatives and no ghosts). As a result, we arrive at the standard action of the real
dynamical scalar field φ(x) minimally coupled to Einstein gravity and having the
scalar potential

V (φ) = −
M2

Pl
2

exp

{
4φ

MPl
√

6

}

Z

(

exp

[
−2φ

MPl
√

6

])



Dual scalar potential in the Starobinsky model

In the context of inflation, the scalaron φ is identified with inflaton. This inflaton
has clear origin as the conformal mode of a metric (dilaton).

In the case of f(R) = R − R2/M2, the inflaton scalar potential reads

V (y) = V0

(
e−y − 1

)2

where we have introduced the notation

y =

√
2

3

φ

MPl
and V0 =

1

8
M2

PlM
2

Note the appearance of the inflaton vacuum energy V0 driving inflation. The end
of inflation (graceful exit) also exist in this model.
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(Standard) slow-roll inflation

The slow-roll inflation parameters are defined by

ε(φ) =
1

2
M2

Pl

(
V ′

V

)2

and η(φ) = M2
Pl

V ′′

V

The necessary condition for the slow-roll approximation is the smallness of the
inflation parameters

ε(φ) ' 1 and |η(φ)| ' 1

The first condition implies ••
a (t) > 0. The second one guarantees that inflation

lasts long enough, via domination of the friction term in the inflaton equation of
motion, 3H

•
φ= −V ′.

The primordial spectrum is proportional to kn−1, in terms of the comoving wave
number k and the spectral index n. The slope ns of the scalar power spectrum,
associated with density perturbations, in theory is (Liddle, Lyth): ns = 1+2η−6ε,
the slope of the tensor primordial spectrum, associated with gravitational waves,
is nt = −2ε, and the scalar-to-tensor ratio is r = 16ε.
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Physical observables in Starobinsky model

In Starobinsky model, one finds (Chibisov, Mukhanov)

ns = 1 −
2

Ne
+

3 lnNe

2N2
e

−
2

N2
e

+ O
(
ln2 Ne

N3
e

)

and r ≈ 12
N2

e
≈ 0.004 with Ne ≈ 55. It is to be compared to

the experimental (WMAP) values ns = 0.963 ± 0.012

and r < 0.24 (with 95 % confidence).

The amplitude of the initial perturbations, ∆2
R = M4

PlV/(24π2ε), is another
physical observable, whose experimental value is

(
V
ε

)1/4
= 0.027MPl = 6.6×

1016 GeV. It determines the normalization of the R2-term in the action,

M

MPl
= 4 ·

√
2

3
· (2.7)2 ·

e−y

(1 − e−y)2
· 10−4 ≈ (3.5 ± 1.2) · 10−6

14



Some more lessons

• The discriminants among inflationary models are the values of ns and r

• The Starobinsky model of chaotic inflation (1980) is still viable, and gives
the very simple explanation to the WMAP-observed value of ns. The crucial test
is a measurement of r due to primordial gravitational waves

• The scalaron (inflaton) is going to decay by the end of inflation due to one-
loop gravitational corrections (Starobinsky)

• All inflationary models of chaotic inflation based on f(R) = R + f̃(R)

gravity are close to the simple Starobinsky model (over some range of R) with
f̃(R) ≈ R2A(R) and the slowly varying function A(R),

∣∣∣A′(R)
∣∣∣ '

A(R)

R
,

∣∣∣A′′(R)
∣∣∣ '

A(R)

R2
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Planck mission: 0.5% accuracy in CMB expected
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Next step: Supergravity

• Supersymmetry is the symmetry between bosons and fermions, it is well
motivated in particle physics beyond the SM, and it is needed for consistency of
strings. Supergravity is the theory of local supersymmetry. Supergravity is the
only known consistent route to couple spin-3/2 particles (gravitinos).
• Most of studies of superstring- and brane- cosmology are based on their

effective description in the 4-dimensional N = 1 supergravity.
• An N = 1 locally supersymmetric extension of f(R) gravity is possible

(Gates Jr., SVK, 2009). It is also non-trivial because there should be no ghosts,
and the auxiliary freedom (Gates Jr., 1996) is to be preserved. The new super-
gravity action is classically equivalent to the standardN = 1 Poincaré supergrav-
ity coupled to a dynamical chiral superfield whose Kähler potential and superpo-
tential are dictated by a single holomorphic function. The inflaton arises as the
superconformal mode of a supervielbein.
A possible connection to the Loop Quantum Gravity was investigated by Gates Jr.,
N. Yunes and SVK, in Phys. Rev. D80 (2009) 065003, arXiv:0906.4978 [hep-th].
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Inflation in Supergravity (Review)

• There is a generic problem to realize an (F -term) slow-roll inflation in su-
pergravity (Murayama,Suzuki,Yanagida,Yokoyama,1994). Techically, the problem
is due to a presence of the factor exp(K/M2

Pl) in the F -term generated scalar
potential of the matter-coupled supergravity. Given the naive (tree level) Kähler
potential K ∝ ΦΦ, one gets the inflaton scalar potential V ∝ exp(|Φ|2 /M2

Pl)
that is too steep to support chaotic inflation (so-called η-problem when η ≈ 1 or,
equivalently, m2

inflaton ≈ V0/M2
Pl ≈ H2 that is unacceptable and thus requires

unnatural fine-tuning)

• Two cures are known in the literature. The 1st one is the D-term mecha-
nism (Binetruy,Dvali,1996), where inflation is generated in the gauge sector and
is highly sensitive to the gauge charges. The 2nd proposal is to assume that
the Kähler potential K does not depend upon some scalars (= flat directions),
and then add a desired scalar potential for flat directions, by identifying one of
them with the inflaton (Kawasaki,Yamaguchi,Yanagida,2000). None of those ap-
proaches is geometrical since both refer to the matter sector.
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Our Proposal for Inflation in Supergravity

• construct a locally N = 1 supersymmetric extension of f(R) gravity (we
call it F(R)-supergravity) in four spacetime dimensions,

• study applications of the F(R) supergravity to HEP and early Universe,

and, in particular,

• find embedding of the Starobinsky model of chaotic inflation into the F(R)-
supergravity.
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Basic facts about 4-dim, N = 1 supergravity in superspace

A concise and manifestly supersymmetric description of supergravity is given by
Superspace. We use here the natural units c = ! = κ = 1.

The chiral superspace density (in the supersymmetric gauge-fixed form) reads

E(x, θ) = e(x)
[
1 − 2iθσaψ̄

a(x) + θ2B(x)
]

, (1)

where e =
√
−det gµν, gµν is a spacetime metric, ψa

α = ea
µψ

µ
α is a chiral grav-

itino, B = S − iP is the complex scalar auxiliary field. We use the lower case
middle greek letters µ, ν, . . . = 0,1,2,3 for curved spacetime vector indices, the
lower case early latin letters a, b, . . . = 0,1,2,3 for flat (target) space vector
indices, and the lower case early greek letters α, β, . . . = 1,2 for chiral spinor
indices. Supergravity *= curved Superspace (off-shell SUSY constraints needed)!

The solution of the superspace Bianchi identitiies and the constraints defining the
N = 1 Poincaré-type minimal supergravity results in only three covariant tensor
superfieldsR, Ga andWαβγ, subject to the off-shell relations:
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Ga = Ḡa , Wαβγ = W(αβγ) , ∇̄•
α
R = ∇̄•

α
Wαβγ = 0 , (2)

and
∇̄

•
αG

α
•
α

= ∇αR , ∇γWαβγ = i
2∇α

•
αG

β
•
α

+ i
2∇β

•
αG

α
•
α

, (3)

where (∇α, ∇̄•
α
.∇

α
•
α
) represent the curved superspace N = 1 supercovariant

derivatives, and bars denote complex conjugation.

The covariantly chiral complex scalar superfield R has the scalar curvature R as
the coefficient at its θ2 term, the real vector superfield G

α
•
α
has the traceless Ricci

tensor, Rµν + Rνµ − 1
2gµνR, as the coefficient at its θσaθ̄ term, whereas the

covariantly chiral, complex, totally symmetric, fermionic superfieldWαβγ has the
self-dual part of the Weyl tensorCαβγδ as the coefficient at its linear θδ-dependent
term. A generic higher-derivative supergravity Lagrangian (e.g., representing the
supergravitational part of the superstring effective action) is given by

L = L(R,G,W, . . .) (4)
where the dots stand for arbitrary supercovariant derivatives of the superfields.
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New proposal: F(R) supergravity

Let’s concentrate on the scalar sector of a generic higher-derivative supergravity
(4), which is most relevant to cosmology, by ignoring the tensor superfieldsWαβγ

and G
α
•
α
, as well as the derivatives of the scalar superfieldR,

SF =
∫

d4xd2θ EF(R) + H.c. (5)

with a holomorphic function F(R). Besides manifest local N = 1 supersym-
metry, the action (5) also possess the auxiliary freedom, since the auxiliary field
B does not propagate. It distinguishes the action (5) from other possible trunca-
tions of eq. (4). The action (5) gives rise to the spacetime torsion generated by
gravitino, while its bosonic terms have the form

Sf =
∫

d4x
√
−g f(R) (6)

Hence, eq. (5) can also be considered as the locally N = 1 supersymmetric
extension of the f(R)-type gravity. Supergravity is very restrictive! and has more
particles and fields.
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Legendre-Weyl-Kähler transformation in supergravity

The superfield action (5) is classically equivalent to

SV =
∫

d4xd2θ E [ZR− V (Z)] + H.c. (7)

with the covariantly chiral superfield Z as the Lagrange multiplier. Varying the
action (7) with respect to Z gives back the original action (5) provided that

F(R) = RZ(R) − V (Z(R)) (8)

where the function Z(R) is defined by inverting the function

R = V ′(Z) (9)

Equations (8) and (9) define the superfield Legendre transform, and imply

F ′(R) = Z(R) and F ′′(R) = Z ′(R) =
1

V ′′(Z(R))
(10)

where V ′′ = d2V/dZ2. The second formula (10) is the duality relation between
the supergravitational function F and the chiral superpotential V .
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A super-Weyl transform of the acton (7) can be done entirely in superspace. In
terms of components, the super-Weyl transform amounts to a Weyl transform, a
chiral rotation and a (superconformal) S-supersymmetry transformation (Howe).
The chiral density superfield E is a chiral compensator of the super-Weyl transfor-
mations,

E → e3ΦE , (11)
whose parameterΦ is an arbitrary covariantly chiral superfield, ∇̄•

α
Φ = 0. Under

the transformation (11) the covariantly chiral superfieldR transforms as

R → e−2Φ
(
R− 1

4∇̄
2
)

eΦ̄ . (12)

The super-Weyl chiral superfield parameter Φ can be traded for the chiral La-
grange multiplier Z by using a generic gauge condition

Z = Z(Φ) (13)
where Z(Φ) is a holomorphic function of Φ. It results in the equivalent action

SΦ =
∫

d4xd4θ E−1eΦ+Φ̄ [Z(Φ) + H.c.] −
∫

d4xd2θ Ee3ΦV (Z(Φ)) + H.c.

(14)
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Equation (14) has the standard form of the action of a chiral matter superfield
coupled to supergravity,

S[Φ, Φ̄] =
∫

d4xd4θ E−1Ω(Φ, Φ̄) +
[∫

d4xd2θ EP(Φ) + H.c.
]

, (15)

in terms of a ‘Kähler’ potentialΩ(Φ, Φ̄) and a chiral superpotential P(Φ). In our
case (14) we find

Ω(Φ, Φ̄) = eΦ+Φ̄ [
Z(Φ) + Z̄(Φ̄)

]
, P(Φ) = −e3ΦV (Z(Φ)) . (16)

The truly Kähler potential K(Φ, Φ̄) is given by

K = −3 ln(−
Ω

3
) or Ω = −3e−K/3 , (17)

because of the invariance of the action (15) under the supersymmetric Kähler-
Weyl transformations

K(Φ, Φ̄) → K(Φ, Φ̄) + Λ(Φ) + Λ̄(Φ̄) , E → eΛ(Φ)E , (18)

P(Φ) → −e−Λ(Φ)P(Φ), with an arbitrary chiral superfield parameter Λ(Φ).
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Scalar potential

(in components) is given by the standard formula (Cremmer et al, 1979)

V(φ, φ̄) = eΩ
{∣∣∣∂P

∂Φ + ∂Ω
∂ΦP

∣∣∣
2
− 3 |P |2

}∣∣∣∣ (19)

where all superfields are restricted to their leading field components, Φ| = φ(x).
Equation (19) can be simplified by making use of the Kähler-Weyl invariance (18)
that allows us to choose the gauge

P = 1 (20)

It is equivalent to the well known fact that the scalar potential (19) is actually
governed by the single (Kähler-Weyl-invariant) potential

G(Φ, Φ̄) = Ω+ ln |P |2 (21)

In our case (16) we have

G = eΦ+Φ̄ [
Z(Φ) + Z̄(Φ̄)

]
+3(Φ+Φ̄)+ln(V (Z(Φ))+ln(V̄ (Z̄(Φ̄)) (22)
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Let’s now specify our gauge (13) by choosing the condition

3Φ+ ln(V (Z(Φ)) = 0 or V (Z(Φ)) = e−3Φ (23)

that is equivalent to eq. (20). Then the potential (22) gets simplified to

G = Ω = eΦ+Φ̄ [
Z(Φ) + Z̄(Φ̄)

]
(24)

Equations (8), (9) and (24) are the one-to-one relations between a holomorphic
function F(R) in the supergravity action (5) and a holomorphic function Z(Φ)

defining the scalar potential (19)

V = eG




(

∂2G

∂Φ∂Φ̄

)−1
∂G

∂Φ

∂G

∂Φ̄
− 3





∣∣∣∣∣∣
(25)

in the classically equivalent scalar-tensor supergravity.
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Getting fields from superfields

Applying the superspace chiral density formula
∫

d4xd2θ EL =
∫

d4x e {Llast + BLfirst} (26)

to our action (5) yields its bosonic part as

F ′(X̄)
[
1
3R∗ + 4X̄X

]
+ 3XF(X̄) + H.c. (27)

where primes denote differentiation. We have used the notation

X = 1
3B , R∗ = R +

i

2
εabcdRabcd (28)

Varying eq. (27) with respect to the auxiliary fields X and X̄ gives rise to merely
algebraic equation on the auxiliary fields,

3F̄ + X(4F̄ ′ + 7F ′) + 4X̄XF ′′ + 1
3F ′′R∗ = 0 (29)
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Example #1: Recovering pure Supergravity

• Let’s consider the simple special case when

F ′′ = 0 or, equivalently, F(R) = f0 + f1R (30)
with some complex constants f0 and f1, where Ref1 < 0. Then eq. (29) is easily
solved as

X̄ =
−3(f0 + f1R∗)

4f1 + 7f̄1
(31)

Substituting the solution (31) back into the Lagrangian (27) yields

2
3(Ref1)R∗ −

9 |f0|2

14(Ref1)
≡ −

1

2κ2R∗ − Λ = −
1

2κ2R(Γ + T) − Λ (32)

where we have reintroduced the standard gravitational constant κ0 = M−1
Planck

in terms of the (reduced) Planck mass, the standard supergravity connection (i.e.
Christoffel symbols Γ plus torsion T ), and a cosmological constant Λ,

κ =

√
3

4 |Ref1|
, Λ =

−9 |f0|2

14 |Ref1|
(33)
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Example #2: beyond pure supergravity

Let’s consider the Ansatz

F(R) = −
1

2
f1R +

1

2
f2R2 (34)

with some real constants f1 and f2, where the first term represents the standard
(pure) N = 1 supergravity and the second term is a ‘quantum correction’. We set
ψµ = 0, which also implies R∗ = R and the real auxiliary field X. We find

Lbos = 11f2X3 − 7f1X2 +
2

3
f2RX −

1

3
f1R (35)

In the limit of f2 → 0 we thus have X = 0, as it should. Hence, we recover the
Einstein-Hilbert Lagrangian

LEH = −
1

3
f1R = −

1

2κ2R = −
M2

Pl
2

R (36)

provided that

f1 =
3

2
M2

Pl . Let′s also use f2 =
M2

Pl
m

. (37)

30



The auxiliary field equation (29) takes the form of a quadratic equation,

11X2 − 7mX +
2

9
R = 0 (38)

whose solution is given by

X± =
7m

22



1 ±
√

1 −
8 · 11R

32 · 72m2



 =
(2Rmax

99

)1/2


1 ±
√

1 −
R

Rmax



 (39)

where we have introduced the maximal scalar curvature

Rmax =
99

2

[7m

22

]2
(40)

The existence of the built-in maximal (upper) scalar curvature (or the AdS bound)
is a nice bonus of our construction. It is similar to the factor

√
1 − v2/c2 of Special

Relativity. Yet another close analogy comes from the Born-Infeld non-linear ex-
tension of Maxwell electrodynamics, whose (dual) Hamiltonian is proportional to(
1 −

√
1 − 1E2/E2

max − 1H2/H2
max + ( 1E × 1H)2/E2

maxH
2
max

)
in terms of the

electric and magnetic fields 1E and 1H, respectively, with their maximal values. For
instance, in string theory, one has Emax = Hmax = (2πα′)−1.
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Special f(R)-gravity from F(R)-Supergravity

Equation (38) can be used to reduce the Lagrangian (35) to a linear function of
X by double iteration. Then a substitution of the solution (39) into the Lagrangian
gives us a bosonic f(R) gravity Lagrangian (6) in the form

f±(R) =
−5 · 17M2

Pl
2 · 32 · 11

R +
2 · 7

32 · 11
M2

Pl (R − Rmax)
[
1 ±

√
1 − R/Rmax

]

(41)

By construction, in the limit m → +∞ (or Rmax → +∞) both functions f±
reproduce General Relativity. In another limit R → 0, we find a cosmological
constant,

f−(0) ≡ Λ− = 0 , f+(0) ≡ Λ+ = −
73

22 · 112M2
Plm

2 = −
14

99
M2

PlRmax

(42)
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Example #2: Scalar potential and inflation

In the case of the supergravity-generated function f−(R), the inflaton scalar po-
tential reads

V (y) =
33

26M2
Plm

2 (11ey + 3)
(
e−y − 1

)2

The last factor (e−y − 1)2 of this potential is the same as that of the Starobinsky
model. However, the extra factor (11ey+3) does not allow for a slow-roll inflation
because of

ε(y) =
1

3




ey

(
11 + 11e−y + 6e−2y

)

(11ey + 3)(e−y − 1)




2

≥
1

3
(43)

and

η(y) =
2

3

(
11ey + 5e−y + 12e−2y

)

(11ey + 3)(e−y − 1)2
≥

2

3
(44)
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#3: Viable embedding of Starobinsky model into Supergravity

Let′s add a cubic term : F(R) = −
1

2
f1R +

1

2
f2R2 −

1

6
f3R3

with some real positive coefficients f1, f2 and f3. The auxiliary field equation
reads

X3 −
(
33f2
20f3

)

X2 +

(
7f1
10f3

+
1

30
R

)

X −
f2

30f3
R = 0

There are 3 different regimes. In part, when f2
2 ' f1f3, we find a simple solution

X2 = −
1

30
(R + R0)

when R < −R0 with R0 = 21f1/f3, which gives rise to the bosonic Lagrangian

Lbos = −
f1
3

R +
f3
180

(R + R0)
2

Thus, for large curvatures |R| % R0 one gets the Starobinsky model! To get this
embedding viable for chaotic inflation, one also needs large f3 (to get |R| ' MPl)
and large f2

2/f1 (to get minf ' MPl).
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Conclusion

• A manifestly 4D, N = 1 supersymmetric extension of f(R) gravity exist,
it is chiral and is parametrized by a holomorphic function. An F(R) supergravity
is classically equivalent to the standard theory of a chiral scalar superfield (with
certain Kähler potential and a superpotential) miminally coupled to the N = 1
Poincaré supergravity in four spacetime dimensions.

• The inflaton scalar potential is derivable via the (non-perturbative) Legendre–
Kähler-Weyl transform in superspace, and is governed by a single holomorphic
function. The Starobinsky model of chaotic inflation can be embedded into F(R)
supergravity. The F(R) supergravity predicts the existence of the maximal scalar
curvature, or AdS (upper) bound.

• We conjectured an identification of the dynamical chiral superfield in F(R)
supergravity with the dilaton-axion chiral superfield in 4D Superstring Theory. The
R2A(R) terms may appear in the gravitational effective action after superstring
compactification, the problem is to get a large coefficient.
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