Supernova Nucleosynthesis

Keiichi Maeda

Inst. for the Phys. and Math. of the Universe (IPMU), University of Tokyo

SNe as the Origin of Elements

Stellar Evolution and Supernovae

Core-collapse SN – Standard Picture

Figure 9: SNe structure

Core-collapse

 ⇒ proto NS + bounce shock
 ⇒ shock stalled
 (ram pressure + Fe dissociation)
 ⇒v from proto NS (~ 3 × 10⁵³ erg)
 ⇒1% of v deposited, shock revival
 ⇒ explosion w/ ~ 10⁵¹ erg.

Caveat

- do **not** explode in (1D) sims.
- Multi-D effects favored.

Inside Fe core (typically decoupled from the envelope)

⁵⁶Ni important in theory & observation

- Theory:
 - Produced in the **innermost** region.
- Observation.

- SNe la/b/c powered by ${}^{56}Ni \rightarrow {}^{56}Co \rightarrow {}^{56}Fe$.

~ week ~ 100 days

Flow

- 8-10M_•
- 10 20(?)M_☉
- 20 -100 M_{\odot}
- $100 300 M_{\odot}$
- >300M_☉
- White Dwarf

8-10M. : ONeMg Core-Collapse

- Degenerate **ONeMg** core.
 - T not reached to neon ignition.
 - Electron capture → Collapse → NS.
 - ²⁴Mg(e⁻, v)²⁴Na(e⁻, v)²⁰Ne.
 - ²⁰Ne(e⁻, v)²⁰F(e⁻, v)²⁰O.

H

He

C+O

O+Ne+Mg

• Explosion even in 1D simulations.

- Standard v-driven explosion.
- Small binding energy in the envelope + steep density gradient.
- $E_{K} < 10^{50}$ erg.
- M(⁵⁶Ni) < 0.015M_☉

Kitaura+ 2006 Wanajo+ <u>2009</u>

 $\sim 0.002 - 0.004 M_{\odot}$

8-10M · : ONeMg Core-Collapse Wanajo+ 2009

- Mostly Fe-peak.
- Neutron-rich isotopes.
 - Little IME (density too low in envelope).

$10\text{-}100M_{\odot}$: Fe CC

- Simulations do not produce SNe as energetic as observed..., anyway they explode observationally.
- 2D/3D effects?

Blondin+ 2003 "SASI -Standing Accretion Shock Inst."

"Observational" E_{K} and $M({}^{56}Ni)$ vs. $M_{ms} \rightarrow$ M_{ej} derived by modeling obs. $M_{ej} \rightarrow M_{ms}$ assumes evo. Model.

- 8-12M_•
- 12 20(?)M_☉
- 20 -100 M_{\odot}
- $100 300 M_{\odot}$
- >300M_☉
- White Dwarf_{\odot}

Why matter?

They may not be dramatic, but should be numerous.

• SN lb 2005cz in an elliptical.

Kawabata, KM, Nomoto+, 2010, Nature, 465, 326

SN Ib 2005cz

Small O/Ca → Small O-core: M_{ms} ~ 8 - 12M_☉.
 EK << 10⁵¹ erg, M(⁵⁶Ni) < 0.02M_☉ (ONeMg-CC? Fe-CC?).

• Very faint SN I(?) 2008ha. Valenti+09; Foley+ 09

- A fallback CC-SN model. Moriya+2010
 - $M_{ms} \simeq 13 M_{\odot}$.
 - $E_{\kappa} = 1.2 \times 10^{48}$ erg.
 - $M_{ei} = 0.074 M_{\odot}$.
 - $M(^{56}Ni) = 0.003M_{\odot}$.
 - NS→BH formation?

Mass fractions = M_i / M_{ei} (Moriya, Tominaga, Tanaka+ 2010)

$^{4}\mathrm{He}$	^{12}C	¹⁶ O	$^{20}\mathrm{Ne}$	^{24}Mg	^{28}Si	^{32}S	$^{36}\mathrm{Ar}$	^{40}Ca	$^{44}\mathrm{Ti}$	$^{48}\mathrm{Cr}$	52 Fe	⁵⁶ Ni
0.037	0.20	0.32	0.14	0.066	0.063	0.034	0.0065	0.0045	0.00051	0.0017	0.011	0.12

Asymmetry in SN explosions (> $10M_{\odot}$)

- $8-10 M_{\odot}$
- 10 20(?) M_{\odot}
- 20(?) -100 M_{\odot}
- $100 300 M_{\odot}$
- >300M_•
- White Dwarf_{\odot}

Asymmetry – Observations (> 10M_•)

KM, Kawabata, Mazzali+ 2008, Science, 319, 1220 [OI]6300 @ 1 year for 18 SNe

Accumulating evidences... e.g., Polarization (Tanaka, Kawabata, KM+ 2008, 2009)

Nucleosynthesis in "bipolar" CC-SNe

Nagataki+97; KM+ 2002, ApJ, 565, 405; KM & Nomoto, 2003, ApJ, 598, 1163; Tominaga, KM, Umeda+ 2007, Tominaga 2009

• (Zn,Co,Ti)/Fe个, (Mn,Cr)/Fe↓

- Similar trends seen in **metal-poor halo stars** (early chemical evolution).
- "Asphericity" may be an important function in understanding the Chemical Evo.
- KM & Nomoto 2003; Tominaga, KM+, Umeda+ 2007; Tominaga 2009

20(?)-100M : Fe CC "Hypernovae"

From Supernovae to Hypernovae.

- 10 20(?)M_•
- 20(?) -100M_•
- $100 300 M_{\odot}$
- >300M_•

• 8-10M

• White Dwarf_{\odot}

20(?)-100M_☉ : Fe CC

- "Traditional" idea:
 - M_{ms} > 20-30M_☉ → **BH**, No SN.
- New Observations:
 - They **do explode**.
 - Energetic "Hypernovae"
 - Sometimes w/ GRBs.

"Observational"

- E_{K} and M(⁵⁶Ni) vs. M_{ms}
 - M_{ej} derived by modeling obs. $M_{ej} \rightarrow M_{ms}$ assumes evo. Model.

Hypernova Nucl. syn.

• Larger E_K

- Larger amount of Fe-peak and IME.

Fe-peak IME (Si, Ca...)

Nakamura+01, Umeda+02

Asymmetry again

- Hypernovae seem to have **larger asphericity** than others.
 - Both "Energy" & "asphericity" important in nucleosynthesis.

Theory... e.g., Fryer+ 1999

NS or BH?

KM+, 2007, ApJ, 658, L5

900

Important functions in nucleosynthesis.

– Energy, asphericity, "mass cut" vs. M_{ms}.

$> 100 M_{\odot}$: PISN and beyond

- $8-10 M_{\odot}$
- 10 20(?)M_•
- 20(?) -100M_•
- $100 300 M_{\odot}$
- >300M_•
- White Dwarf

PISN – Observational counterpart?

- SN Ic 2007bi = bright + ⁵⁶Ni/Co/Fe heating.
 - $-M_{ei} > 40M_{\odot}$, M(⁵⁶Ni) > 6M $_{\odot}$.
 - Cons. w/ PISN. Gal-yam+ 2009
 - **Not** conclusive yet.
- CC-SN w/ $M_{ms} \simeq 100 M_{\odot}$.

> 300M. : Fe Core-collapse

Hypothesized exp.

- M(⁵⁶Ni)=5M_☉
- M(Si)=4M_•
- M(O)=24M_•
- M(He)=280M_•
- M(H)=190M_•
- M_{BH}=480M_•

He Be C O Ne Mg Si S Ar Ca Ti Cr Fe Ni Zn Intra Galactic Medium 1 0 □ [X/Fe] -1 -2 Ζ Cl K Sc V Mn Co Cu Ga LH_ Na Al P -30 5 10 15 20 25 30 Ζ model B-2 2 Ne Mg Si S Ar Ca Ti Cr Fe Ni Zn Metal-Poor Halo stars He Be C 0 1 0 [X/Fe] -1 -2Never Fit z Na Al P Cl K Se V Mn Co Cu Ga -3_Н ₿ Li 0 5 15 20 25 30 10 Ζ

[X/Fe]

2

Nucleosynthesis \leftarrow E, Geometry \rightarrow M(BH)

Atomic Number

Ohkubo+ 2006

model B-2

Thermonuclear SNe (Type Ia)

Type Ia SN = Distance ladder

- $8-10 M_{\odot}$
- 10 20(?) M_{\odot}
- 20(?) -100M_•
- $100 300 M_{\odot}$
- >300M_☉
- White Dwarf

Thermonuclear SNe (Type Ia)

- Consensus:
 - Chandrasekhar-mass white-dwarf (~1.4 M_{\odot}).
 - -Thermonuclear explosion.
 - -No central object left.
 - -Fe producer, typically $M(^{56}Ni) \sim 0.6M_{\odot}$.
 - -Standard candles (luminosity estimate possible).

SNe Ia – classical picture

- Two modes of flames.
 Deflagration (subsonic).
 Detonation (supersonic).
- Favored scenarios:
 - Pure deflagration.
 - e-capture.
 - n-rich stable Fe-peak.
 - W7 by Nomoto+ 1984
 - Delayed det. (Def. \rightarrow det.).
 - Little e-capture (Ye = const.).
 <u>- ⁵⁶Ni/stable-Fe set</u> by progenitor.
 - C, O-burning outside.
 Khokhlow 1991; Iwamoto+ 99

KM, Taubenberger, Sollerman+ 2010, ApJ, 708, 1703

Asymmetry [Ni II] λ7378 [Fe II] λ7155 Normalized Flux + constant "Off-set" ignition. Doppler shifts in late-phases. ullet2 Solves "unresolved" spectral diversity. -20000 -15000 -10000 -5000 5000 0 10000 Fe-peak elements v_{neb} [km s⁻¹] ([Ni II] λ7378) Deflagration deflagration /**10***er ₽ ₹ m 0 84 1 14 2 1 80 90 40 40 80 time detonation KM, Roepke, Fink+ 2010, ApJ, 712, 624 (cf. Kasen+ 2009)

Asymmetry

• "Off-set" ignition.

• Doppler shifts in late-phases.

Branch+ 1988; Benetti+ 2005

Solves "unresolved" spectral diversity.

Si II absorption velocity / day

Days

Decline Rate = Luminosity indicator

• Spectral evolution do **not correlate** with the "luminosity".

Asymmetry

- "Off-set" ignition.
 - Doppler shifts in late-phases.
 - Solves "unresolved" spectral diversity.

Velocity gradient

KM, Benetti, Stritzinger+ 2010, Nature, 466, 82

viewing angle (←Doppler shift in late-phases)

KM, Roepke, Fink+ 2010, ApJ, 712, 624 (cf. Kasen+ 2009)

SN Ia Nucleosynthesis: 2D delayed det.

• Consistent with 1D W7 within a factor of 2.

Problems in 1D def.

- Low C.
 - C-burning outside.
- Low Ni/Fe (⁵⁸Ni/⁵⁶Ni).
 - Strong det. (⁵⁶Ni)
 despite weak def. (⁵⁸Ni)
- Similar to 1D delayed det. Model, indeed.
 - Differences in details, though (e.g., Ni/Fe ratio \Leftrightarrow M(⁵⁶Ni)).

Summary

Mass (M $_{\odot}$)	SN	Obs?	E ₅₁	Asymmetry	Comp. rem.
8-10	CC	perhaps probably	0.001 ~ 0.1	?	BH? NS
10-12	CC	Yes	0.01 - 1	?	NS
12-20(?)	CC	yes	~1	moderate, likely bipolar	NS
20(?)-100	СС	yes	~ 5 - 50	Extreme, likely bipolar	BH?
100-300	PISN	maybe	7 - 80	?	No
WD	la	yes	1 - 1.5	One-sided	No

Key quantities in SN Nucleosynthesis