Shattering and Coagulation of Dust Grains in Interstellar Turbulence

Hiroyuki Hirashita (ASIAA, Taiwan)

Outline

- 1. Dynamical Grain-Gas Coupling
- 2. Interstellar Turbulence
- 3. Formulation of Shattering and Coagulation
- 4. In a Cosmological Context

+ Analysis of M81 FIR image

1. Dynamical Grain-Gas Coupling

Kaneda et al. (2009) color: *AKARI* 90 μm contour: *ROSAT* X-ray

NGC 253

The FIR extension coincides with the Xray structure.

Dust is transported by gas ejection induced by stellar activity.

Grain motion is coupled with the gas motion on a scale ℓ large enough:

 $\ell \sim \mu_{\rm d} = (4/3)as/(m_{\rm H}n_{\rm H}) \sim (10/n_{\rm H})(a/0.1 \ \mu{\rm m}) \ {\rm pc}$

Large grains tend to be coupled with larger motions.

2. Interstellar Turbulence

 $l \sim \mu_{\rm d} = (4/3)as/(m_{\rm H}n_{\rm H}) \sim (10/n_{\rm H})(a/0.1 \,\mu{\rm m}) \,{\rm pc}$

Large grains tend to be coupled with larger motions.

Kolmogorov turbulence: V_{turb} $l^{1/3}$

Large grains tend to acquire larger velocities.

In Reality, Complicated....

Magnetic fields $(B^2/8\pi \sim nkT)$ \rightarrow MHD turbulence Velocity ~ Sound speed \rightarrow Compressional Grain charge (electron attachment, photo-electric eff.) \rightarrow Coupling with magnetic fields, Coulomb interaction with plasma

Grain Velocities

Warm ionized medium T = 8000 K $n_{\text{H}} = 0.1 \text{ cm}^{-3}$ $B = 3.4 \,\mu\text{G}$

Warm neutral medium T = 6000 K $n_{\text{H}} = 0.3 \text{ cm}^{-3}$ $B = 5.8 \,\mu\text{G}$ Dense cloud T = 10 K $n_{\text{H}} = 10^4 \text{ cm}^{-3}$ $B = 80 \ \mu\text{G}$

Grain Size Distribution and Extinction

Extinction (absorption+scattering)

$$\tau_{\lambda,i} = \int_0^\infty \pi a^2 Q_\lambda(a) N_{\text{dust}}(a) da$$
$$\tau_\lambda = \sum_i \tau_{\lambda,i}$$

 $\begin{array}{l}a: \text{ grain radius } (<\sim 0.1 \ \mu\text{m})\\ Q_{\lambda}(a) \sim 1 \ \text{for } \lambda <\sim a\\ Q_{\lambda}(a) << 1 \qquad a \ \text{for } \lambda >> a\end{array}$

i: grain species (silicate, graphite)

Grain size distribution $N_{dust}(a)$ $a^{-3.5}$ with 0.005 µm < a < 0.25 µm: MRN **What determines the grain size distribution?** \Box Source (supernova, AGB stars, etc.)

□ Shattering and coagulation?

FIG. 4.— Optical depths, for column densities of 10^{22} H atoms cm⁻², versus inverse wavelength. Solid line: observed by OAO. Triangles: the extinction of (C + OI) mixture of Fig.2. Dashed line: the contribution of graphite to the extinction. Dots: a mixture of graphite and olivine, $n(a) \propto a^{-3.5}$, 0.005 μ m < $a < 0.25 \mu$ m, forced to fit at the maximum of the "bump" at 4.6 μ m⁻¹.

Mathis, Rumpl, & Nordsieck (1977)

Specific Questions

A) Evolution of grain size distribution by shattering and coagulation under the grain motion induced by turbulence.
B) Do shattering and coagulation have a significant imprint in the extinction curve?

3. Formulation

Hirashita & Yan (2009)

Discrete size bins $a_0, ..., a_N$ The *i*-th bin contains grains of $\tilde{\rho}_i$ [g cm⁻³].

Shattering $\left[\frac{d\tilde{\rho}_i}{dt}\right]_{\text{shat}} = -m_i \tilde{\rho}_i \sum_{k=1}^N \alpha_{ki} \tilde{\rho}_k + \sum_{j=1}^N \sum_{k=1}^N \alpha_{kj} \tilde{\rho}_k \tilde{\rho}_j m_{\text{shat}}^{kj}(i),$ $\alpha_{ki} = \begin{cases} \frac{\sigma_{ki} v_{ki}}{m_i m_k} & \text{if } v_{ki} > v_{\text{shat}}, \\ 0 & \text{otherwise}, \end{cases} & \text{distribution of shattered fragments} \\ \text{(power-law)} \end{cases}$ Coagulation $\left[\frac{\mathrm{d}\tilde{\rho}_i}{\mathrm{d}t}\right]_{\mathrm{coag}} = -m_i\tilde{\rho}_i\sum_{k=1}^N\alpha_{ki}\tilde{\rho}_k + \sum_{j=1}^N\sum_{k=1}^N\alpha_{kj}\tilde{\rho}_k\tilde{\rho}_jm_{\mathrm{coag}}^{kj}(i),$ $m_k + m_j$ $\alpha_{ki} = \begin{cases} \frac{\sigma_{ki} v_{ki}}{m_i m_k} & \text{if } v_{ki} < v_{\text{coag}}^{ki}, \\ 0 & \text{otherwise} \end{cases}$

The grain velocities are adopted from Yan et al. (2004) (MHD turbulence).

Grain Velocities

MHD turbulence model

Yan, Lazarian, & Draine (2004)

hydro-drag, gyro-resonance

Warm ionized medium T = 8000 K $n_{\text{H}} = 0.1 \text{ cm}^{-3}$ $B = 3.4 \,\mu\text{G}$

Warm neutral medium T = 6000 K $n_{\text{H}} = 0.3 \text{ cm}^{-3}$ $B = 5.8 \,\mu\text{G}$

Dense cloud T = 10 K $n_{\text{H}} = 10^4 \text{ cm}^{-3}$ $B = 80 \ \mu\text{G}$

Results

Effects on the Extinction Curves

Dust in Cosmological Context

Beginning of Metal (dust) ProductionGrasp of "primeval galaxies" in the Universe= Understanding of the initial metal/dust enrichment

Shattering of SN Dust in WIM

Small grain production by shattering contributes to the steepness of the UV extinction curve (in solar metallicity).

Scenario

- (1) The grain size distribution in the formation by supernovae (or AGB stars) is not processed by turbulence if the metallicity is $<< 1/10 Z_{\odot}$.
- (2) After the metallicity enrichment, grain processing in ISM should be considered.
- (3) In considering the origin of the grain size distribution at the present cosmic age, **interstellar processing by turbulence should be important**.

AKARI Observation of M81

Ai-Lei Sun (NTU, Taiwan) Hiroyuki Hirashita (ASIAA, Taiwan)

AKARI Observation of M81

Sun & Hirashita (2010)

Theoretical Analysis

Thank you.

3. Effects of Coagulation on SF

Hirashita & Omukai (2009)

(1) How about the denser regime?
(2) Importance of dust grains in star formation:

A) H₂ formation (H₂ is an efficient coolant for Z < 0.01
Z_☉) The grain surface S is important.

B) Dust cooling The grain opacity κ_P is important.

We calculate the variation of *S* and κ_P in star-forming (collapsing) clouds.

Grain motion is assumed to be thermal.

Gas Evolution in Collapsing Clouds

Omukai et al. (2005)

Change of Grain Surface and Opacity by Coagulation

Change of Grain Surface and Opacity by Coagulation

Physical Considerations

Grain surface is dominated by small grains. \rightarrow Once the smallest grains are affected by coagulation, *S* begins to decrease (however, H₂ formation occurs faster).

• $t_{\rm ff} > t_{\rm coag}$ $n_{\rm H} > 10^7 (Z/Z_{\odot})^{-2} (T/30 \text{ K})^{-1} \text{ cm}^{-3}$ Opacity ($\kappa_{\rm P}$ $\pi a^2 Q_{\lambda}$ a^3) is only a function of mass as long as $a << \lambda$. $\kappa_{\rm P}$ does not change even if coagulation proceeds.

Coagulation has no effect on the thermal evolution in protostellar collapse.

1. Dust Grains in Galaxies

