# Discrete Symmetries and Anomalies in String Models 

1. Intiroduction

Tatsuo Kobayashi
2. Abelian Discrete Symmetries
3. Non-Abelian Discrete Symmetries
4. Anomalies
5. Summary
based on collaborations with
H.Abe, T.Araki, K.S.Choi, P.Ko, J.Kubo, H.P.Nilles, H.Onkj, J.H.Park, F.Ploger, S.Raby, S.Ramos-Sanches, M. Ratiz, M.Sakail, P.Vaudrevange, R.J.Zhang

## 1. Introduction

Now, we have lots of 4D string models leading to
(semi-)realistic massless spectra such as
$\mathrm{SU}(3) \mathrm{xSU}(2) \mathrm{xU}(1)$ gauge groups,
three chiral genenations,
vector-like matter fields and lots of singlets
with and without chiral exotic fields,
e.g. in
heterotic orbifold models,
type II intersecting D-brane models, type II magnetized D-brane models, etc.
What about their 4D low-energy effective theories ?
Are they realistic?
What about the quark/lepton masses and mixing angles ?

4D low-energy effective field theory Abelian discrete symmetries
In general, string models lead to Abelian discrete symmetries, which are quite important to control 4D low-energy effective field theory.

Quark/Lepton masses and mixing angles The top quark mass, i.e. O(1) of Yukawa coupling, can be derived in many string models. How to derive other light fermion masses (corresponding to suppressed Yukawa couplings) is model-dependent.

Flavor physics is still a challenging issue.

## Lepton masses and mixing angles

$$
\begin{array}{lll}
M_{e}=0.5 & \mathrm{MeV}, & M_{\mu}=106 \quad \mathrm{MeV} \\
M_{\tau}=1.8 & \mathrm{GeV}, &
\end{array}
$$

mass squared differences and mixing angles consistent with neutrino oscillation

$$
\begin{aligned}
& \Delta M_{21}^{2}=8 \times 10^{-5} \quad e V^{2}, \quad \Delta M_{31}^{2}=2 \times 10^{-3} \quad e V^{2} \\
& \sin ^{2} \theta_{12}=0.3, \quad \sin ^{2} \theta_{23}=0.5, \quad \sin ^{2} \theta_{13}=0,
\end{aligned}
$$

large mixing angles

## Tri-bimaximal mixing Ansatz

$$
V_{\text {MMS }} \approx\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

large mixing angles

## Non-Abelian discrete flavor symm.

Recently, in field-theoretical model building, several types of discrete flavor symmetries have been proposed with showing interesting results, e.g. S3, D4, A4, S4, Q6, $\Delta(27)$, ......

Review: e.g
Ishimori, T.K., Ohki, Okada, Shimizu, Tanimoto '10
$\Rightarrow$ large mixing angles
one Ansatz: tri-bimaximal $\left(\begin{array}{ccc}\sqrt{2 / 3} & \sqrt{1 / 3} & 0 \\ -\sqrt{1 / 6} & \sqrt{1 / 3} & \sqrt{1 / 2} \\ -\sqrt{1 / 6} & \sqrt{1 / 3} & -\sqrt{1 / 2}\end{array}\right)$

## Non-Abelian symm.

String model builders have not cared about non-Abelian discrete symmetires.
Recently, we showed that certain non-Abelian flavor symmetries appear in string models.

Studies on discrete anomalies are also important.

## 2. Abelian discrete symmetries

2-1. coupling selection rule
A string can be specified by
 its boundary condition.


Two strings can be connected to become a string if their boundary conditions fit each other.
$\longrightarrow$ coupling selection rule symmetry

## 2-2. Intersecting D-brane models

gauge boson: open string, whose two end-points are on the same (set of) D-brane(s)
N parallel D-branes $\Rightarrow \mathrm{U}(\mathrm{N})$ gauge group


## Intersecting D-branes

## Where is matter fields ?

New modes appear between intersecting D-branes.
They have charges under both gauge groups, i.e. bi-fundamental matter fields. boundary condition
$X^{2}(\sigma=0)=0, \quad \partial_{\sigma} X^{1}(\sigma=0)=0$
$X^{1}(\sigma=\pi) \tan \theta \pi+X^{2}(\sigma=\pi)=0$,
$\partial_{\sigma} X^{1}(\sigma=\pi)-\partial_{\sigma} X^{2}(\sigma=\pi) \tan \theta \pi=0$
Twisted boundary condition

## Toy model (in uncompact space)

gauge bosons : on brane quarks, leptons, higgs :
localized at intersecting points


## Generation number

Torus compactification
Family number = intersection number



## Boundary conditions



Generic case
ZN symmetries

### 2.3 Heterotic orbifold models

S1/Z2 Orbifold


There are two singular points, which are called fixed points.

## Orbifolds

## T2/Z3 Orbifold



There are three fixed points on Z3 orbifold $(0,0),(2 / 3,1 / 3),(1 / 3,2 / 3)$ su(3) root lattice

Orbifold = D-dim. Torus /twist
Torus = D-dim flat space/ lattice

## Closed strings on orbifold

Untwisted and twisted strings


Twisted strings are associated with fixed points. "Brane-world" terminology: untwisted sector bulk modes twisted sector brane (localized) modes

## Heterotic orbifold models

## S1/Z2 Orbifold



$$
X(\sigma=\pi)-e / 2=-(X(\sigma=0)-e / 2)
$$

$$
X(\sigma=\pi)=-X(\sigma=0)+n e, \quad n=0,1(\bmod 2)
$$

## Heterotic orbifold models

S1/Z2 Orbifold

twisted string

$$
X(\sigma=\pi)=-X(\sigma=0)+n e, \quad n=0,1(\bmod 2)
$$

untwisted string $\quad X(\sigma=\pi)=X(\sigma=0)$

$$
\begin{aligned}
& X(\sigma=\pi)=(-1)^{m} X(\sigma=0)+n e \\
& m, n=0,1(\bmod 2)
\end{aligned}
$$

Z2 x Z2 in Heterotic orbifold models
S1/Z2 Orbifold

$$
\begin{aligned}
& X(\sigma=\pi)=(-1)^{m} X(\sigma=0)+n e, \\
& m, n=0,1(\bmod 2)
\end{aligned}
$$

two Z2's
twisted string

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), \quad\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

untwisted string
Z2 even for both Z2

## Closed strings on orbifold

Untwisted and twisted strings


Twisted strings (first twisted sector)

$$
X(\sigma=\pi)=\theta X(\sigma=0)+n e_{1}, \quad n=0,1,2(\bmod 3)
$$

$\theta$
second twisted
sector up $^{\circ}$ to lattice $\Lambda=3 m \mathrm{e}_{1}+n\left(e_{1}-e_{2}\right)$

$$
X(\sigma=\pi)=\theta^{2} X(\sigma=0)+n e_{1}, \quad n=0,1,2(\bmod 3)
$$ untwisted sector

$$
X(\sigma=\pi)=X(\sigma=0)
$$

## $Z 3 \times Z 3$ in Heterotic orbifold models

 T2/Z3 Orbifold$$
\begin{aligned}
& X(\sigma=\pi)=\theta^{m} X(\sigma=0)+n e \\
& m, n=0,1,2 \quad(\bmod 3)
\end{aligned}
$$

two Z3's
twisted string (first twisted sector)

$$
\left(\begin{array}{ccc}
\omega & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right), \quad \omega=\exp (2 \pi i / 3)
$$

untwisted string
vanishing Z3 charges for both Z3

## 2-4. Magnetized D-branes

We consider torus compactification with magnetic flux background.


## Boundary conditions <br> on magnetized D-branes

$$
\begin{aligned}
& \partial_{\sigma} X^{4}+F_{45} \partial_{\tau} X^{5}=0 \\
& F_{45} \partial_{\tau} X^{4}-\partial_{\sigma} X^{5}=0
\end{aligned}
$$

similar to the boundary condition of open string between intersecting D-branes

T-dual

## Higher Dimensional theory with flux

Abelian gauge field on magnetized torus $T^{2}{ }^{Y} 5$

## Constant magnetic flux $F_{45}=b$,

$$
F_{45}
$$

gauge fields of background $\left\{\begin{array}{l}A_{4}=0, \\ A_{5}=b y_{4}\end{array}\right.$ $\sqrt{\square}$

$$
\begin{aligned}
& y_{4} \sim y_{4}+1 \\
& y_{5} \sim y_{5}+1
\end{aligned}
$$

Consistency requires Dirac's quantization condition.

$$
\frac{b}{2 \pi}=M \in Z
$$

## Torus with magnetic flux

We solve the zero-mode Dirac equation,

## $i \gamma^{m} D_{m} \psi=0$

e.g. for $\mathrm{U}(1)$ charge $\mathrm{q}=1$.

Torus background with magnetic flux leads to chiral spectra. the number of zero-modes
$=M$ (magnetic flux) x q (charge)


## Wave functions

## For the case of $\mathrm{M}=3$

$\theta^{0}(y)$


Wave function profile on toroidal background
Zero-modes wave functions are quasi-localized far away each other in extra dimensions. Therefore the hierarchirally small Yukawa couplings may be obtained.

Zero-modes

$$
F_{45}=2 \pi M, A_{4}=0, \quad A_{5}=2 \pi y_{4}
$$

Wave-function $=($ gaussian $) \times$ (theta-function) We have quantized momentum,

$$
P_{5}=2 \pi k,(\bmod \mathrm{M})
$$

The peaks of wave functions correspond to

$$
y_{4}=k / \mathbf{M}
$$

The momentum conservation
$\longrightarrow$ ZM discrete symmetry
e.g. $M=3 \quad \Longrightarrow \quad Z 3$ symmetry

# 3. Non-Abelian discrete symmetries 3-1. Heterotic orbifold models 

S1/Z2 Orbifold


String theory has two Z2's.
In addition, the Z2 orbifold has the geometrical symmetry, i.e. Z2 permutation.

$$
\begin{aligned}
& X(\sigma=\pi)=(-1)^{m} X(\sigma=0)+n e \\
& m, n=0,1(\bmod 2)
\end{aligned}
$$

## D4 Flavor Symmetry

Stringy symmetries require that Lagrangian has the permutation symmetry between 1 and 2 , and each coupling is controlled by two $\mathrm{Z2}$ symmetries.
Flavor symmeties: closed algebra S2 U(Z2xZ2)

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad-1=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

D4 elements

$$
\pm 1
$$

$$
\pm \sigma_{1}
$$

$$
\pm i \sigma_{2}
$$

$$
\pm \sigma_{3}
$$

modes on two fixed points $\Rightarrow$ doublet
untwisted (bulk) modes $\Rightarrow$ singlet
Geometry of compact space
$\rightarrow$ origin of finite flavor symmetry
Abelian part (Z2xZ2) : coupling selection rule
S2 permutation : one coupling is the same as another.
T.K., Raby, Zhang, '05

## Explicit Z6-II model: Pati-Salam

 T.K. Raby, Zhang '04Z6-II includes 2D Z2 orbifold.
Once we fix the orbifold and gauge background in string theory, all of modes can be computed. One can not add or reduce any modes by hand (unlike field-theoretical brane-world models).
Gauge group

$$
S U(4) \times S U(2) \times S U(2) \times S O(10)^{\prime} \times S U(2)^{\prime} \times U(1)^{5}
$$

Chiral fields
Pati-Salam model with 3 generations + extra fields
All of extra matter fields can become massive

## Heterotic orbifold as brane world

2D Z2 orbifold

1 generation in bulk
two generations on two fixed points
unbroken SU(4) * SU(2) * SU(2)
bulk $\Rightarrow(4,2,1)+\left(4^{*}, 1,2\right)+\ldots$ localized modes $\Rightarrow(4,2,1)+\left(4^{*}, 1,2\right)$

D4
singlet doublet

## Explicit Z6-II model: MSSM

Buchmuller, Hamaguchi, Lebedev, Nilles, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, '06, '07

4D massless spectrum
Gauge group

$$
S U(3) \times S U(2) \times U(1)_{Y} \times G_{H}
$$

Chiral fields
3 generations of MSSM + extra fields

All of extra matter fields can become massive along flat directions
There are O(100) models.

## Heterotic orbifold models

T2/Z3 Orbifold
$\left(\begin{array}{ccc}\text { two Z3's } \\ \omega & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega\end{array}\right),\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^{2}\end{array}\right), \quad \omega=\exp (2 \pi i / 3)$
Z3 orbifold has the S3 geometrical symmetry,

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Their closed algebra is $\Delta(54)$.

> T.K., Nilles, Ploger, Raby, Ratz, '07

## Heterotic orbifold models

T2/Z3 Orbifold
has $\Delta(54)$ symmetry.

localized modes on three fixed points
$\Delta(54)$ triplet
bulk modes
$\Delta(54)$ singlet
T.K., Nilles, Ploger, Raby, Ratz, '07

## 3-2. intersecting/magnetized D-brane models



Abe, Choi, T.K. Ohki, '09, '10


There is a Z2 permutation symmetry. The full symmetry is D4.
intersecting/magnetized D-brane models

geometrical symm.

$$
\begin{gathered}
\text { Z3 } \\
\text { S3 }
\end{gathered}
$$

## Abe, Choi, T.K. Ohki, '09, '10



Full symm.
$\Delta(27)$
$\Delta(54)$

## intersecting/magnetized D-brane models

## magnetic flux

flavor symmetry is a closed algebra of
two Zg's.
and Zg permutation

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & & & \\
& \rho & & \\
& & \ddots & \\
& & \left(\begin{array}{lllll}
\rho^{g-1}
\end{array}\right),\left(\begin{array}{llll}
\rho & & & \\
& & \rho & \\
& & & \\
& & \mathrm{O} & 1
\end{array}\right. & \mathrm{O} \\
& & & \\
&
\end{array}\right.
\end{aligned}
$$

Certain case: Zg permutation larger symm. Like Dg

## Magnetized brane-models

Magnetic flux M

## 2 <br> 4

$1+++1+-+1$ + + 1 --

Magnetic flux M
3
6
9

$$
\begin{array}{cc}
\Delta(27) & (\Delta(54)) \\
31 & \\
2 \times \overline{31} & \\
\sum 1 n & n=1, \ldots, 9 \\
\left(11+\sum 2 n\right. & n=1, \ldots, 4)
\end{array}
$$

## 3-3. field theory: extension

 Abe, Choi, T.K., Ohki, Sakai, '10S1/Z2 Orbifold
 geometrical symm.

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

String theory has two Z2's.

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

We assign generic ZN charges to localized fields on two fixed points,

$$
\left(\begin{array}{cc}
e^{2 \pi i q / N} & 0 \\
0 & e^{2 \pi i p / N}
\end{array}\right)
$$

flavor symmetries $\quad S_{3}, D_{N}, \Sigma\left(2 N^{2}\right)$

## field theory: extension

T2/Z3 Orbifold
String theory has two Z3's.
geometrical symm. Z3, S3

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right)
$$

We assign generic ZN charges to localized fields on three fixed points,

$$
\left(\begin{array}{ccc}
e^{2 \pi i p / N} & 0 & 0 \\
0 & e^{2 \pi i q / N} & 0 \\
0 & 0 & e^{2 \pi i r / N}
\end{array}\right)
$$

flavor symmetries
$A_{4}, \Delta\left(3 N^{2}\right), S_{4}, \Delta\left(6 N^{2}\right), Q_{N}, T_{7}, \Sigma(81), \cdots$
Stringy derivation is not clear.
4. Discrete anomalies

4-1. Abelian discrete anomalies
Symmetry

## quantum effects

U(1)-G-G anomalies
anomaly free condition

$$
\sum q T_{2}(R)=0
$$

ZN-G-G anomalies
anomaly free condition

$$
\sum q T_{2}(R)=0 \quad(\bmod N)
$$

## Abelian discrete anomalies: path integral

Zn transformation path integral measure

$$
\psi \rightarrow \psi^{\prime}
$$

$$
\begin{aligned}
& D \psi D \bar{\psi} \rightarrow J D \psi D \bar{\psi} \\
& J=\exp \left[A \frac{i}{32 \pi^{2}} \int d^{4} x \operatorname{tr}\left(F^{\mu \nu} \widetilde{F}_{\mu \nu}\right)\right] \\
& A=\frac{1}{N} \sum q T_{2}(R) \\
& \frac{1}{32 \pi^{2}} \int d^{4} x \operatorname{tr}\left(F^{\mu \nu} \widetilde{F}_{\mu \nu}\right)=\text { integer }
\end{aligned}
$$

ZN-G-G anomalies anomaly free condition

$$
\sum q T_{2}(R)=0 \quad(\bmod N)
$$

## Heterotic orbifold models

There are two types of Abelian discrete symmetries.
T2/Z3 Orbifold

$$
\begin{aligned}
& X(\sigma=\pi)=\theta^{m} X(\sigma=0)+n e \\
& m, n=0,1,2 \quad(\bmod 3) \\
& \text { two Z3's }
\end{aligned}
$$

One is originated from twists, the other is originated from shifts.

Both types of discrete anomalies $\sum q T_{2}(R)$ are universal for different groups G. Araki, T.K., Kubo, Ramos-Sanches, Ratz, Vaudrevange, '08

Heterotic orbifold models
$\mathrm{U}(1)$-G-G anomalies $\quad \sum q T_{2}(R)$
are universal for different groups G .
$\longrightarrow 4 \mathrm{D}$ Green-Schwarz mechanism due to a single axion (dilaton),
which couples universally with gauge sectors.
ZN-G-G anomalies may also be cancelled
by 4D GS mechanism.
There is a certain relations between
U(1)-G-G and ZN-G-G anomalies, anomalous $\mathrm{U}(1)$ generator is a linear combination of anomalous ZN generators.

Araki, T.K., Kubo, Ramos-Sanches, Ratz, Vaudrevange, '08

## 4-2. Non-Abelian discrete anomalies

Araki, T.K., Kubo, Ramos-Sanches, Ratz, Vaudrevange, '08 Non-Abelian discrete group

$$
G=\left\{g_{1}, g_{2}, \cdots, g_{M}\right\} \quad \text { finite elements }
$$

Each element generates an Abelian symmetry.

$$
\left(g_{k}\right)^{N_{k}}=1
$$

We check ZN-G-G anomalies for each element.

$$
\sum q_{k} T_{2}(R)=0 \quad\left(\bmod \quad N_{k}\right)
$$

All elements are free from ZN-G-G anomalies.
$\longrightarrow$ The full symmetry G is anomaly-free.
Some ZN symmetries for elements gk are anomalous.
$\longmapsto$ The remaining symmetry corresponds to the closed algebra without such elements.

## Non-Abelian discrete anomalies

matter fields = multiplets under non-Abelian discrete symmetry
Each element is represented by a matrix on the multiplet.

$$
\operatorname{det}\left(g_{k}\right)=1 \quad \sum q_{k} T_{2}(R)=0\left(\bmod N_{k}\right)
$$

Such a multiplet does not contribute to ZN-G-G anomalies.
String models lead to certain combinations of multiplets.
limited pattern of non-Abelian discrete anomalies

Heterotic string on Z2 orbifold: D4 Flavor Symmetry
Flavor symmeties: closed algebra S2 U(Z2xZ2)
modes on two fixed points $\Rightarrow$ doublet
untwisted (bulk) modes $\Rightarrow$ singlet

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad-1=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The first Z2 is always anomaly-free, while the others can be anomalous.
However, it is simple to arrange models such that the full D4 remains.
e.g. left-handed and right-handed quarks/leptons

$$
1+2
$$

Such a pattern is realized in explicit models.

## Heterotic models on Z3 orbifold

 two Z3's$\left(\begin{array}{ccc}\omega & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega\end{array}\right),\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^{2}\end{array}\right), \quad \omega=\exp (2 \pi i / 3)$

Z3 orbifold has the S3 geometrical symmetry,

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Their closed algebra is $\Delta(54)$.
The full symmetry except Z2 is always anomaly-free.
That is, the $\Delta(27)$ is always anomaly-free.
Abe, et. al. work in progress

# Magnetized／intersecting brane－ models 

In general，several representations appear，e．g．

Magnetic flux M

$$
\begin{aligned}
& 2 \\
& 4
\end{aligned}
$$

D4
2
$1++$＋1＋－＋1－＋＋1－－

Similar to heterotic orbifold models，only Z2 symmetries can be anomalous，but ZN symmetries with $\mathrm{N}=$ odd are always anomaly－free．

Abe，et．al．work in progress

## 4-2. Implication

## Under the full symmetry, the three generations

 have different quantum numbers.Kahler potential is diagonal,

$$
K=K_{11}(X)\left|q_{1}\right|^{2}+K_{22}(X)\left|q_{2}\right|^{2}+K_{33}(X)\left|q_{3}\right|^{2}+\cdots
$$

where $X$ denote singlet fields (moduli) triplet $\quad K_{11}(X)=K_{22}(X)=K_{33}(X)$

$$
1+2 \quad K_{11}(X)=K_{22}(X) \neq K_{33}(X)
$$

$1+1^{\prime}+1$ " $\quad K_{i i}(X)$ : independen of each other

## sfermion mass

## SUSY breaking due to F-term of X

$$
\begin{array}{ll}
\text { triplet } & \left(\begin{array}{ccc}
m_{1}^{2} & 0 & 0 \\
0 & m_{1}^{2} & 0 \\
0 & 0 & m_{1}^{2}
\end{array}\right) \\
1+2 & \left(\begin{array}{ccc}
m_{1}^{2} & 0 & 0 \\
0 & m_{1}^{2} & 0 \\
0 & 0 & m_{3}^{2}
\end{array}\right) \\
1+1^{\prime}+1^{\prime \prime} & \left(\begin{array}{ccc}
m_{1}^{2} & 0 & 0 \\
0 & m_{2}^{2} & 0 \\
0 & 0 & m_{3}^{2}
\end{array}\right)
\end{array}
$$

## symmetry breaking

Breaking of the flavor symmetries would induce off-diagonal elements in the Kahler potential, e.g.

$$
\Delta K=K_{12}(X)\left(q_{1} q_{2}^{*}+q_{1}^{*} q_{2}\right)+\cdots
$$

and sfermion mass-squared matrix,
e.g.

$$
\left(\begin{array}{ccc}
m_{1}^{2} & \Delta m_{12}^{2} & 0 \\
\Delta m_{21}^{2} & m_{1}^{2} & 0 \\
0 & 0 & m_{1}^{2}
\end{array}\right)
$$

Large off-diagonal elements are not good from FCNC.
Large breaking is not good.

## symmetry breaking

Anyway, we have to break the symmetry to derive realistic lepton/quark masses and mixing angles.

When symmetry breaking is related with lepton masses,
e.g. $\quad \Delta m_{12}^{2}=m_{\mu} / m_{1}$
or more suppressed value, that would be OK.

Such suppression could be obtained in string-inspired flavor models.
Ko, T.K., Park, Raby, '07 Ishimori, T.K., Ohki, Okada, Omura, Shimizu, Takahashi, Tanimoto, '08, '09

## Lepton flavor model building

First, we assume a certain flavor symmetry.
Then, we break it to a proper direction by flavon VEVs.
$\longrightarrow$ realistic MNS mixing matrix and lepton masses

We have achieved the first step for certain flavor symmetries.
Flavon VEVs correspond to deformation of compact space,
e.g. blow-up of orbifold singularity.

Which deformation is realistic?

Another type of breaking, e.g.
by orbifold boundary conditions.
T.K., Omura, Yoshioka, '08

Summary
We have studied discrete symmetiries and their anomalies,

We fave just started non-Abelian discrete symmetires.
We have obtained limited discrete symmetries in heterotic orbifold models and
intersecting/magnetized D-brane models.
What about string models on
other compact spaces ?

## Summary

It is still a challenging issues how to derive realistic quark//epton mass matrices.

Flavon VEVs would correspond to a certain deformation from a symmetric compact space.

