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Homological algebra is considered by 

mathematicians to be one of the most formal 

subjects within mathematics. Its formal austerity 

requires a lot of efforts to come through basic 

de�nitions and frightens off many of those who 

starts studying the subject. This high level of 

formality of the theory gives an impression that it 

is a ding an sich, something that has no possible 

way of comprehension for outsiders and efforts for 

learning the theory would never be paid back. 
After Alexander Grothendieck, the great creator 

of modern homological algebra who introduced the 

concept of derived categories, had left the stage 

where he occupied a central place for decades, the 

opinion that the homological theory had reached 

its bounds and become a useless formal theory 

was widely spread in the mathematical community. 
Paradoxically, these sentiments were particularly 

strong in those countries, like France, where the 

in�uence of Grothendieck’s ideas was particularly 

strong. When I visited Universities Paris 6/7 in the 

beginning of the new century, I was surprised to 

observe that Algebraic Geometry, the branch of 

mathematics where homological methods showed 

their extreme usefulness, was split in France into 

two separate trends: there were those who studied 

geometry by classical methods and did not want 

to hear anything about derived categories, and 

those who studied very formal aspects of derived 

categories and did not know anything about classical 
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From Algebras to Varieties

geometry of varieties superlatively developed by 

Italian school of the late 19th and early 20th century. 
Both groups had very strong representatives, but 

they had scarce overlap in research. 
Perhaps, one of the reasons for this strange state 

of affairs was a side effect of the great achievement 

of one of the best Grothendieck’s students, Pierre 

Deligne, who used complicated homological algebra 

to prove Weil conjectures. These conjectures are, 
probably, more of arithmetic nature and do not 

have so much to do with geometry of algebraic 

varieties in the classical sense of Italian school. 
For years, applications of derived categories were 

developed rather in the area of number theoretical 

and topological aspects of varieties and, later, in 

Representation Theory than in classical geometry of 

varieties. 

Let us trace back the idea of homological algebra 

on the example of categories of modules over an 

associative algebra. When mathematicians started to 

study various mathematical structures which admit 

operations like addition and product, they extracted 

an important class of such objects called associative 

rings. Basically, one requires that the addition is 

associative and commutative, the multiplication is 

associative too and multiplication is distributive with 

respect to addition:

(a+b)+c = a+(b+c),
a+b = b+a,

Derived categories after Grothendieck 

 Associative algebras
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(ab)c = a(bc),
(a+b)c = ac+bc

If one adds the property that every element can 

be multiplied by scalars, then an associative ring 

becomes an associative algebra. 
One can ask: why these conditions on operations 

have so omnipresent behavior in mathematics? 

Indeed, even if you start with another algebraic 

structure, like, for instance, Lie algebra, much of 

its theory, in particular, all relevant homological 

algebra, can be interpreted in terms of its universal 

enveloping algebra, which is an associative algebra. 
Well, the answer to this question is probably rather 

hard to formulate, though the question itself is very 

important. 
When the theory, especially its homological 

aspects are developed far enough, one gets a need 

to extend the de�nition of associative algebra, and 

to generalize it to DG-algebras, A-in�nity algebras, 
etc. When playing the game with various de�nitions, 
to have a clear reason for basic de�nitions is really 

crucial. The current state of affairs in homological 

algebra demands a clear understanding of 

the foundations of the theory. Associativity of 

multiplication is, basically, related to the fact that 

the composition of maps is an associative operation. 
Addition and multiplication by scalars come from the 

idea of Linearization, which seems to be based on 

the formalization of the “observation” that the space 

surrounding us (space-time) looks locally like a vector 

space. One can speculate that this subject is directly 

related to the basic principle of superposition in 

quantum mechanics, where linearity is the milestone. 
The need of DG-algebras and A-in�nity algebras is 

a strong indication of homotopy �avor of the basic 

constructions in algebra. Recent development of the 

theory of types suggests that logical foundations 

of mathematics might also be naturally rooted in 

Homotopy Theory.

Let us see how mathematicians came to the idea 

of Homological Algebra. First, they observed that 

associative algebras are complicated objects. To 

understand why, one has to consider them in their 

“society,” the place where they work, play tennis 

and communicate. This is the category of algebras, 
which means that associative algebras are observed 

together with (“communicate” by means of) maps 

between them, morphisms of algebras, i.e., maps

f: A→B,

that preserve addition and multiplication. It would 

be easier to work with algebras if any such map 

has the kernel (elements that go to zero), the 

image (elements in B which come from A), and the 

quotient by the image to be of the same kind as 

algebras themselves. Both kernel and the image are 

subalgebras in A, but not every subalgebra can be 

the kernel of a morphism, it must be a so-called 

ideal, i.e., a subset which preserves multiplication by 

every element of the algebra. The image of the map 

is not usually an ideal, which prevents from forming 

the quotient of B by the image. All this makes 

studying of algebras a complicated story. 
Now remember that associativity has come from 

composition of maps. This supports the idea to 

represent elements of algebra by maps in some 

space M. It is natural to assume that this space 

also has some linearity properties, like addition 

and multiplication by scalars. Thus, we come to the 

notion of module, or representation, over a given 

algebra. 
“The society” of modules over a �xed algebra, 

i.e., the category of modules, is much better settled 

than that of algebras. The kernel of any morphism of 

modules over an algebra, as well as the quotient by 

the image is again a module over the same algebra. 
In other words, the category of modules over a �xed 

algebra is Abelian.  

Homological Algebra
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By reversing the ideology, it is reasonable to think 

that the algebras themselves are important only 

in what concerns their categories of modules. This 

leads to the notion of Morita equivalence. Two 

algebras are Morita equivalent if their categories of 

modules are equivalent. It is reasonable to adopt the 

viewpoint that algebras are important only because 

of their categories of modules. The fundamental 

idea of Category Theory is that we have to consider 

various structures like, for example, algebras or 

modules over algebras not as individual objects but 

rather as members of “societies,” i.e., appropriate 

categories. 
Now we are well-prepared to come to the basics 

of Homological Algebra. Consider a submodule K in 

module L. We know that there is a module M which 

is the quotient of L by K. We can think of L as being 

kind of split or decomposed into two simple pieces, 
K and M. 

Since the roles of K and M are clearly different, 
this situation is described by words “L is an extension 

of M by means of K.” How can one describe all such 

extensions with �xed M and K? 

The basic observation of homological algebra is 

that all such extensions are numbered by elements 

of an additive group which, moreover, admits 

multiplication by scalars! It was a surprising discovery 

that one can sum up two extensions with given 

M and K and obtain another extension with the 

same property. It is like conjurer’s trick: he takes two 

apples, yellow and green, split each of them into 

two pieces, small and big, quickly mixes up all the 

pieces together by his hands, gets two new pieces, 

small and big, of a red apple, and �nally joins these 

two pieces and shows a new one whole red apple.

The fascinating idea of derived categories is 

that one should enlarge the category of modules, 
the society where modules live, to include there 

“descendants and predecessors” so that extensions 

for given M and K could be interpreted as 

morphisms from M into the �rst descendant of K:

M→K[1],

where K[1] is the notation for the �rst K-descendant 

(the “son” of K). The strange operation of summation 

of extensions then has the meaning of addition 

of morphisms which always exists in additive 

categories. This category which includes descendants 

of the original category was conceived by Alexander 

Grothendieck, who baptized it as derived category. 
The precise de�nition of the derived category uses 

old ideas of syzygies , or resolutions , in modern 

terminology, which go back to at least 19th century 

British mathematician Arthur Cayley and great 

German David Hilbert. 
The idea of derived categories is, in fact, quite 

universal and applicable to many other mathematical 

theories, always, when objects of study comprise an 

Abelian category. The typical psychological problem 

for researchers is that when they study some 

particular area, for instance, complex analysis, with 

many technical details in its own and come to the 

point when they need to use homological methods, 
the idea of derived categories looks so perpendicular 

to their mathematical experience and so abstract 

and technical by itself, that a real courage is needed 

Figure 1. Splitting a module into a submodule and a factor-module.

Figure 2. Addition of extensions.
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to plunge into this “hostile” sea with a hope to 

reach an island of interesting applications. I have only 

one advice for young researchers: start practicing 

to swim in this sea near the land when you are in 

kindergarten!

In algebraic geometry, objects like algebraic 

varieties, in their “social behavior,” are similar to 

algebras, they don’t comprise an Abelian category. 
So if we want to use Homological Algebra, we need 

to �nd an analogue of the category of modules. This 

is the category of coherent sheaves over an algebraic 

variety. 
Let us look on what these sheaves are and how 

they naturally appear from the idea of Linearization. 
If we consider a smooth variety X, which is a very 

curvy-linear object, and look at it in a vicinity of 

some smooth subvariety Y, we will see that the 

variety is well-approximated by its linearized version, 
the normal bundle. Assume now that the variety 

is not smooth while the subvariety is, then the 

approximation would give us something which looks 

like “a vector bundle with a jump of dimension of 

some �bers.” This is formalized as a coherent sheaf. 
As an example, consider a quadratic cone X and a 

line Y on X through the central point x of the cone. 
The �ber of the normal bundle is a line at every 

point of Y except the central point where the �ber is 

a plane, the vector space of dimension 2. 

This jump of dimension of �bers of coherent 

sheaves is always located on a subvariety, say Y1, of 

Y. Further higher rank jump of �bers might happen 

on a subvariety in Y1, and so on.
It might be surprising that coherent sheaves are 

in a sense easier to tackle with than vector bundles. 
They are relatively tame features, because they live 

in the well-organized society, an Abelian category. 
So the machinery of derived categories is applicable 

to them: by including the “descendants” and 

“predecessors” we obtain the derived category of 

coherent sheaves.
Ideas of Grothendieck on derived categories 

were put on �rm basis and vastly developed by 

many of his students, and �rst of all by Jean-Louis 

Verdier. Important formal properties of bounded 

derived categories of coherent sheaves on varieties, 
those derived categories which are most relevant 

to classical algebraic geometry, were scrutinized 

particularly in papers by Luc Illusie, but the structure 

of coherent derived categories of algebraic varieties 

remained totally obscure and their relation to 

geometry of varieties was unknown for decades. 
Grothendieck’s ideas were smuggled over the Iron 

Curtain into Russia by Yuri Manin during Russian 

political Thawing in Khrushchev era. Manin met 

with Grothendieck in the 60’s and fully realized 

importance of these new homological ideas. Manin 

and his students and collaborators in Moscow 

explored the idea of derived categories and started 

to study derived categories of coherent sheaves for 

some algebraic varieties. 
The situation in Moscow was similar to that in 

Paris: Manin’s seminar studied formal, topological 

and arithmetic properties of algebraic varieties via 

derived categories, while Shafarevich’s seminar 

and many representatives of his school, like Andrej 

Tyurin, Vassily Iskovskih and many others, worked 

on classical Algebraic Geometry in Italian style. They 

existed in parallel, though the splitting was not so 

profound as in France: it is suf�cient to recall the 

outstanding achievement of Atiyah-Drinfeld-Hitchin-

Derived categories of coherent sheaves

Figure 3. Jump of dimension of a �ber of the normal bundle to Y in X.



8 IPMU News　No. 14　June　2011

Manin paper on classical geometry of instantons, 
which has clear homological �avor. It is also worth 

to mention that derived categories started to be 

actively applied to Representation Theory. One 

of the most spectacular achievements was the 

proof in the beginning of the 80’s of Kazhdan-

Lustig conjecture by Beilinson and Bernstein, also 

independently obtained by Brylinski and Kashiwara. 
But the structure of the derived categories of 

coherent sheaves was beyond the main stream. 
There was a clear conceptual logic in studying 

derived categories and there was an evident 

deepness of results in the study of birational 

geometry and low dimensional varieties, though 

these results looked very miscellaneous and hard to 

grasp especially for the beginner, who I was by that 

time. 
At some point, I realized that various contemporary 

developments in classical Algebraic Geometry 

might be approached via the derived category of 

coherent sheaves on an algebraic variety, if we 

consider the category as an invariant of the variety. 
Natural questions had quickly come. How to extract 

any information from this invariant? Is it possible to 

reconstruct usual invariants of varieties and vector 

bundles on them, like Hodge cohomology and Chern 

classes? Is it possible to reconstruct the variety itself 

from its derived category? How the derived category 

transforms under various geometric operations, for 

example birational transformations?
It appeared that the categories of some varieties 

had some bases, called exceptional collections, 
which are like orthonormal bases in a vector space 

with a scalar form. Though, the scalar form is rather 

non-symmetric and not skew symmetric, and semi-

orthonormality is a more relevant analogy. A semi-

orthonormal basis has an order on its elements. 
If you change the order and use the (semi-)

orthonormalization process similar to Gramm-

Schmidt orthonormalization, you will quickly come 

to the action of the braid group on the set of bases. 
This re�ects a deep connection of derived categories 

to Homotopy Theory.
The problem of extracting any information from 

the derived category, when you consider it as an 

abstract triangulated category, comes from the fact 

that morphisms in this category don’t have kernels 

and cokernels as they used to have in Abelian 

categories. A useful tool was discovered jointly 

with Mikhail Kapranov. It was Serre functor, the 

categorical incarnation of the canonical class of an 

algebraic variety. Using it, I was able to reconstruct 

the columns of Hodge diamond from the derived 

category and Chern character. It was really striking 

to see that derived invariants were columns and 

not rows of Hodge diamond, as it was standard 

“knowledge” that the rows made good sense as 

they were responsible for singular homology of the 

variety. The mirror symmetry conjecture appeared by 

that time with rows and columns of 3-dimensional 

Calabi-Yau varieties exchanged under the symmetry. 
I have conjectured that derived categories should 

play the central role in mirror symmetry. This 

was later formulated in a more precise form in 

Homological Mirror Symmetry by Maxim Kontsevich 

who proposed to compare the derived category 

of a complex variety with Fukaya category of the 

symplectic manifold on the other side of the mirror. 
Jointly with Dmitry Orlov, we proved that the 

variety can be reconstructed from the derived 

category under the condition that the variety has 

ample canonical or anti-canonical class. On the 

other hand, examples of derived equivalences 

had already been known from papers of Shigeru 

Mukai for K3 surfaces and Abelian varieties. We 

found that derived categories have nice behavior 

under some special birational transformation in 

the Minimal Model Program of Shigefumi Mori. 
We conjectured that they are equivalent under so-

called �op transformations, while �ips should induce 

fully faithful functors between derived categories. 
This gave a new perspective to the program by 

interpreting that it is the derived category that 

should be nicely minimized in an appropriate 
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sense. There are results by Tom Bridgeland, Yujiro 

Kawamata and others in favor of the conjecture, but 

the proof is far from being achieved yet. 
When we consider the derived category as the 

primary invariant of an algebraic variety, we naturally 

come to the question what are the properties of 

categories which distinguish the class of derived 

categories of coherent sheaves on smooth algebraic 

varieties. Some nice properties of these categories 

were found relatively quickly in collaboration with 

Mikhail Kapranov and, later, with Michel Van den 

Bergh. These properties are also enjoyed by algebraic 

spaces, a modest extension of the class of algebraic 

varieties. Bertrand Toen and Michel Vaquie proved 

a nice theorem that if the derived category of any 

complex manifold satis�es those properties then the 

manifold must be an algebraic space. 
On the other hand, it was fairly clear from the 

very beginning that there was no easy formulated 

property of the abstract category which would 

distinguish the class of derived categories of coherent 

sheaves. The idea came to me in the early 90’s that 

we should regard all categories which satis�ed 

good properties mentioned above, but which are 

not derived categories of geometric objects, as 

categorical images of non-commutative varieties. 
Despite of a number of results in this direction, 
for instance, a classi�cation of noncommutative 

projective planes in a joint work with Alexander 

Polishchuk (inspired by an early work of Artin, Tate 

and Van den Bergh), and works on noncommutative 

blow-ups by Van den Bergh, Stafford and others, 
we are still very far from comprehending geometry 

of these noncommutative categorical varieties as 

compared to results in the commutative case. Better 

understanding of invariants of categories, similar 

to Hodge cohomology for commutative varieties, 
would certainly help to this end. 

Looking forward, it seems reasonable to consider 

the category of all smooth algebraic varieties 

and fully faithful functors as morphisms between 

them, with possibly reasonable mild extensions for 

both objects and morphisms, and try to grasp the 

structure of this “society” by means of Homotopy 

Theory. Objects of the derived categories of 

coherent sheaves have interpretation as boundary 

conditions for B-models in Topological String Theory. 
Thus, appropriate understanding of this structure 

would give an insight in the landscape of possible 

compacti�cations of the stringy space-time. 


