

Constraining Feedback Models through Cosmological Chemical Enrichment

Ken Nagamine UNLV

Current Collaborators: Jun-Hwan Choi, Paramita Barai (P) Tae Song Lee, Robert Thompson (Grad) Jason Jaacks, Alex Jacobson, Saju Varghese, Tony Brillhart (UG) Yuu Niino (Kyoto), Hidenobu Yajima (Penn State)

Questions

- Do we really need feedback on large scales? -observational evidence
- What is the energy source? -- SNe or AGN
- How can we study chemical enrichment on cosmological scales? -- simulations
- What's the next step?

Concordance ACDM model

WMAP5, 7 $(\Omega_M, \Omega_\Lambda, \Omega_b, h, \sigma_8, n_s) \approx (0.26, 0.74, 0.04, 0.7, 0.8, 0.96)$ (Komatsu '09, '10)

- Successful on large-scales
- Then, interpret galaxy observations in the context of ΛCDM model

WMAP cosmology (Komatsu '09, '10)

Dark matter only sim

> Box size 100 Mpc/h

500³ ptcls

available on my website

ΛCDM Cosmological Hydrodynamic Simulations

 GADGET-3 SPH code (Springel '05+α) modified with metal cooling, new SF and galactic outflow models w/ variable velocity, etc.

radiative cooling/heating, star formation, SN & galactic wind feedback

• LBG/LAE@z=3-6, massive gal, EROs, DLAs,

(KN+ 04ab, 05ab, 07, 08a,b)

• Choi & KN '09a,b, '10

Series	Box-size	$N_{\rm p}$	$m_{ m DM}$	$m_{ m gas}$	ϵ	$z_{\rm end}$	
N144L10	10.0	2×144^3	2.01×10^7	4.09×10^6	2.78	2.75	
N216L10	10.0	2×216^3	5.95×10^6	1.21×10^6	1.85	2.75	
N400L10	10.0	2×400^3	9.37×10^5	1.91×10^5	1.00	2.75	
N400L34	33.75	2×400^3	3.60×10^7	7.33×10^6	3.38	1.00	
N400L100	100.	2×400^3	9.37×10^8	1.91×10^8	10.	0.0	
N600L100	100.	2×600^3	2.78×10^8	5.65×10^7	6.67	0.0	
	$[h^{-1}\mathrm{Mpc}]$		$[h^{-1}M_{\odot}]$		$[h^{-1}\mathrm{kpc}]$		

SN feedback & Wind model

SN feedback & IGM Enrichment

Choi & KN '10

IGM metal enrichment & Temp

Column density distribution f(N_{HI})

- High N_{HI}-end OK for strong feedback run.
- No feedback run overpredicts at high N_{HI}.
- Shortage of f(N_{HI}) at logN_{HI}<~21 in sim. --> problem related to the self-shielding of gas

Summary & Future Work

- Significant evidence for chemical enrichment on cosmological scales by galactic outflows & AGNs.
- Cosmological hydro sims can be a useful tool to constrain the feedback strength and its effect on IGM & galaxies.
- New models (energy-driven vs. momentum-driven) are being explored.
- QSO absorption systems (Lya forest, DLAs, etc.) are good probes of cosmic chemical enrichment.
- Future: AGN feedback, detailed chemistry w/ diff elements, yields, etc.