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Observational cosmology is an exciting research 

�eld. High-precision cosmology data sets, as rep- 

resented by the cosmic microwave background 

(CMB) experiments, have allowed us to address 

the most fundamental questions of the Universe, 
such as dark matter, dark energy, and the age of 

the Universe. 21st century cosmology requires both 

theory and observation and has now grown to be 

an “experimental” science.
Since some articles in the previous IPMU News 

touched on these advances in cosmology, we would 

like to discuss a different topic in this article, namely, 
statistical aspects of cosmology. Cosmological 

theory and methodology involve various statistical 

concepts. Cosmological data sets may look 

complicated at �rst glance. For instance, the 

fundamental observational quantity for CMB is the 

black-body radiation temperature of CMB photons 

observed in each direction in the celestial sky. In the 

case of a galaxy survey, the spatial distribution of 

galaxies is the fundamental observational quantity. 
How can these cosmological data sets be quanti�ed 

and compared with theory? What are the premises 

and assumptions made in cosmological analysis and 

what are the limitations? The goal of this article is 

to discuss these questions. 

Suppose that F (θ) is a �uctuation �eld obtained 
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from a cosmological data set. In the case of CMB, 
it is the CMB temperature �uctuation �eld, de�ned 

as F (θ) ≡ [T (θ) − T̄ ]/T̄ , where T (θ) is the CMB 

temperature in the direction θ and T̄  is the average 

temperature over the sky (see the upper-left plot 

of Fig. 1). Although a similar �eld can be de�ned 

in three-dimensional space, let’s consider the two-

dimensional �eld in the following. The �eld F(θ) is 
observed with a �nite angular resolution in actual 

observation, and would therefore be given in 

discretized pixels. The Planck satellite observed the 

CMB sky with angular resolution of about 5 arcmin, 
providing the CMB temperature �uctuation �eld in 

about 5 millions pixels. This is an enormous data set.
However, cosmology theory cannot reproduce the 

F (θ) �eld as is observed. More precisely, to build a 

model to reproduce the observed F (θ), one would 

need to introduce too many model parameters 

that can be as many as the degrees of freedom of 

the data. This is obviously not interesting, and we 

do not want to make such a fruitless effort. For 

this, a cosmological analysis usually employs the 

cosmological principle:

• the Universe is homogeneous and isotropic in a 

statistical sense.

In simpler terms, it says that there is no spatial 

direction or position in the Universe, or we on the 

Earth are not located at a spatial position in the 

Universe. Thus, this principle would be regarded as a 

democratic concept.
If we accept the cosmological principles, we can 

1. Introduction

2. Cosmological Principle, Ergodic Hy-
pothesis and Two-Point Correlation
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consider that the observed �eld F (θ) is a represen- 

tative sample of the parent population of {F(θ)} 

that exists in a vast universe. Again in the CMB case, 
we assume that even if an independent observer 

who is located somewhere far away from us in 

the Universe observed the CMB, he would see a 

similar �eld of the CMB �uctuations as what we 

observed. We need to statistically quantify the 

extent of similarity, however; i.e., how typical or 

representative the �eld we observed is compared to 

the expectation, as we will discuss below.
A Fourier decomposition is useful to quantify the 

observed �eld F (θ). That is, we decompose the �eld 

into orthogonal functions of different wavenumbers:

(1)

Here we ignored the curvature of the celestial 

sphere for simplicity and assumed that the sky is a 

two-dimensional �at space. If Ωs is an area of the 

observed region, the fundamental wavenumber of 

the Fourier decomposition lf ≡ 2π/Ωs
1/2 (Ωs

1/2 is a one-

side length of the observed area). Then the Fourier 

modes are given as l = lf (nx, ny) (nx, ny  = ±1, ±2, ...). 
The Fourier coef�cient F̃l is a quantity to describe 

how much the Fourier mode of wavenumber l 
contributes to the observed �eld.

The Fourier coef�cient is generally expressed as 
F̃l = |F̃l| eiφl, carrying two degrees of freedom: the 

amplitude and the phase. Due to the statistical 

isotropy of the cosmological principle, the phase 

unlikely carries useful information.1  Hence, as 

Figure 1. A �owchart of cosmological analysis. Upper-left plot: A cosmological �uctuation �eld F (θ). In this example, the temperature 
�uctuation �eld of the cosmic microwave background (CMB), taken from the Planck data. Upper-right plot: A Fourier decomposition of the 
�eld. Lower-right plot: A power spectrum estimation from the Fourier coef�cients of the �eld, F̃l. The gray points (in the upper panel) show 
the measured value at each wavenumber bin (more exactly multipole bin in the spherical harmonics expansion). The blue points are the 
average among the several wavenumber bins. The error bars account for statistical uncertainties in each bin arising from both the sample 
variance due to a �nite number of the Fourier modes and observational effects such as the instrumental noise. The red curve is the best-�t 
theoretical model. Lower- left plot: An example of parameter estimation, obtained by comparing the measurement with the model prediction. 
The con�dence region of each parameter is obtained by properly propagating the measurement errors into parameters.

F (θ) =
1
Ωs l

F̃l ei l ·θ
1 If there is any correlation between the phases of different Fourier modes, it 

easily causes an anisotropic or direction-aligned pattern of the �eld.
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a useful quantity to characterize the amplitude 

information of the Fourier mode, we can de�ne the 

power spectrum estimator as

(2)

where Σ|l'|∈l denotes a summation over all the Fourier 

modes satisfying |l'| ∈ l to within the bin width. 
Nmode(l) is the number of the Fourier modes in the 

summation, and is approximated for the mode l >> lf as

(3)

where ∆l is the bin width around the mode l, which 

an observer has to choose. Here 2πl∆l is the area 

of Fourier space used for the power spectrum 

estimation, while (2π)2/Ωs = l 2
f is the area of the 

fundamental mode element. Thus, the power 

spectrum estimation allows for a signi�cant data 

compression, from the vast information content of 

two-dimensional data to the one-dimensional scalar 

quantity, P̂F (l). By ignoring the phase information 

of the Fourier coef�cients and assuming that the 

Fourier modes with the same length l = |l| are 

equivalent to each other due to the cosmological 

principle, we estimate the power spectrum from the 

average of the Fourier coef�cients |F̃l|2. This would 

be the simplest statistical quantity to characterize 

the amplitude of the Fourier coef�cients.
What is the main difference between laboratory 

physics and cosmological experiments? In most 

cases a physics experiment can be repeatedly done 

at a laboratory. Then, the expectation value and the 

statistical error can be estimated from the average 

and variance of the independent experiment events 

(realizations). On the other hand, we cannot repeat 

a cosmological experiment: there is one observation 

region or there is only one universe even if the all-sky 

survey is done. Thus, in a cosmological analysis we

approximate the ensemble average of independent 

realizations by the “sample average”; for the above 

example, the power spectrum is estimated from the 

average over the Fourier modes of the same length, 

|F̃l|
2, which are all drawn from the same realization 

(one survey region). This is sometimes called the 

“ergodic hypothesis” in cosmology. A cosmologist 

has to take into account statistical uncertainty and 

limitation arising from this hypothesis.

In the preceding section we introduced the power 

spectrum that is a standard statistical quantity in 

cosmology. In fact, there is a case that the power 

spectrum carries all the statistical information of 

data. You may wonder, “is there such a convenient 

case for us?”, but the answer is indeed yes! As we 

will see below, our Universe appears to be simple 

and beautiful in a “statistical” sense.
The in�ationary scenario provides a plausible 

mechanism to explain the origin of cosmological 

�uctuation �elds such as the CMB temperature 

�uctuations and large-scale structure. It is a scenario 

that the universe underwent an exponential 

expansion at the beginning of hot Big Bang universe. 
Since the universe itself is tiny during the in�ation 

era, one needs to consider a quantization of a �eld 

that causes an in�ationary expansion, which is often 

called in�aton. Due to the uncertainty principle 

of quantum mechanics, the in�aton inevitably 

has quantum �uctuations. Then the in�ationary 

scenario predicts that the quantum �uctuations 

are stretched out by the exponential expansion to 

macroscopic scales, leaving classical �uctuations on 

horizon scales (the scales beyond causal contact). 
In quantum �eld theory, different wavenumber 

modes (k) correspond to different quantum states. 
Furthermore, it is assumed in a standard in�ation 

model that an interaction involved in the in�ation 

�eld is small, and different quantum states are 

independent from each other. That is, if we denote 

the primordial classical �uctuation �eld by ζ̃k (often 

called the primordial curvature perturbation), the 

following condition is satis�ed:
(4)

3. Primordial Gaussian Random 
Fluctuations and Sample Variance

P̂F (l) ≡
1

Nmode (l)Ωs
| l |∈ l

F̃l
2

N mode (l) ≡
| l |∈l

2πl∆ l
(2π )2 /Ωs

〈ζ̃k ζ̃k'〉 ≡ Pζ (k)(2π)3δ3
D(k +k' ) 
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where Pζ (k) is the primordial power spectrum. 
δ3

D(k + k') is the three-dimensional Dirac delta 

function imposing that the �elds of different 

wavenumbers are independent. In addition, we 

assumed that the primordial �eld is statistically 

isotropic, leading the power spectrum Pζ to depend 

only on the length k = |k|, which is valid as long as 

an in�ation expansion is isotropic.
Thus, the in�ationary scenario naturally predicts 

the generation of isotropic classical perturbations 

across the whole universe originating from random, 
free quantum �uctuations. More precisely, we 

expect that the phase of the primordial �uctuation 

�eld, ζ̃k, is a random zero-mean variable, and only 

the amplitude contains the physical information, 
where the typical amplitude is given by the 

primordial power spectrum Pζ (k). This means that 

the primordial �eld ζ(x) is a Gaussian random �eld. 
The Gaussian �eld has simple statistical properties. 
The even order correlation functions2 are given by 

a product of the two-point correlation function, 
which is the inverse Fourier transform of the power 

spectrum. The odd order correlation functions3 are 

all vanishing. That is, the statistical properties of 

a Gaussian random �eld are fully described by its 

power spectrum.
One problem of cosmic structure formation is 

solving how the perturbations of each component 

of radiation, baryon and dark matter have evolved 

in an expanding universe that has undergone from 

the radiation-, matter-, and dark-energy dominated 

era, given the initial conditions such as those set by 

the in�ation models. As long as the amplitude of 

the perturbations is much smaller than unity, we 

can use the linearized perturbation theory to solve 

the dynamical evolution of multi-component system 

based on the linearized Einstein equations and the 

linearized Boltzmann equations. The nice thing is 

that different Fourier modes evolve independently in 

the linear regime. This means that the perturbations 

in the linear regime preserve statistical properties of 

the primordial perturbations. In fact the observed 

CMB temperature �uctuation �eld, which is well 

in the linear regime, is found to be in remarkable 

agreement with a Gaussian random �eld, which is 

considered as one of the pieces of strong evidence 

of the in�ationary scenario.
Hence, a power spectrum estimation from 

the cosmological data can be regarded as an 

appropriate approach, motivated by the in�ationary 

scenario. As we stated in the previous section, we 

need to take into account statistical uncertainty in 

the power spectrum estimation arising due to a 

�nite number of the Fourier modes. This uncertainty 

is called the sample variance. The statistical 

uncertainty in the power spectrum estimation 

is given by the covariance matrix, and can be 

analytically computed for a Gaussian �eld:

(5)

Here δK
ll' is a Kronecker-type delta function, de�ned 

in that δK
ll' =1 if l =l' to within the bin width, 

otherwise δK
ll' =0. Thus the covariance matrix for 

a Gaussian �eld has only diagonal elements.4 In 

other words, the power spectra of different bins 

are independent from each other. For a non-

Gaussian �eld, the covariance matrix has additional 

contribution that arises from the 4-point correlation 

function that cannot be expressed by a combination 

of the power spectra, causing correlations 

between the power spectra of different bins. In 

actual observation, other statistical noise such as 

instrument noise also contributes to the covariance, 
but we ignore the contribution for simplicity in the 

following.
The covariance elements at each l bin give a 

1σ-distribution of the measurement values around 

the expectation value, when the power spectrum 

at the l bin is estimated from each of the survey  

realizations for the �xed area Ωs. Hence an expected 

statistical signi�cance of the power spectrum 

2 For instance, the 4-point correlation function is given by 〈ζ(x1)ζ(x2)ζ(x3)ζ(x4)〉.
3 For instance, the 3-point correlation function is given by 〈ζ(x1)ζ(x2)ζ(x3)〉.
4 The prefactor 2 on the r.h.s arises from the fact F̃l = F̃*−l due to real condition 

of the �uctuation �eld F (θ).

Cov[P̂F (l), P̂F (l )] ≡ P̂F (l)P̂F (l ) − P̂F (l) P̂F (l )

=
2

Nmode (l)
δK

ll PF (l)2
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estimation at each l bin is

 

(6)

 

where σ(PF(l)) = [Cov(P̂F (l), P̂F (l))]l/2. For a Gaussian 

case the statistical signi�cance does not depend 

on the power spectrum, but rather depends only 

on the number of Fourier modes around the bin 
l, Nmode(l). Because of Nmode(l) ∝ Ωsl∆l, the statistical 

signi�cance is greater for a larger area, a higher 

wavenumber bin l, and a wider bin width ∆l.
The lower-right panel of Fig. 1 shows the CMB 

temperature power spectrum measured from 

the Planck data. The plot clearly shows that the 

measurement accuracy is increasingly higher at 

higher wavenumber bin l (more exactly the higher 

multipoles that are the order in spherical harmonics 

expansion). The error bars around blue data points 

denote the statistical uncertainties due to the 

sample variance as well as the instrumental noise. 
Again we would like to emphasize that an observer 

has to model the sample variance. 
Once the statistical uncertainties in the power 

spectrum measurement are given, one can compare 

the measurement with theory:

(7)

Here we assumed on the r.h.s that the model power 

spectrum, PF
model(l), is given as a function of the 

primordial power spectrum and other cosmological 

parameters that specify the cosmic expansion 

history. This assumption is valid as long as the 

�uctuations are in the linear regime. First, we can 

study whether a model of interest can give a good 

�t to the measurement to within the error bars. 
Next, by propagating the measurement errors into 

parameter estimation, we can estimate a con�dence 

region for each parameter. The lower-left panel 

shows such an example. Strikingly, the Planck 

team successfully attained the ultimate statistical 

precision allowed by the sample variance up to l ~ 
2000, as it uses the all-sky data and the instrument 

noise is negligible up to the multipoles. Namely, 

since the power spectrum contains all the statistical 

information for a Gaussian �eld, they were able 

to use all the CMB temperature information in 

the Universe in order to extract the cosmological 

information.
What we have so far described is summarized 

by the following three remarks. (1) We measure 

the power spectrum from a cosmological data 

set assuming the cosmological principle that the 

Universe is statistically isotropic and homogeneous. 
(2) Assuming the ergodic hypothesis that an 

observed region is a representative sample randomly 

drawn from the parent populations, an observer 

needs to “model” sample variance effects in the 

power spectrum estimation. (3) If the cosmological 

�uctuation �eld is a Gaussian random �eld as 

predicted by the in�ationary scenario, the power 

spectrum contains all the statistical information 

of the �eld. If any of these three breaks down, the 

power spectrum is no longer the optimal quantity 

to extract all the statistical information.

While we have so far mainly discussed the 

linear Gaussian �eld such as the CMB �eld, in this 

section we consider the cosmological data sets 

available from galaxy surveys that are aimed at 

exploring the accelerating universe. The dynamical 

evolution of �uctuations after the CMB epoch 

is driven mainly by the spatial inhomogeneities 

of dark matter distribution. The current standard 

scenario is that  the seed perturbations have grown 

due to gravitational instability and then formed 

the present-day, cosmic hierarchical structures 

containing nonlinear structures such as galaxies, 
clusters of galaxies and large-scale structure seen 

through the distribution of galaxies. This scenario is 

the cold dark matter dominated structure formation 

model (hereafter simply CDM model). The CDM 

model predicts a bottom-up structure formation: 
small-scale nonlinear structures are �rst formed 

4. Large-Scale Structure Formation: 
Nonlinearity of Gravity

PF (l)
σ (PF (l))

2

=
Nmode (l)

2

P̂F (l ) ←→ P model[l; Pζ (k), Ωm0h
2, Ωb0h

2, Ωde, ...]
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and then merge in a continuous hierarchy to form 

larger-scale structures.
We assume that CDM particles have negligible 

thermal velocity (cold) and interact with other 

particles only via gravity. We can show that, on 

scales well within horizon scale and from a spatially 

coarse-grained viewpoint, the time evolution of 

dark matter clustering follows the pressureless and 

irrotational �uid equations in an expanding universe:

(8)

Here a(t) is the scale factor that is an increasing 

function with cosmic expansion, δm(x) ≡ [ρm(x) −ρ̄m]/ρm 

is the mass density �uctuation �eld, vm(x) is the 

peculiar velocity �eld, and ϕ(x) is the gravitational 

potential �eld. In a completely isotropic and 

homogeneous universe, δm=|vm|= 0 everywhere. 
We can study the dynamical evolution of the dark 

matter �elds by solving these equations, starting 

from the initial conditions constrained by the 

CMB observations. As is obvious from the above 

equations, the dark matter �elds linearly evolve as 

long as the amplitudes of the perturbations are 

much smaller than unity, i.e. |δm|=|vm|<< 1 in units of 
c = 1 for speed of light. Once the nonlinear terms 
δmvm and (vm · ∇)vm become non-negligible compared 

to the linear terms as time goes by, however, the 

dark matter �elds enter into the nonlinear regime. 
The nonlinear evolution induces a mode coupling 

between different Fourier modes, leading to a 

complex evolution of the dark matter �elds. Thus, 
even if the initial �elds are Gaussian, the nonlinearity 

of gravity induces non-Gaussian features in the 

spatial distribution of dark matter. The degrees of 

non-Gaussianity become greater at smaller scales 

and at lower redshift.
Thus, the power spectrum no longer describes the 

full information of dark matter distribution in the 

late-time universe. In fact, N-body simulation based 

studies for the CDM model, as illustrated in Fig. 2, 
have shown that the all n-point correlation functions 

of the dark matter distribution generally become 

non-vanishing. 
Having described the non-Gaussian features 

of large-scale structure, one question arises. As 

described in the previous sections, the power 

spectrum describes the full information contained 

in the linear, Gaussian �uctuation �eld in the 

early universe, which gives the initial conditions of 

structure formation. On the other hand, the dark 

matter �uctuation �eld displays non-Gaussian 

features, and has non-vanishing values for all 

higher-order correlation functions beyond the 

power spectrum. Since we cannot extract any 

extra information beyond the initial conditions in 

analogy to the second law of thermodynamics, 
we can consider that some of the initial Gaussian 

Figure 2. An example of N-body simulations for the cold dark 
matter (CDM) dominated the structure formation model. Even if 
starting from the initial Gaussian condition, the spatial distribution 
of dark matter, as represented by N-body particles, display rich 
non-Gaussian features as a consequence of complex nonlinear 
gravitational instability. Dark matter halos appear at the spatially 
small places where dark matter particles particularly cluster. Very 
massive halos of cluster scales, with masses ~> 1015M○• , tend to 
appear at the intersection of cosmic webs/�laments (the obvious 
example is the halo at the center of the plot). The amount of dark 
matter contained in halos with masses greater than galactic scales 
1012M○•  is a few 10 percent of the total matter in the universe. On 
the other hand, about 70 percent of the spatial volume is occupied 
by the spatially big, under-density regions – the so-called voids. 
Re�ecting such asymmetry, the dark matter distribution becomes to 
have non-vanishing values for all the n-point correlation functions.

∂δm

∂ t +
1
a
∇ [(1 + δm) vm] = 0

∂vm

∂ t +
ȧ
a
vm +

1
a

(vm ·∇ ) vm = −
1
a
∇φ

∇2φ = 4πG ρ̄m a2δm
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information leak into the higher-order correlation 

functions as a consequence of the nonlinear 

structure formation. Namely, the question is

• Can we recover the initial Gaussian information 

content from the present-day dark matter 

distribution by combining the statistical 

quantities?

This is indeed an unresolved problem in the �eld 

of cosmology. If the dynamical system is time- 

reversible, we can back to the initial conditions, 
and therefore should be able to recover the initial 

information content from observables of the current 

data (the �nal state). In the bottom-up CDM model 

the density �uctuations at suf�ciently large scales 

are still in the linear regime, preserve the Gaussianity 

of the initial �eld, and therefore we can recover the 

initial information. On the other hand, the density 

�uctuations at very small scales are in the strongly 

nonlinear regime (|δm| >> 1) and the scales may 

have already lost the initial memory. For example, 
consider dark matter particles that are bound in 

a dark matter halo. Such particles may have a 

complex orbit scattering or oscillating around the 

halo center during their evolution history, so the 

snapshot information alone of the �nal state would 

not allow us to perfectly back their distribution to 

their initial positions in a time-reversible way. At 

the intermediate scales, which are in the weakly 

nonlinear regime, we may be able to recover “most” 
of the initial information. It is still not clear, however, 
to what extent we can recover the Gaussian 

information from the available observables from 

the scales. In fact, upcoming galaxies surveys aim at 

achieving a high-precision measurement of galaxy 

clustering or weak lensing observables in the weakly 

nonlinear regime, in order to use the measurements 

to do cosmology. Hence this question is very 

important for cosmologists.
In recent years we have been addressing the 

above question based on both N-body simulations 

and analytical model of structure formation. Fig. 
3 shows one of our results. Here, we studied 

how much information the weak lensing power 

spectrum in the late-time universe carries, by using 

mock catalogs of weak lensing observables that 

were constructed using N-body simulation outputs 

of CDM structure formation. At small wavenumber 
l ~ 100, the weak lensing power spectrum recovers 

almost all the Gaussian information. However, at the 

larger wavenumber l >~ a few 100, the information 

Figure 3. The cumulative information content contained in 
the weak lensing power spectrum. The weak lensing �eld is 
the projected �eld of the mass density �uctuation �eld along 
the line-of-sight, between an observer and source galaxies at 
redshift zs = 1. Here we assume Ωs = 1400 sq. degrees for the 
survey area. The “cumulative” information content is obtained 
by summing the signal-to-noise ratio of the power spectrum 
measurement (e.g., see Eq. 6) from the minimum wavenumber 
lmin = 72 up to a certain maximum wavenumber lmax as denoted 
by the x-axis. The dotted curve shows the information content 
if the weak lensing �eld is Gaussian as expected from the initial 
linear �uctuation �eld – the maximum information content. 
In this case, the information content follows a simple scaling 
given by I(< lmax) ∝ lmaxΩs

1/2. The circle points show the result 
obtained by using mock catalogs of the weak lensing �eld 
that are constructed by using N-body simulations of nonlinear 
large-scale structure for the CDM model as in Fig. 2. In this case 
we fully take into account correlations between the power 
spectra of different bins, due to the non-Gaussianity of the 
weak lensing �eld. The solid curve shows the analytical model, 
showing remarkably nice agreement with the simulations. The 
dashed curve is the analytical result, if we ignore the effect of 
super-survey modes on the covariance (see text for details).
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content of the power spectrum is signi�cantly 

reduced compared to the Gaussian information, 
more than a factor of 2 at l ~ 1000, from around 

which multipoles we expect to extract most useful 

cosmological simulation for upcoming surveys  such 

as HSC. Thus the plot clearly shows that the power 

spectrum alone cannot extract all the information 

contained in the weak lensing �eld, and more 

than half of the Gaussian information has gone 

somewhere! We have indeed found in other work 

that the 3-point correlation function does add the 

information. However, the combined information 

of the 2- and 3-point correlation functions is not 

still as suf�cient as the initial Gaussian information. 
This implies that the 4-point correlation function 

is important, which is even more complicated to 

measure.
Through these studies, we are also �nding 

something very interesting we did not expect. We 

found that most of the information lost is caused by 

Fourier modes that are comparable with or beyond 

a survey region – super survey modes. Obviously 

super survey modes are not observable. This super-

survey mode is regarded as a constant offset in the 

mean density inside the survey region compared to 

the cosmic mean (the ensemble averaged mean). 
However, we cannot know whether a modulation 

in the mean density is positive or negative. Suppose 

that a survey region is embedded into a slightly 

coherent, over-density region. In this case, the survey 

region is considered as a slightly positive curvature 

universe. Due to the nonlinear nature of gravity, the 

positive super-survey mode becomes coupled with 

all the Fourier modes inside the survey volume once 

the nonlinear structure formation evolves. That is, 
the time evolution of all sub-volume Fourier modes 

is enhanced compared to what we naively expect. 
We found that the mode-coupling between the 

super-survey mode and the Fourier modes inside 

the survey region causes a signi�cant contribution 

to the sample variance in the power spectrum 

measurement. We then succeeded in formulating 

this effect in a uni�ed form that can be applied to 

any large-scale structure probes. The solid curve 

in Fig. 3 shows the analytical model prediction for 

the information content including the effect of the 

super-sample mode, showing a remarkably nice 

agreement with the simulation results. Our �nding 

opens up a new and interesting possibility: if we 

can properly take into account the effect of super-

survey mode when comparing the measured power 

spectrum with theory, we may be able to infer the 

existence of the super survey mode, which lies in 

very, very large length scales, for upcoming wide-

area surveys. This is potentially very interesting, and 

we are planning to further explore this effect.

Upcoming galaxy surveys such as the SuMIRe 

galaxy survey are increasingly expensive, both in 

terms of time and cost. We want to attain the full 

potential of these surveys in order to tackle the 

most fundamental, yet profound problems such 

as the nature of dark energy. In this article we 

have described the hypotheses, assumptions and 

procedures that are often used when measuring 

statistical quantities from a cosmological data set 

and then using those to estimate cosmological 

parameters. The CMB experiment attained the 

maximum success in terms of the extracted 

information content, largely because the CMB �eld is 

Gaussian, the simplest �eld. For galaxy surveys, on the 

other hand, it is not yet clear which observables are 

most optimal to extract the maximum information. 
Given these facts, an interdisciplinary �eld between 

cosmology and statistics will be more and more 

strengthened. If you have any new idea, you should 

work on this new subject!

5. Future Prospects
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