Optical and Near IR Observation of Bright Supernovae by Hiroshima 1.5-m and Other Domestic Telescopes in Japan

Koji S. Kawabata (Hiroshima Univ.)

Masayuki Yamanaka (Kyoto Univ.)
Issei Ueno, Katsutoshi Takaki (Hiroshima Univ.)
Higashi-Hiroshima Observatory (HHO)

• Found in 2006
• Only ~20 min by car from campus (503m above sea level)
• Better seeing relatively within Japan (FWHM ~1.1 arcsec by DIMM)
• Sky brightness R~19 mag/arcsec2 in dark nights
• 1.5-m telescope, 0.3-m telescope, sky-monitor, etc.

Campus of Hiroshima Univ.
Kanata 1.5-m telescope and instruments

Kanata Telescope
- 1.5mΦ main mirror
- High speed (5°/sec) azimuthal rotation

High-speed readout spectrograph: 2008-
Optical Imaging spectrograph with high-speed readout camera
FoV: 2.3′ × 2.3′
SITe EB CCD (30 frames/sec)

HOWPol: 2009-
Optical Imaging polarimeter with a low-res. spectrograph
FoV 15′ Φ
2 Hamamatsu CCDs

HONIR: 2012-
Simultaneous optical and NIR imager and spectrograph with polarimetric capability
FoV 10′ × 10′(H)
Hamamatsu CCD + Raytheon HgCdTe array
Observed Target in Kanata telescope

- CVs
- Blazars
- SNe
- GRBs
- XRBs
- Others

Follow-up obs. for Fermi, MAXI, etc.

After Fermi launched, extended polarimetric monitoring of blazars

CVs were initial main targets.

Uemura 2011
Inter University Cooperation Network: OISTER

(Japan) (Chile) (South Africa) (Hawaii)
16 tels. 1 tel. 1 tel. Subaru
0.5-2m 1m 1.4m 8.2m
With Japanese telescopes, detailed observation (Opt/IR photometry, spectroscopy) is now available for nearby SNe.
Topic: Diversity in SNe

- Extremely bright type Ia SN 2009dc (Yamanaka, KK+ 2009)
- SN 2012dn: Fainter version of SN 2009dc-like SNe? (Yamanaka in prep)
- Faint type Ia SN 2012Z (Yamanaka in prep)
- Bright type Ib SN 2012au (Takaki in prep)

Sorry, but most results are still preliminary
SN 2009dc: extremely bright SN Ia

SN 2009dc was discovered at 16.5 mag in lenticular galaxy UGC 10064 (d~100 Mpc) on 2009 Apr 9.31 UT (CBET 1762).

A follow-up observations revealed that the absorption line of C II exists, which has been seen in the super-Chandrasekhar mass SN Ia SN 2006gz (CBET 1768).

Super-Chandrasekhar mass type Ia SNe (2003fg, 2006gz)

Extremely bright \(\rightarrow \) requires \(> \sim 1 \, M_\odot \) \(56\text{Ni} \) \(\rightarrow \) progenitor mass \(> 1.4 \, M_\odot \)

(e.g., Maeda+ 2007)
SN 2009dc: optical light curve

The decline rate of 09dc is very slow compared with that of a typical SN Ia ($\Delta m_{15}(B) \sim 1.1$).

$\Delta m_{15}(B)$ of 2009dc is 0.65 ± 0.03, comparable to 0.69 ± 0.05 of 06gz.

The very slow light curve indicates that SN 2009dc is intrinsically luminous as SN 2006gz.
Correcting interstellar extinction (Gal. + host)

<table>
<thead>
<tr>
<th>E(B−V)</th>
<th>Rv</th>
<th>Mv</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07</td>
<td>3.1</td>
<td>−19.90+/−0.05</td>
</tr>
<tr>
<td>0.22</td>
<td>2.1</td>
<td>−20.19+/−0.19</td>
</tr>
<tr>
<td>0.22</td>
<td>3.1</td>
<td>−20.32+/−0.19</td>
</tr>
</tbody>
</table>

Even if we neglect the extinction in the host, SN 2009dc is one of the most luminous Type Ia Supernovae.
Bolometric luminosity and 56Ni mass

We estimated $1.2 - 1.8 \, M_\odot$ of total 56Ni mass from the peak luminosity and the rising time. (1.2 M_\odot for no extinct. in host gal., 1.8 M_\odot for $A_V=0.43$ in host gal.).

Even if we regret the host extinction, the luminosity of 09dc is 1.5 times as that of typical 05cf.

The peak luminosity is proportional to 56Ni mass. SN 2009dc synthesized the one of the largest Ni mass.

Considering the extinction in host, 56Ni mass is much more.

Assumption
60% from the optical regions.
rising time of 20 days

e.g.
Super Chandrasekhar
06gz : 1.2M_\odot
Typical SN Ia
05cf : 0.8M_\odot
In normal SNe Ia, carbon features are not seen (or disappear earlier). But, the features are conspicuously seen in 06gz and 09dc in their early phase. Furthermore, in 09dc, absorption of CII λ 6580 is still seen in 09dc at the 5.6 days after maximum, while not in 06gz. This suggests that the outer unburned CO layer is thicker in 09dc comparing with that of 06gz.
The line velocity of 09dc is much slower than SN 2006gz, suggesting a larger ejecta mass.
In a normal SN Ia, the absence of carbon features indicate that the nuclear burning reaches the outermost layer. The carbon is originated from the material in the progenitor WD. In the case of 06gz and 09dc, thermonuclear burning in the WD would not reach the outermost layer and outer material remains unburnt.

Possible origin of super-Chandra mass SN Ia progenitor

- Rapidly-rotating WD
 - Strong centrifugal force reduces the effective gravitational force → Ignition delays
 - A rapidly-rotating WD can be fat up to ~2 Mₖ (e.g., Kamiya+ 2010; Hachisu+ 2011)
- Merger of some kinds of WDs?
SN 2009dc: Late-phase

- Not so bright
- Not so strong Fe emission lines (much $^{56}\text{Ni} \rightarrow ^{56}\text{Fe}$)

Why?
Extinction by dust formed in ejecta?
SN 2012dn: 09dc-like LCs

Light curve is similar to 2009dc-like supernovae of Chandrasekhar mass SNe Ia, but fainter.
SN 2012dn: Spectra also similar to 06gz/09dc

May give a clue to questions for super-Chandrasekhar-mass SNe Ia

Sorry, spectra coming soon!
SN 2012Z in NGC 1309

(Peculiar Type Ia SN; 02cx-like event)

Discovered by LOSS in NGC 1309 (d~20Mpc) at V~18.0 mag on 2012 Jan 29 (ATEL 3900)

Similar to SN 2005hk, belonging to faint subclass of SNe Ia (02cx-like) (ATEL 3901)

Mechanism of SN 2002cx-like events is still in debate.
Optical / NIR light curve

Observed -10d through +30d
No clear second peak in I band
Similar to SN 2005hk

First K-band LC in 2002cx-like event

Sorry, NIR LC will come soon!
SN 2002cx-like type Ia SNe

SN 2012Z is a twin SN 2005hk?

Narayan et al. 2011
Late-phase photometry and spectroscopy

Line velocity in late phase is much higher than 2005hk.

→ Difference in inner part of ejecta

Late phase: Optically-thin
See through the inner region

SN ejecta (no photosphere)

Sorry, coming soon!
SN 2012au: Very bright type Ib: Spectra

Line velocity He I 5876

Higher velocity of He layer than other type Ib

Sorry, coming soon!
SN 2012au: Bolometric light curve

60% of total flux in B, V, R, I-band (Tomita +03)

\[L_{\text{max}} = 6.7 \times 10^{42} \text{[erg/s]} \]

Very bright type Ib

\[M^{56\text{Ni}} \sim 0.4 M_{\odot} \]

c.f) 08ax: 0.1 M_{\odot}

c.f) 98bw: 0.4 M_{\odot}

\[M_{\text{ej}} = 2 \sim 5 M_{\odot} \]

\[E_k = (1 \sim 7) \times 10^{51}[\text{erg}] \]

c.f) 08ax \quad M_{\text{ej}} = 1 \sim 6 M_{\odot}, \quad E_k = (1 \sim 6) \times 10^{51}\text{erg} \]
We promote optical/NIR observational studies for SNe with 1.5-m Kanata telescope in Hiroshima, together with OISTER inter university cooperation network.

One of the theme is exploring the diversity of SNe

SN 2009dc: super-Chandrasekhar mass type Ia SNe, most bright (largest ^{56}Ni mass) among ever found SNe Ia. Rapidly-rotating WD?

SN 2012dn: super-Chandrasekhar SN Ia-like spectra, but ~2mag fainter.

SN 2012Z: Similar to SN 2005hk, a faint subclass SN Ia, but late-phase spectra different

SN 2012au: Bright SN Ib

Observation/analyses still continue…