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Ooguri: First I would like to congratulate 
Edward on your Kyoto Prize. In every 
four years, the Kyoto Prize goes in the 
�eld of mathematical sciences, and 
this is the �rst prize in this category 
awarded to a physicist.
Witten: Well, I can tell you I’m deeply 
honored to receive this prize.
Ooguri: It is wonderful that your 
work in the area at the interface 
of mathematics and physics has 
been recognized as one of the most 
important progress in mathematics 
as well as in physics. For those of us 
working in this area, this is also very 
gratifying. As Yuji Tachikawa said at 
the workshop yesterday, you’re like 
sunshine for all of us in this area of 
research.
Witten: Actually in my acceptance 
speech a couple of days ago, I 
remarked that I regard it also as a 
recognition of the �eld, not just of me.
Ooguri: This conversation will 
appear as an article in this Japanese 
magazine, Sugaku Seminar, as well 
as in the Kavli IPMU News. Sugaku 
Seminar is widely read among high 
school students, undergraduate 

students, professional researchers, 
and general public interested in 
mathematics, a broad range of 
people. The magazine has been 
particularly inspirational for high 
school students. I enjoyed reading it 
when I was a high school student, 
and I still subscribe to it. Yuji 
Tachikawa said he read your interview 
in 1994 in the magazine, which partly 
inspired him to go into this area.
Witten: I was very pleased to hear 
that from Yuji. It was very nice of him 
to say that.
Ooguri: It is my hope that the 
magazine article about the 
conversation today would also 
inspire the next generation of young 
students to go into, not necessarily 
mathematics, but more broadly 
science and engineering. I thought 
this would be a good opportunity to 

discuss the current state of the �eld 
and opportunities in research.

You have already given two 
interviews for Sugaku Seminar. In 
1990, at the International Congress 
of Mathematicians in Kyoto, you 
received the Fields Medal. On 
that occasion, Tohru Eguchi had 
an interview with you. You also 
had a discussion with Vaughan 
Jones, another Field Medalist at 
the Congress, and I remember, you 
expressed interest in generalizing 
your work in the Chern-Simons 
theory with a spectral parameter, 
which is very natural from the point 
of view of integrable models.
Witten: Yes, I very much wanted to 
�nd an explanation along these lines 
of the “integrability” that makes it 
possible to get exact solutions of 
two-dimensional lattice models such 
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as the Ising model. I was completely 
unsuccessful, but just in the last 
couple of years, something in the 
spirit of what I wanted to do was 
done by Kevin Costello.
Ooguri: We were just talking about 
Costello’s work before you arrived 
here. Do you think that it achieved 
what you wanted to do at that time?
Witten: Yes. Integrable models have 
many facets, and there is no one 
way to understand everything. But I 
would say that speci�cally the kind of 
explanation I was looking for is what 
Costello found.
Ooguri: I see.
Witten: What Costello did involves 
a very simple but beautiful twist on 
the three-dimensional Chern-Simons 
theory, in which he simply replaced 
one of the three real dimensions of 
space by a complex variable z.
Ooguri: Going to four dimensions.
Witten: This is a four-dimensional 
world with two real coordinates and 
a complex coordinate z. Costello 
de�ned a 4-form which was the 
wedge product of the Chern-
Simons 3-form with the 1-form dz. 
He studied this as the action of a 
4-dimensional theory. There is a 
crucial technical detail: for this theory 
to make any sense, the differential 
operator that is obtained by 
linearizing the equations of motion 
must be elliptic modulo the gauge 
group. I think that this is a little 
surprising, but it is true. And given 
that, he then has a generalization of 
the Chern-Simons theory that does 
not have the full three-dimensional 
symmetry, but it does have a complex 
variable, namely z.

If you think carefully, you will see 
that integrability, the Yang-Baxter 
equation, involves two-dimensional 
symmetry, but not really three-
dimensional symmetry. The reason 

I was unable to incorporate the 
spectral parameter was that I was 
working in the context of three-
dimensional topological �eld theory. 
In three-dimensional topological 
�eld theory, in addition to the 
moves where knots cross̶that 
is, in addition to the Yang-Baxter 
relation̶you have further relations 
involving creation and annihilation. 
There are Reidemeister moves that 
are valid in topological �eld theory, 
but are not relevant for integrable 
systems. I couldn’t �nd the spectral 
parameter because I was trying 
to use topological �eld theory. 
Costello made a very simple twist, 
replacing a real variable by a complex 
variable and then everything worked 
beautifully. I de�nitely regard that as 
the explanation I was trying to �nd, 
unsuccessfully, around 1990.
Ooguri: I see. So, after 23 years, 
�nally your question was answered. 
Now, in 1994, you visited Japan for 
the second time and gave a public 
lecture here in Kyoto.
Witten: In fact, I have had several 
opportunities to visit Kyoto, 
including a visit for the Strings 2003 
conference that you organized and 
also this current visit.
Ooguri: So, for every one of your 
four visits to Japan including this one, 
you have actually come to the Kyoto 
International Conference Center.
Witten: Yes, but I know that there is 
a trip to Okinawa lined up.
Ooguri: That would be the Strings 
2018 Conference that we are 
planning at the Okinawa Institute of 
Science and Technology. We surely 
hope that you will be back in Japan 
in 2018.

At the time of your visit in 1994, 
you were just �nishing your work on 
the Seiberg-Witten theory and also 
the Vafa-Witten theory. I remember 

a discussion session we had at RIMS, 
Kyoto University, with you and Hiraku 
Nakajima, where Nakajima explained 
his work on the action of an af�ne 
Lie algebra on the cohomology of 
the moduli space of instantons. In 
the interview you had with Tohru 
Eguchi, you mentioned progress in 
mirror symmetry and S-duality at the 
time and expressed a hope of a more 
uni�ed view on duality encompassing 
gauge theory and string theory. Some 
of this hope has been achieved in the 
last 20 years, I think.
Witten: De�nitely some of it has 
been achieved. One thing that was 
achieved in the couple of years after 
that second interview was simply 
that there emerged a picture of non-
perturbative dualities in string theory, 
generalizing what happens in �eld 
theory. However, there are other 
aspects that are still mysterious and 
not clearly understood. 

On the bright side, the fact that 
four-dimensional gauge dualities and 
a lot of dualities in lower dimensions 
comes from the existence of a six-
dimensional conformal �eld theory 
is a major insight in understanding 
dualities better. We haven’t gotten 
to the bottom of things because 
we don’t really understand the six-
dimensional theory, but just knowing 
that the matter should be understood 
in terms of the properties of the six-
dimensional theory is an advance in 
understanding duality that certainly 
wasn’t there at the time of this last 
interview.

Ooguri: I should introduce our 
discussants today. Yukinobu Toda is 
a mathematician and an Associate 
Professor at the Kavli IPMU, and he 
received his Ph.D. in 2006. Masahito 

I Was a Skeptic about Duality 
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Yamazaki is a physicist and a new 
Assistant Professor at the Kavli IPMU, 
and he entered graduate school 
in 2006. They represent the young 
generation of mathematicians and 
physicists working on the interface of 
string theory and gauge theory.

At your Commemorative Lecture 
the other day that was one of the 
Kyoto Prize events, you reviewed your 
career in this area. You said that you 
entered graduate school in 1973, 
when the asymptotic freedom was 
just theoretically being discovered. 
You came to Japan the second time 
in 1994 and gave the interview we 
were just talking about, and it was 
roughly 20 years after that. Now it 
is 20 years after that, so I thought 
we should start up by trying to catch 
up with the second 20 years of your 
career and see what your thoughts 
have been on some of the most 
important progress, and then we can 
start from there and discuss them.

We have already started to talk 
about some of the developments 
since the interview in 1994, but 
maybe you can expand on that and 
tell us what you think have been the 
highlights in this area in the last 20 
years.
Witten: Certainly, one of 
the highlights has been the 
understanding on non-perturbative 
dualities in string theory, as a result of 
which we have a much wider picture 
of what string theory is. In 1994, we 
knew about mirror symmetry and 
other two-dimensional dualities that 
arise in string perturbation theory, 
and we were really just beginning to 
think that there are similar dualities in 
space-time: four-dimensional gauge 
theory dualities that are analogous to 
the two-dimensional dualities. But in 
1994, it was really just a guess that 
something analogous might happen 

in string theory. 
By this time there were clues in 

the literature, and a number of new 
ones had been discovered in the 
early 1990’s. The clue that in�uenced 
me the most was the work of John 
Schwarz and Ashoke Sen, who 
showed that the low-energy effective 
action of the heterotic string on a six-
torus had properties consistent with 
the existence of a non-perturbative 
SL(2, Z ) duality. They didn’t have 
what I regarded as really decisive 
evidence for that conjecture, but their 
ideas were very suggestive. 

It still was not clear to me how one 
could �nd decisive evidence for non-
perturbative dualities in spacetime. 
At least to me, the �rst such evidence 
appeared in a short but brilliant 
paper by Ashoke Sen on a two 
monopole bound state in N=4 super 
Yang-Mills theory. To me, that was 
fundamentally new evidence for the 
Montonen-Olive duality conjecture. 
It convinced me that the duality had 
to be right, and equally important, it 
convinced me that it was possible to 
understand it better.
Ooguri: I thought that Sen’s paper 
gave a strong evidence for the 
S-duality, but it was your paper with 
Vafa that convinced us.
Witten: Thank you. Sen’s paper 
showed that you could actually go 
well beyond the suggestive but 
somewhat limited arguments about 
electric-magnetic duality that had 
been known, and learn something 
fundamentally new. Until Sen’s paper, 
I had felt that what we understood 
about electric-magnetic duality, even 
the work of Sen and Schwarz, which 
had de�nitely in�uenced me, was in 
the framework of what Montonen 
and Olive had understood 20 years 
before. But Sen did a simple and 
elegant calculation, �nding a bound 

state of two monopoles whose 
existence was predicted by the 
duality. That inspired me to believe 
that one could do more. 

With this inspiration, and trying 
to �nd more evidence for the 
duality conjectures, Cumrun Vafa 
and I started to study the Euler 
characteristics of instanton moduli 
spaces. It was not too hard to see 
that electric-magnetic duality of 
supersymmetric Yang-Mills theory 
implied that the generating function 
of those Euler characteristics should 
be a modular function. Luckily for 
us, mathematicians in a number of 
cases－and this includes the work 
of Nakajima that you mentioned 
before－had computed these Euler 
characteristics, or had obtained 
closely related results from which 
the Euler characteristics could be 
understood. We found that the 
expected modularity held in all cases. 
(In one case－the four-manifold CP2

－we ran into a “mock modular 
form,” a concept that was new to 
us at the time but has made many 
subsequent appearances in gauge 
theory and string theory.)

Also during this period, Nathan 
Seiberg had been using holomorphy 
as a tool to analyze the dynamics 
of supersymmetric gauge theories. 
He wanted to understand what 
happened in N=2 theories. We 
started talking about it, and the 
Sen paper inspired us to think that 
duality would play a role. That was 
one of the clues that actually led to 
our work on what became Seiberg-
Witten theory.
Ooguri: It may be hard to believe 
for young people like Masahito 
Yamazaki or Yukinobu Toda, but 
before 1994, S-duality at least for me 
was something very hard to believe. 
It was like a beautiful dream. It would 
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be nice to have, but you cannot 
realistically hope that something 
like that could possibly happen. As 
I said, the �rst evidence was Sen’s 
paper and in some sense Edward’s 
work with Vafa nailed it. After that, 
everybody believed it.
Yamazaki: That’s surprising, because 
I thought that the paper of Claus 
Montonen and David Olive is quite 
old. Were people skeptical about the 
idea?
Witten: This might make you laugh, 
but I’ll tell you my early history with 
the Montonen and Olive paper. First 
of all, I hadn’t heard of it until I was 
visiting Oxford at the end of 1977. 
Michael Atiyah showed this paper to 
me and said I should go to London 
to discuss it with Olive. So, I looked 
at the paper and got in touch with 
David Olive and arranged to visit him. 
But by the time I got to London, I was 
pretty skeptical. Have you looked at 
their original paper?
Yamazaki: Yes, I have.
Witten: In their original paper, they 
considered a bosonic theory of a 
gauge �eld and a real scalar (valued 
in the adjoint representation). They 
assumed that the potential energy for 
the scalar �eld is identically zero, and 
they found remarkable formulas for 
particle masses that are valid precisely 
in this case. Their proposal of electric-
magnetic duality was based on the 
fact that their mass formula was 
symmetrical between electric and 
magnetic charge.

However, I knew quantum �eld 
theory well enough to know that 
saying that the potential energy 
for the scalar �eld is 0 is not a 
meaningful statement quantum 
mechanically. If it were, we would not 
have a gauge hierarchy problem in 
particle physics. So, by the time I got 
to London to see Olive, I de�nitely 

was a skeptic. But since I was there 
to see him, I didn’t want to just say 
that his idea was nonsense. We tried 
to make sense out it. So we discussed 
it in the context of supersymmetry, 
simply because with supersymmetry 
the mass renormalization (and even 
the full effective potential) of a 
scalar can be zero. This was the only 
context in which it seemed to me 
that the brilliant idea of Montonen 
and Olive could make sense. By the 
end of the day, we found that their 
formulas are valid in the context of 
N=2 supersymmetry. So we wrote 
a paper on that, and it was quite a 
satisfying paper to write, but I drew 
the wrong conclusion from that 
paper. The conclusion I drew was 
that we had explained their formulas 
without needing to assume non-
perturbative duality.
Ooguri: Right. That was the message 
I got by reading your paper with 
Olive, too. The seemingly miracle 
phenomenon was explained simply 
by supersymmetry.
Witten: So at the time, and for 
many years after, I felt that there 
was not really a lot of evidence for 
non-perturbative duality in four 
dimensions.

Thus, to return to Masahito’s 
question, I was a skeptic about 
electric-magnetic duality during these 
years, but actually I was a skeptic on 
two levels. One, I was skeptical that 
it was true, and two, I was skeptical 
that you could really say anything 
about it even if it were true.

To give a more complete picture, in 
the early 1990s, there were various 
novel clues, some from the work 
of people like Mike Duff, and also 
Curt Callan, Jeff Harvey, and Andy 
Strominger, studying solitons in string 
theory, and then also there was the 
work of Sen and Schwarz that I 

already mentioned. I remember that, 
at the Strings ’93 meeting in Berkeley, 
John Schwarz was more excited than 
I had ever seen him since January 
1984. In January 1984, telling me 
about his latest work with Michael 
Green, he said “We are getting 
close,” but I didn’t understand what 
he thought he was getting close to. It 
turned out, however, that that was a 
few months before they canceled the 
anomalies. When John was so excited 
at the Strings meeting at Berkeley, I 
decided that I should better take him 
seriously. 

If you had looked at it with the 
same skepticism I had had since 
the Montonen and Olive paper, 
you would have said that Sen and 
Schwarz were just discussing low 
energy physics and did not have 
solid evidence about strong coupling 
behavior. But John’s enthusiasm put 
enough of a dent in my skepticism 
that I started looking more closely to 
the papers of Duff and other authors 
on solitons in string theory. At some 
point, I think in the fall of 1993, Duff 
sent me an assortment of his papers 
and I took them to heart. I don’t 
remember right now all of the papers 
on solitons in string theory that I 
looked at during this period, but 
certainly one important one was by 
Callan, Harvey, and Strominger. 

There is another part of the 
background to this period that I 
should explain.

Mike Duff, Paul Townsend, 
and other physicists working on 
supermembranes had spent a couple 
of years in the mid-1980s saying 
that there should be a theory of 
fundamental membranes analogous 
to the theory of fundamental strings. 
That wasn’t convincing for a large 
number of reasons. For one thing 
a three-manifold doesn’t have an 



14 Kavli IPMU News　No. 28　December　2014

Euler characteristic, so there isn’t a 
topological expansion as there is 
in string theory. Moreover, in three 
dimensions there is no conformal 
invariance to help us make sense 
of membrane theory; membrane 
theory is non-renormalizable just like 
General Relativity. 

There are all kinds of technical 
objections, but at some point around 
1990 or 1991, instead of trying to 
think of membranes as fundamental 
objects, people working in this area 
started thinking of membranes and 
other p-branes as non-perturbative 
objects that might exist in string 
theory. In general terms, this idea 
did make sense. In more detail, the 
situation was more complicated. If 
you actually looked at the papers, 
some of them made a lot of sense 
because they had a classical soliton 
solution with good properties. (Even 
then, the solutions usually had 
unusual properties that in some 
cases were clues to later discoveries.) 
Other papers made a little bit less 
sense, because the classical solution 
involved a singularity that appeared 
in a region in which the classical 

approximation wasn’t good. But 
the idea of membranes as non-
perturbative soliton-like objects in 
string theory made a lot of sense 
even if the details in some papers 
were dubious. I was still a bit of a 
skeptic about what one can do with 
this idea, but for reasons I’ve been 
explaining, I was paying a lot more 
attention. And that is actually why, 
when the Sen paper on the two-
monopole bound state came out, I 
was ready to completely change my 
outlook. 

Sen’s paper showed that one can 
do something new about strong 
coupling and it was clear that if one 
had been inspired the way Sen was, 
one could have done what he did 10 
or 15 years before. So, it showed that 
we had been missing opportunities. 
That de�nitely changed the direction 
in my work. It led to the paper 
with Vafa that you’ve been kindly 
mentioning, and it helped put Seiberg 
and me on the right track for doing 
what we did in 1994 and then. . .
Ooguri: This is a great story that 
shows that chance favors the 
prepared mind, as Pasteur said. 

After that, you even went to string 
dualities.

Witten: By the end of 1994, we had 
the experience of non-perturbative 
dualities in �eld theory both in two 
dimensions and in four dimensions. 
In the two-dimensional case, for 
example, if you study a sigma-
model with Calabi–Yau target space 
(such as is important in studying the 
compacti�cation of string theory), one 
�nds that the quantum theory can 
be extended far beyond the classical 
geometry of the Calabi-Yau manifold. 
One �nds a web of phase transitions 
between different geometrical and 
non-geometrical descriptions of 
the sigma-model, which represent 
different semi-classical limits of the 
theory. The Montonen-Olive duality 
conjecture, as re�ned by later authors, 
said that something similar happens 
in N=4 super Yang-Mills theory in 
four dimensions, and Seiberg and 
I in 1994 had found something 
somewhat similar for N=2.

Certainly there was a dream that 
something similar might happen in 
string theory. Not only there was a 
dream, but there were a lot of papers 
in which people had pointed out 
pieces of such a story. I have already 
mentioned some of these papers. 
Another important paper was written 
by Chris Hull and Paul Townsend in 
the spring of 1995. They wanted to 
say that Type IIA superstring theory is 
the same as M-theory on a circle. The 
only thing they really didn’t do was 
to try to make it more quantitative. 
There’s a potential contradiction 
which is that in Type IIA superstring 
theory you don’t see 11 dimensions. 
But it turns out, as I realized a little 
later, that this question has a very 

String Duality Revolution
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simple answer. The 11-dimensional 
limit is a region of strong coupling 
from the point of view of Type IIA 
superstring theory, and the eleventh 
dimension isn’t visible for weak 
coupling. 

It soon became clear that the 
same thing was true in other 
cases. For example one might 
hope that Type I superstring 
theory and the SO(32) heterotic 
string will be the same. There is an 
obvious immediate contradiction: 
the theories have the same 
massless spectrum and low energy 
interactions, but beyond the low 
energy limit they look completely 
different. The answer is simply that 
if you match up the low energy 
�eld theories, you will �nd that 
weak coupling in one is strong 
coupling in the other.

Once one starts thinking along 
those lines, it turns out that 
everything works. What were the 
implications? This way of thinking 
certainly led to a more uni�ed picture 
of what string theory is. But very soon, 
there were further developments 
showing that the traditional ways 
of asking questions were probably 
inadequate. In the 1980s, I was 
really convinced that in some sense 
string theory should be based on a 
Lagrangian that would generalize 
the Einstein-Hilbert Lagrangian for 
gravity; it would have a symmetry 
group which would generalize the 
diffeomorphism group. So there 
would be a new classical theory of 
geometry－with non-perturbative 
two-dimensional dualities built in as 
classical symmetries. One would then 
generate string theory by quantizing 
this classical theory. 

But by the early 1990s, there was 
a troublesome detail that I personally 
did not pay much attention to. 

In the moduli space of Calabi-
Yau manifolds, there are a variety 
of singularities. Some questions 
involving such singularities had been 
important in my own work.
Ooguri: You are referring to the work 
involving linear sigma-models.
Witten: That is correct, and also 
my work (with Harvey, Vafa, and 
Lance Dixon) on orbifolds. I had 
been interested in cases in which the 
classical geometry has a singularity 
but the quantum sigma-model 
does not; these cases illustrate 
the difference between ordinary 
geometry and its generalization in 
the classical limit of string theory. 
What I had not taken seriously is 
that in general, as one deforms the 
moduli of a Calabi-Yau manifold, 
one can �nd singularities of the 
classical geometry that do also lead 
to singularities of the corresponding 
sigma-model.

Such a singularity appears in string 
theory even in the classical limit, so 
if you try to interpret string theory 
as a classical theory that then gets 
quantized, it looks like the classical 
theory has a singularity, which is 

strange. I personally didn’t focus 
on that question, but Strominger 
explained that such a singularity 
actually re�ects a non-perturbative 
quantum effect. The singularity 
arises when a charged black hole 
becomes massless and it shows that 
quantizing a classical theory can’t do 
justice to string theory: there are non-
perturbative quantum effects even in 
what one might have wanted to call 
the classical limit. 
Ooguri: You say there’s no analogous 
result in �eld theory, this is a 
genuinely string theory phenomenon.
Witten: I think so. 
Ooguri: So, did you think this was an 
evidence that there is no Lagrangian 
description in string theory?
Witten: It is evidence that you can’t 
fully do justice to string theory in 
terms of quantizing a classical theory. 
I don’t want to say that there isn’t a 
classical theory, because I believe that 
from some point of view there is.
Ooguri: Yes, as an approximate 
description, but you’re saying that 
you cannot start from classical theory 
and apply quantization procedure. . .
Witten: We can’t fully understand 
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string theory by quantizing an 
underlying classical theory. In some 
sense it is an intrinsically quantum 
mechanical theory.

I don’t want to say you can’t derive 
string theory by quantizing a classical 
theory, but you can’t fully do justice 
to it that way, I think.

But let us remember that even in 
�eld theory, Montonen-Olive duality 
means that the same theory has 
different classical limits, showing 
that no one classical limit is really 
distinguished.
Ooguri: But in that case, you have a 
Lagrangian description.
Witten: Yes, in the Montonen-Olive 
case, one has a classical Lagrangian, 
in fact many of them. String theory 
is a little bit worse because even in 
what you want to call the classical 
limit, there are phenomena that you 
really can’t make much sense of from 
the classical point of view. 

Ultimately, Strominger’s work 
illuminated something I’d missed. 
In the talk I gave at the Strings 
Conference in 1995 about non-
perturbative dualities in string theory, 
and also in the corresponding paper 
(“String Theory Dynamics In Various 
Dimensions”), there was one detail 
that didn’t completely make sense. 
Type IIA superstring theory on a K3 
manifold was supposed to be dual to 
the heterotic string on a four-torus, 
and in that context, I could see that 
enhanced gauge symmetry resulted 
from the K3 surface developing 
an ADE singularity. But an ADE 
singularity in classical geometry 
is just an orbifold singularity, and 
perturbation theory remains valid 
in string theory at an orbifold. The 
orbifold does not generate a non-
perturbative gauge symmetry. For a 
few months, I was puzzled. Actually, 
I was making a simple mistake which 

was corrected by Paul Aspinwall in a 
paper that he wrote in the summer 
of 1995. Aspinwall explained the 
following: In M-theory at an ADE 
singularity, you have only the hyper-
Kahler moduli, but in string theory 
at an ADE singularity, there also are 
B-�eld moduli. The conformal �eld 
theory becomes singular when the 
B-�eld moduli are zero; the orbifold 
describes a non-singular situation in 
which the B-�eld moduli are not zero.

When the B-�eld moduli vanish, 
there is a breakdown of the classical 
description that’s just analogous to 
what Strominger had shown in his 
paper on the Calabi-Yau singularity. 
It leads to enhanced gauge symmetry 
that, from the standpoint of Type 
IIA superstring theory, has a non-
perturbative origin.

Strominger had considered a 
charged black hole that arises from a 
wrapped three-brane, while here the 
relevant particle is a wrapped two-
brane. But the idea is similar.
Ooguri: So this was the beginning 
of interaction between gauge theory 
idea and string theory idea where 
non-Abelian, non-perturbative 
dynamics of gauge theory can 
emerge from limits of string theory.
Witten: Right. Another important but 
extremely simple paper that helped 
show the implications of string 
theory for non-perturbative duality 
in gauge theory was written by 
Michael Green in 1996. By this time, 
Joe Polchinski and his collaborators 
had basically shown that in modern 
language a system of n parallel 
branes has U(n) gauge symmetry. I 
had written a paper at the end of 
1995 showing why that was useful, 
but Green wrote a very simple paper 
with the following observation. Type 
IIB superstring theory has a non-
perturbative duality symmetry－

a fact which we were convinced 
of by this time－and on the other 
hand N=4 super Yang-Mills theory 
in four dimensions with gauge 
group U(n) can arise from a system 
of n parallel D3-branes in Type IIB 
superstring theory. Combining these 
two facts and taking the low energy 
limit, Green was able to deduce the 
Montonen-Olive duality of N=4 super 
Yang-Mills theory with gauge group 
U(n). It is simply inherited from the 
Type IIB superstring theory specialized 
to the D3-branes. 

That was an important early 
example of deducing a gauge theory 
duality from a string theory duality.

Even before all of this had 
happened, Mike Duff and Ramzi 
Khuri in 1993 had written a paper on 
what they called string/string duality. 
They had said there should be a self-
dual string theory in six dimensions 
which looked at in two different ways 
would give electric-magnetic duality 
of gauge theory in 4 dimensions. 
It was actually a brilliant idea. The 
only trouble was they didn’t have an 
example in which it worked.

I realized in mid-1995 that if one 
took the heterotic / Type II duality 
on K3 and T 4 and compacti�ed on 
another two-torus, one would get 
an example rather similar to what 
Duff and Khuri had suggested. They 
had had in mind self-duality of a 
string theory, but the example that 
I considered was a duality between 
two different string theories. Still 
the idea was similar. By the end 
of 1995, Duff and I and some 
other authors had an example that 
followed even more precisely what 
had been proposed two years before. 
That involved the E8 x E8 heterotic 
string on a K3 surface with equal 
instanton numbers in the two E8’s. In 
all of these cases, one could deduce 
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Montonen-Olive duality from a string 
theory duality. 

As we’re talking, I remember more 
and more papers from the years 
1995-6 that were very dramatic at 
that time, but that were also, honestly, 
pretty easy to do in most cases. I was 
reminded of this yesterday by the 
lecture by Hiraku Nakajima at the 
Kyoto Prize Workshop. Hiraku started 
by kindly remembering three lectures 
I gave at the Newton Institute in 
1996. The lectures concerned three 
papers that I had written (respectively 
with co-authors Lev Rozansky, Ami 
Hanany, and Nathan Seiberg). The 
papers �t together nicely. They were 
fun to write and the lectures were 
also fun to give. But what stands out 
in my memory is that at that time 
insights like that were more or less 
out on the surface. It was quite a fun 
time to be working in this �eld. I am 
hoping that during my active career, 
there will be another period like that.

Toda: I am an algebraic geometer. 
I was originally working on some 
classical aspect of algebraic geometry, 
but I became interested in some 
relationships between algebraic 
geometry and string theory inspired 
by your work. You have been 
discussing S-duality and modular 
forms. This was surprising from a 
mathematical point of view - I cannot 
see why modularity appears. Do you 
have an insight about that from a 
mathematical point of view?
Witten: Vafa and I, of course, had a 
reason, which was the Montonen-
Olive duality conjecture. What we 
did was to show that modularity 
of a certain generating function 
of Euler characteristics is a kind 
of corollary of Montonen-Olive 

duality. This is somewhat analogous 
to saying that some statement in 
number theory follows from the 
Riemann conjecture. If somebody 
shows that something follows from 
the Riemann conjecture, one may or 
may not view this as an explanation 
of the statement in question, but 
at least it puts the statement in a 
bigger framework. Montonen-Olive 
duality provided an analogous bigger 
framework in my work with Vafa, 
and soon afterwards there was a still 
bigger framework, which was that 
the Montonen-Olive duality follows 
from the existence of a certain six-
dimensional theory. It also follows in 
various other ways from string theory 
dualities and I have mentioned a 
few of these constructions. But most 
physicists would probably say the 
most complete framework that we 
have for Montonen-Olive duality is its 
relation to the six-dimension theory. 
Ooguri: Yukinobu was asking for 
some mathematical explanation. 
At that time, some hint of the 
mathematical explanation was 
Nakajima’s work, about the symmetry 
of the moduli spaces of instantons. 
From the mathematical point of 
view, what the Vafa-Witten theory 
was computing were generating 
functions of the Euler characteristics 
of instanton moduli spaces.
Witten: Nakajima’s discovery of 
the af�ne Lie algebras was a kind 
of proof, and actually a miraculous 
discovery. But it still leaves one 
wondering where the af�ne Lie 
algebra symmetry came from.
Toda: Right. After computations of 
the Euler characteristics, we know 
that it’s a modular form but we don’t 
know why it is modular, even for the 
simplest example.
Witten: I completely agree. What 
you’re saying is actually something I 

tried to say in my Commemorative 
Lecture for the Kyoto Prize. There is 
a difference between knowing what 
is true and knowing why it is true. In 
this case, you have a mathematical 
proof, but you’re still asking why, 
and physicists ultimately don’t 
know. All that we can do is to offer 
bigger conjectures, of which this is 
a manifestation. But we don’t really 
understand the bigger conjectures.
Ooguri: In physicists’ perspective, 
this duality has been geometrized as 
symmetry in six dimensions.
Witten: But the six-dimensional 
theory is pretty mysterious.
Toda: Is it not dif�cult to understand 
the relationship between S-duality 
and six dimensional theory?
Ooguri: The relation is very clear, but 
then you have to make sense of the 
six-dimensional theory itself.
Witten: We actually know quite a 
lot about the behavior of the six-
dimensional theory, though we do 
not understand much about how it 
should be constructed or understood 
microscopically.

One of the deepest discoveries 
about the behavior of the six-
dimensional theory was made by 
Juan Maldacena in 1997. He showed 
that it could be solved for large N in 
terms of supergravity. Unfortunately, 
the regime in which the theory is 
solved by supergravity isn’t the same 
regime in which we usually have to 
study it to understand the questions 
you’re asking.
Ooguri: I understand that the large N 
limit is not S-duality invariant.
Witten: Yes, that is correct. 

Maldacena’s solution of the 
theory for large N works and makes 
complete sense. It does not directly 
help us in understanding Montonen-
Olive duality, because it involves 
studying the theory in a different 

Difference between Knowing 
What Is True and Why It Is True 
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region of parameters that is not 
invariant under duality. Or to put 
it differently, if one tries to apply 
Maldacena’s solution to understand 
Montonen-Olive duality, one has to 
work in a region of parameters in 
which the description that Maldacena 
gave is not useful.

But the existence and success 
of Maldacena’s solution de�nitely 
increases the con�dence of physicists 
that the six-dimensional theory exists 
and that all the canonical statements 
about it are true, even though 
we don’t understand everything. 
It’s a little bit like mathematicians 
discovering that some new 
consequences of the Riemann 
conjectures are true. This gives one 
more con�dence in the Riemann 
conjecture, but it doesn’t mean one 
understands the Riemann conjecture.
Ooguri: Yukinobu, what is your view 
on current activities in physics? For 
example, yesterday Nakajima was 
saying that it took him 18 years 
to understand what Edward was 
doing in his lectures in Cambridge, 
and Kenji Fukaya was saying that 
sometimes he doesn’t understand 
even the statement because you don’t 
understand the right-hand side and 
left-hand side of equations physicists 
write, for example. You have been 
at the Kavli IPMU for several years, 
interacting with physicists, so do you 
have any perspective to offer. . .?
Toda: Of course, I don’t know 
anything about string theory, but 
sometimes I look at papers and some 
calculations, and try to translate 
physics words into mathematics, say 
D-branes to sheaves or BPS states 
to stable objects. Then I have lots 
of things to learn from the physics 
side, and lots of problems to solve, 
although I don’t understand their 
physics origin. I also found that they 

are related to the classical problem in 
algebraic geometry.
Ooguri: You also attend string theory 
seminars. What do you gain by 
attending them and interacting with 
physicists? 
Toda: I think there are many kinds 
of people in string theory. Some 
people’s works are close to me, 
like Donaldson-Thomas invariants 
and derived category of coherent 
sheaves. In their seminars, I can 
learn something, but that is almost a 
seminar of mathematics.
Ooguri: A mathematician told me 
that physicists are like generating 
functions of conjectures. Some 
physicists are more useful for 
mathematicians than others. For 
example, Hiraku Nakajima was telling 
me that he particularly likes Edward’s 
lectures, because even though he 
doesn’t understand the motivations 
and where ideas come from, some 
of the statements Edward makes 
have sharp mathematical meanings 
to them, just like the equation that 
Tachikawa was quoting yesterday 
at the workshop and these are 
something that mathematicians can 
work on.
Yamazaki: But then sometimes 
people want to know the logic 
behind it. I can make a statement 
that makes sense mathematically, 
and mathematicians can try to prove 
it. But they de�nitely want to know 
what’s happening.
Witten: In any given case, I can’t 
guarantee that there isn’t a 
simpler answer. But the view of 
most physicists about many of 
the problems that we have been 
discussing is going to be that the 
best setting for these questions is in 
the quantum �eld theories that are 
important in physics.

Ooguri: We are still discussing what 
was happening in the ’90s. Now, 
we should move on to the new 
millennium. What do you think have 
been highlights in the past 14 years?
Witten: Part of the answer is that 
the gauge-gravity duality that was 
introduced by Maldacena is very deep. 
Even today people are still discovering 
interesting new facets of it. An 
important example was the work of 
Shinsei Ryu and Tadashi Takayanagi 
on entanglement entropy in gauge/
gravity duality. They discovered a 
really interesting generalization of 
the Bekenstein-Hawking entropy of 
a black hole. Although I have not 
personally worked on this subject, 
the developments have been pretty 
interesting and may contain deeper 
clues about quantum gravity. If I 
could see the right way to do this, 
then I would probably work in this 
area myself, but at least so far I 
don't. But it’s one of the things I’d 
recommend watching most closely.

Apart from Ryu and Takayanagi, 
I also would de�nitely recommend 
the papers of Horacio Casini, in 
some cases co-authored with 
Marina Huerta. One of these papers 
addressed the following question. A 
black hole has a Bekenstein-Hawking 
entropy. Roughly 20 years ago, Jacob 
Bekenstein considered the following 
question. Suppose an object falls 
into a black hole. The object has 
an entropy. When it falls into a 
black hole, its entropy disappears 
into the hole. The black hole gains 
mass when it absorbs the object, 
so its entropy goes up. The second 
law of thermodynamics says the 
total entropy should increase in this 
process, so in other words the black 
hole entropy increases by at least 
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the entropy that the infalling object 
had before approaching the black 
hole. This tells you basically that if an 
object has given energy and is small 
enough to �t inside a black hole of 
given mass, then there’s an upper 
bound to its entropy. Bekenstein 
proposed such a bound, and people 
called it the Bekenstein bound, 
but for a long time no one could 
formulate precisely what this bound 
was supposed to say. 

I am reminded here of what 
Fukaya said about the relationship 
between physics and mathematics, 
where he remarked that it can be 
hard to formulate precisely the terms 
that enter some of the statements 
made by physicists. In the case of 
the Bekenstein bound, the situation 
was as follows. In a situation in 
which the concepts (the size, energy, 
and entropy of the infalling object) 
have clear meaning, the Bekenstein 
bound was trivially true and not very 
interesting. For example, consider 
a gas consisting of many particles 
bouncing around in a box. Here the 
size of the system and its energy and 
entropy all have a clear meaning. 
The Bekenstein bound was true but 
not very interesting because it was 
satis�ed by a very wide margin. You 
could ask, could you �nd a situation 
where the Bekenstein bound is 
close to being saturated? You can 
accomplish this by considering not 
a whole gas of particles but a single 
particle in a box. More exactly, 
this gets close to saturating the 
Bekenstein bound if we can ignore 
the mass of the box, but that is an 
unrealistic assumption. To get close 
to saturating the Bekenstein bound, 
we really should consider a single 
particle that at a given time is almost 
certainly contained in a certain 
region in spacetime even though 

there is no box keeping it there. (I say 
“almost certainly” because relativistic 
quantum mechanics does not permit 
us to say that a particle is de�nitely 
present in a given region.) Here for 
a single particle, we can de�ne its 
energy, and we can identify (within 
general limits of relativistic quantum 
mechanics) the region that it is 
con�ned in, but it is hard to make 
sense of the entropy of a single 
particle. For a long time, there were 
many papers discussing this, many 
dozens and probably hundreds of 
papers, for the most part with limited 
insight. Then, there was a simple 
and quite brilliant paper by Horacio 
Casini, who showed that the right 
concept is entanglement entropy 
and that it can always be de�ned 
in a natural way and does enter in 
a universal Bekenstein-like bound. 
This paper was well ahead of the 
prevailing thinking in the �eld and it 
was a number of years, I think, before 
people widely appreciated it.
Ooguri: For example, Casini’s paper 
solved the species problem that I had 
been puzzled about for some time 
and gave a convincing explanation 
that it’s not an issue.
Witten: There were what people 
thought were counter-examples to 
the Bekenstein bound, and so some 
people, and I was one, thought 
that if the bound was true, it was 
a statement about quantum �eld 
theories that can be coupled to 
gravity, not about all quantum �eld 
theories. But Casini showed that this 
was completely wrong. He gave a 
precise meaning to all the terms that 
entered the Bekenstein bounds, and 
he showed that it was a universal 
statement of quantum �eld theory 
that follows from general principles. 
That was extremely illuminating and 
like other work on entanglement 

entropy, one suspects it’s probably 
an important clue, but it might take 
a younger person than me with 
fresh thinking to see what it is an 
important clue to. 

I do want to mention one more 
contribution in that direction, which 
is by Casini and Maldacena with 
Rafael Bousso and Zachary Fisher 
(BCFM). Years ago, Bousso had 
formulated a covariant version of the 
Bekenstein bound; it is well adapted 
to problems in cosmology. Everything 
I have said about the Bekenstein 
bound has an analog for the Bousso 
bound. When you understood what 
it meant, it wasn’t very interesting, 
and when it was interesting, you 
couldn’t understand what it meant. 
In the recent work of BCFM, a precise 
formulation and proof of the Bousso 
bound is given, at least for quantum 
�eld theory in �at spacetime. 
Ooguri: I see that this new joint 
activity between quantum gravity 
and quantum information theory 
has become very exciting. Clearly 
entanglement must have something 
to say about the emergence of 
spacetime in his context.
Witten: I hope so. I’m afraid it’s hard 
to work on, so in fact, I’ve worked 
with more familiar kinds of questions. 
I have spent a lot of the last decade 
or maybe even little bit more than 
a decade maybe by now working 
on a succession of problems that 
probably were a little bit more out 
of the mainstream than most of my 
previous work. Also, I simply worked 
on these problems much longer 
than I usually worked on any one 
problem in the past. I guess the three 
problems that best �t what I have just 
said have been gauge theory and the 
geometric Langlands program, gauge 
theory and Khovanov homology, and 
superstring perturbation theory. 
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Superstring perturbation theory is 
best understood in terms of super 
Riemann surfaces, a fascinating 
mathematical subject that I hope 
mathematicians will get interested 
in. Super Riemann surfaces are 
a generalization of ordinary 
Riemann surfaces to include odd or 
anticommuting variables. There is a 
fascinating algebro-geometric theory 
that people partially developed in 
the 1980s and then abandoned. It 
would be great if it gets revived. By 
the way, we are having a workshop 
next May at the Simons Center for 
Geometry and Physics in Stony Brook 
and algebraic geometers might be 
interested in it.
Ooguri: Do you think there will be a 
genuine new mathematics coming 
out in these fermionic dimensions?
Witten: I am sure that the algebraic 
geometry of super Riemann surfaces 
is exciting, and unfortunately, a 
lot of what was understood in the 
1980s existed only in the form of 
unpublished notes or letters. I hope 
that our workshop will help change 
this situation.

Yamazaki: I was attending your 
lecture yesterday and you were 
explaining how you came to the 
idea that Khovanov homology can 
be written as N=4 super Yang-
Mills integrated over an unusual 
integration cycle. One thing that 
impressed me there was that your 
previous papers were the crucial 
input, namely your work with Anton 
Kapustin in which you formulated the 
Kapustin-Witten equation, and also 
subsequent work you did with Davide 
Gaiotto on boundary conditions in 
N=4 super Yang-Mills theory. When 
you worked on these papers, did you 

already have in mind application to 
Khovanov homology?
Witten: The answer is “no”: in 
those years, I knew about Khovanov 
homology and I was frustrated to 
not understand it, but I had no 
idea it was related to geometric 
Langlands. I was frustrated at not 
understanding Khovanov homology, 
because I felt that my work on the 
Jones polynomial ought to be a good 
starting point for understanding 
Khovanov homology, but I just 
could not see how to proceed. 
(From a mathematical point of view, 
Khovanov homology is a re�nement 
or “categori�cation” of the Jones 
polynomial of a knot.) Actually, Sergei 
Gukov, Albert Schwarz and Vafa had 
already given (in 2004) a physics-
based interpretation of Khovanov 
homology, drawing in part on earlier 
work of Ooguri and Vafa. But I found 
it perplexing and a little frustrating 
that the relation of this to gauge 
theory was so indirect and remote. I 
wanted to �nd a more direct route 
but for several years I found this 
dif�cult.

Eventually, however, some 
developments in the mathematical 
literature helped me understand 
that Khovanov homology should 
be understood using the same 
ingredients that are used to 
understand geometric Langlands. I 
didn’t understand all of these clues, 
but I learned from two of them. One 
was the work of Dennis Gaitsgory on 
what mathematicians call quantum 
geometric Langlands (I am not sure 
this is the name a physicist would 
use) showing that the q parameter 
of quantum geometric Langlands 
is related to the q parameter of 
quantum groups and the Jones 
polynomial. The other was the work 
of Sabin Cautis and Joel Kamnitzer 

constructing Khovanov homology 
using a space of repeated Hecke 
modi�cations. I did not initially know 
what to make of those clues but they 
were a sort of red �ag hanging out 
there.

Hecke transformations are one 
of the most important ingredients 
in geometric Langlands. What 
they mean in terms of physics had 
bothered me for a long time, and 
eventually had been the last major 
stumbling block in interpreting 
geometric Langlands in terms of 
physics and gauge theory. Finally, 
while on an airplane �ying home 
from Seattle, it struck me that a 
Hecke transformation in the context 
of geometric Langlands is simply an 
algebraic geometer’s way to describe 
the effects of an “’t Hooft operator” 
of quantum gauge theory. I had 
never worked with ’t Hooft operators, 
but they were familiar to me as they 
had been introduced in the late 
1970s as a tool in understanding 
quantum gauge theory. The basics of 
how to work with ’t Hooft operators 
and what happens to them under 
electric-magnetic duality were well-
known, so once I could reinterpret 
Hecke transformations in terms of ’t 
Hooft operators, many things were 
clearer to me.

Cautis and Kamnitzer had 
interpreted Khovanov homology in 
terms of the B-model of a space of 
repeated Hecke transformations. 
Kamnitzer also conjectured in 
another paper that there would be 
an alternative description in terms 
of an A-model of the same space. 
Technically, it was hard to �nd the 
right A-model. I really wanted to 
understand the A-model, because 
that was the approach in which one 
could expect to achieve manifest 
three- or four-dimensional symmetry. 
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My main goal in studying Khovanov 
homology was to �nd a description 
with manifest symmetry and a clear 
relationship to the gauge theory 
description of the Jones polynomial. 
I eventually succeeded in doing this. 
One of the trickiest elements was 
that the gauge �elds have to obey a 
subtle boundary condition that I call 
the Nahm pole boundary condition. 
(The basic idea that leads to the 
Nahm pole boundary condition was 
introduced by Werner Nahm more 
than 30 years ago, in his work on 
magnetic monopoles.) Luckily for me, 
I was familiar with the Nahm pole 
boundary condition and its role in 
electric-magnetic duality because of 
work that I had done with Davide 
Gaiotto a few years earlier.

I suspect that the mathematics 
world could appreciate my work on 
Khovanov homology in the short to 
medium term and that the obstacle to 
this is largely a lack of familiarity with 
the Nahm pole boundary condition. 
With this in mind, I have been 
working with Rafe Mazzeo trying to 
give a detailed mathematical theory 
of that boundary condition. We 
have written one paper formulating 
rigorously the Nahm pole boundary 
condition in the absence of knots, 
and we are trying to generalize this 
to include the knots. The necessary 
inequalities are available but some 
details are not yet in place.
Yamazaki: I see. That’s a very nice 
story of the physics-mathematics 
interaction. You were partly 
motivated by the important papers in 
mathematics and interpreted them as 
a physicist. Then you have your own 
physics story and you are now trying 
to bring it back to mathematics.
Witten: As I have mentioned, the 
version that Cautis and Kamnitzer 
were actually able to understand 

was the B-model. Since it doesn’t 
have manifest three-dimensional 
symmetry, I decided to concentrate 
on the A-model, but if I ever have a 
couple of months to spare, I would 
try to explain as a physicist the 
Cautis and Kamnitzer B-model. I’m 
reasonably optimistic I could do that 
and I think it would be illuminating. 
The only problem is that there are 
a lot of things like that－interesting 
loose ends that I think I could clarify 
if I spend a few months on them. 

Ooguri: That the Langlands 
correspondence has something to 
do with S-duality was there even in 
the late ’70s. When was it that you 
actually realized the signi�cance of 
it?
Witten: I didn’t give the complete 
explanation of my interaction with 
Michael Atiyah in 1977. He told me 
about two things that were new 
to me. One was the Montonen-
Olive paper and the other was the 
Langlands correspondence, which 
plays a central role in number theory 
but which I had never heard of. He 
had noticed that the dual group 
of Langlands and the dual group 
that enters the Montonen-Olive 
conjecture (and which had been 
introduced earlier by Peter Goddard, 
Jean Nuyts, and Olive) were the same. 
On this basis, Atiyah suspected that 
the Langlands correspondence has 
something to do with the Montonen-
Olive conjecture.
Ooguri: So that was in the late ’70s?
Witten: It was December of 1977 
or January of 1978. That was when I 
visited Oxford for the �rst time.
Ooguri: Did you take that seriously 
already at that time that the 
Langlands correspondence had 

something to do with this gauge 
theory dynamics?
Witten: Well, I didn’t forget about 
it, but since－as I already told you－I 
was skeptical about Montonen-Olive 
duality, I didn’t seriously try to relate 
it to Langlands duality and I didn’t try 
to learn what Langlands duality was. 
I did not learn anything more about 
these matters until the late 1980s. 
Then I learned just super�cially about 
the Langlands correspondence. If 
one knows even a little bit about 
the Langlands correspondence and a 
little bit about conformal �eld theory 
on a Riemann surface, one can see 
an analogy between them. I wrote a 
paper that was motivated by that but 
then I realized that my understanding 
was too super�cial to lead to 
anything deep, so I abandoned the 
matter for a number of years.
Ooguri: I remember when I was a 
postdoc at the Institute for Advanced 
Study in 1988 and 1989, Robert 
Langlands himself was actually quite 
interested in conformal �eld theory. I 
am not sure exactly which aspect he 
was interested in, however.
Witten: I don’t think he was 
motivated by the Langlands 
correspondence. But I think his 
work was in�uential. Even though 
in a sense he didn’t precisely make 
any major breakthrough himself, he 
helped to �nd the questions that 
stimulated the later development 
of Stochastic Loewner Evolution, 
which has had a major impact 
on mathematics and has even 
enlightened physicists about new 
ways to think about some questions 
in conformal �eld theory. I think 
Langlands was an in�uence behind 
this work, but I do not believe his 
interest in conformal �eld theory 
was motivated by the the Langlands 
correspondence or by gauge theory 
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dualities. This is my impression from 
interacting with him over the years. 

As I have already remarked, in 
the late 1980s, after spending some 
time trying to develop the analogy 
between conformal �eld theory 
and the Langlands correspondence, 
I concluded reluctantly that the 
analogy in the form I was developing 
was way too super�cial, so I stopped. 
But then around 1990, I heard about 
new work of Alexander Beilinson and 
Vladimir Drinfeld on the geometric 
Langlands correspondence. This had 
a few consequences. First of all, it 
con�rmed that my understanding 
of what the duality would mean in 
physics was way too super�cial. What 
they had was much more incisive 
and much more detailed than my 
rather primitive analogy between 
the Langlands correspondence and 
conformal �eld theory. Their work 
con�rmed that physics that I knew 
was relevant. But I was troubled, 
because they were using conformal 
�eld theory in a way that didn’t 
make any sense to me. They studied 
conformal �eld theory at negative 
integer levels－in physics positive 
integers are more natural here－
and used it in ways that looked quite 
strange. 

As I explained yesterday in my 
lecture at the Kyoto Prize Symposium, 
for a number of years, the “volume 
conjecture” concerning the Jones 
polynomial (formulated and 
developed starting around 2000 by 
Rinat Kashaev, Hitoshi Murakami, 
and Jun Murakami, among others, 
and explained to me in large part 
by Sergei Gukov) bothered me. 
Although their statements bore a 
super�cial resemblance to physically 
well-motivated statements－in 
fact to statements that I myself 
had made in my original paper on 

the Jones polynomial in 1988－
there was a crucial difference. They 
seemed to have complex critical 
points that made exponentially large 
contributions, and this normally is 
not possible in physics. I am not sure 
if this point bothered anyone else, 
but it bothered me. It turned out that 
this was a good question to think 
about, since I eventually found a nice 
explanation, and this was a turning 
point in enabling me to understand 
Khovanov homology via gauge 
theory.

The work of Beilinson and Drinfeld 
on geometric Langlands bothered me 
in much the same way. They were 
using familiar ingredients of physics 
but they were using them in ways 
that did not seem to �t. It looked 
like somebody had taken a bunch 
of chess pieces, or perhaps here in 
Japan I should say a bunch of shogi 
pieces, and placed them on the board 
at random. The way that the pieces 
were arranged did not make any 
sense to me. That bothered me but I 
could not do anything about it.

Actually, the very little bit of 
what Beilinson and Drinfeld were 
saying that I could understand made 
me wonder if the work of Nigel 
Hitchin would be relevant to them, 
so I pointed out to them Hitchin's 
paper in which he had constructed 
commuting differential operators 
on the moduli space of bundles 
on a curve. Differently put, Hitchin 
had in a certain sense quantized 
the classical integrable system that 
he had constructed a few years 
before. Although I understood 
scarcely anything of what Beilinson 
and Drinfeld were saying, I did put 
them in touch with Hitchin’s work, 
and actually, in their very long, 
unpublished foundational paper 
on geometric Langlands that you 

can �nd on the web, Beilinson and 
Drinfeld acknowledged me very 
generously, far overestimating how 
much I had understood. All that had 
really happened was that based on 
a guess, I told them about Hitchin’s 
work, and then I think that made 
all kinds of things obvious to them. 
Maybe they felt I knew some of those 
things, but I didn't. But anyway, there 
were ample reasons in those years to 
think that geometric Langlands had 
something to do with physics, but as 
you can see I still couldn’t make any 
sense out of it.
Ooguri: So, what inspired you to 
return to this?
Witten: A decade later there was 
a workshop at the Institute for 
Advanced Study on geometric 
Langlands for physicists. Were you 
there?
Ooguri: I was invited, but there was a 
con�ict of schedule, so I couldn’t go. I 
missed it.
Witten: There were two long series 
of lectures and then there were a 
couple of outliers. The long series 
were very well done, but they 
did not help me very much. Mark 
Goresky gave a long series of lectures 
aiming to tell physicists what is the 
Langlands correspondence. The 
only trouble for me was that to the 
extent that one can explain this topic 
in a couple of lectures, assuming 
essentially no knowledge of algebra 
beyond the de�nition of a �eld (in 
the algebraic sense), I was familiar 
with the Langlands correspondence 
already. Namely I didn’t really know 
anything about it, but I knew as 
much as one could explain in a few 
hours starting from zero. So I couldn’t 
really get much out of those lectures.

In addition, Ed Frenkel (who had 
been the prime mover behind the 
occurrence of this workshop) gave 
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a series of lectures that, as far as I 
was concerned, were basically about 
the shogi board on which the pieces 
have been arranged at random. I 
really couldn’t get much out of those 
lectures either because I already 
knew that people working on the 
geometric Langlands were taking 
familiar pieces from the shogi set 
and arranging them on the board at 
random as far as I was concerned.

There were a couple of additional 
lectures that weren’t part of any 
series. One of them was by David 
Ben-Zvi. He told us about what was 
supposed to be an approximation 
to the geometric Langlands 
correspondence. I think he was 
talking largely about the work 
of another mathematician, Dima 
Arinkin. What was supposed to be 
the approximation to the geometric 
Langlands correspondence was 
T-duality on the �bers of the Hitchin 
�bration. This was described by Ben-
Zvi in a complex structure in which 
the �bers of the Hitchin �bration 
are holomorphic, so the T-duality is a 
holomorphic duality. It was already 
known to physicists that the T-duality 
on the �bers of the Hitchin �bration 
comes from Montonen-Olive duality 
in four dimensions, and of course ever 
since Atiyah’s observations of 1977-
8, I had been aware of the possibility 
that some version of the Langlands 
correspondence might be associated 
to Montonen-Olive duality. But what 
about the fact that Ben-Zvi was only 
claiming to deduce from T-duality 
an approximation to geometric 
Langlands duality, rather than the 
real thing? At a certain point, I 
started to suspect that the reason 
for this was simply that Ben-Zvi was 
describing the situation in the wrong 
complex structure. The idea was 
that the same T-duality of Hitchin’s 

moduli space, viewed differently, 
would give a mirror symmetry 
between a B-model in a certain 
complex structure and an A-model 
in a certain symplectic structure. This 
mirror symmetry was supposed to 
be the true geometric Langlands 
duality, not the approximation. 
Actually, the reason I started working 
on geometric Langlands with Anton 
Kapustin was that he had studied 
generalized complex geometry in 
two-dimensional dualities. In that 
world, a family of dualities can 
degenerate, and a mirror symmetry 
can degenerate to a holomorphic 
duality.

When one starts thinking 
along these lines, it soon makes 
a lot of sense that the geometric 
Langlands duality is really a mirror 
symmetry, which can degenerate to 
a holomorphic duality, and that this 
is the approximation Ben-Zvi taught 
us about. I became convinced that 
that had to be right. There were 
still a few hurdles to overcome. The 
most dif�cult one I already described 
earlier. One does not get to �rst base 
with the Langlands correspondence 
without Hecke operators, so it 
was necessary to have a physical 
interpretation of Hecke operators in 
terms of ’t Hooft operators of gauge 
theory. It was also necessary to know 
how to interpret the A-model of 
the cotangent bundle of a complex 
manifold M in terms of differential 
operators on M. This actually was 
fairly close to things that Kapustin 
had done earlier. Once these points 
were understood, it was pretty clear 
to me as a physicist what is geometric 
Langlands duality.

But it was very hard to write a 
paper about it. It took about a year. 
For that year, I felt like someone who 
had discovered the meaning of life 

and couldn’t explain it to anybody 
else. And in a sense, I still feel 
that way for the following reason. 
Physicists with a background in string 
theory or gauge theory dualities 
can understand my paper with 
Kapustin on geometric Langlands 
but for most physicists this topic is 
too detailed to be really exciting. On 
the other hand, it is an exciting topic 
for mathematicians, but dif�cult to 
understand because too much of 
the quantum �eld theory and string 
theory background is unfamiliar (and 
dif�cult to formulate rigorously). 
That paper with Kapustin may 
unfortunately remain mysterious to 
mathematicians for quite some time.
Yamazaki: Maybe that means that 
we have to wait an extra 10 or 15 
years before. . .
Witten: We indeed may have to. I 
think it’s actually very dif�cult to see 
what advance in the near term could 
make the gauge theory interpretation 
of geometric Langlands accessible 
for mathematicians. That’s actually 
one reason why I’m excited about 
Khovanov homology. My approaches 
to Khovanov homology and to 
geometric Langlands use many of the 
same ingredients, but in the case of 
Khovanov homology, I think it is quite 
feasible that mathematicians could 
understand this approach in the near 
future if they get excited about it. I 
believe it will be more accessible. If 
I had to bet, I think I have a decent 
chance to live to see gauge theory 
and Khovanov homology recognized 
and appreciated by mathematicians, 
and I think I’d have to be lucky 
to see that in the case of gauge 
theory and the geometric Langlands 
correspondence－just a personal 
guess.
Toda: Do you think your 
idea of the S-duality and the 
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geometric Langlands can be somehow 
applied to the honest Langlands 
program?
Witten: I see that as being far away. 
For me personally－it’s a dream that 
eventually number theory would 
make contact with physics some time, 
but I doubt it will be soon. 

There are all kinds of areas where 
speci�c number theory formulas 
appear in physics, and these may be 
clues that the dream will come true 
one day. But to really get me excited, 
somehow the number theory would 
have to enter the physics in a more 
structural way. I’m not that interested 
in a speci�c formula that comes out 
of a physics calculation in a more or 
less ad hoc fashion. Number theory 
would have to be more integrated 
with the physics to get me excited, 
and I don’t see that happening soon. 

In my work, I concentrated on the 
geometric form of the Langlands 
correspondence because I could 
see that there was hope to really 
understand it in the context of the 
physics-based tools that were at 
hand. There might be something 
like that one day for the Langlands 
correspondence of number theory, 
but probably a lot is missing and we 
do not know what has to happen 
�rst. I feel that the reason I was 
able to make progress was that my 
focus was much more narrow than 
trying to understand the Langlands 
correspondence of number theory.
Toda: The relationship between 
S-duality and geometric Langlands 
was surprising to me, as the number 
theory seems to be a research area 
far from physics.
Witten: Nevertheless there have 
been many developments, which 
one day may be seen as important 
clues. One of the deepest was 
started roughly �fteen years ago by 

Savdeep Sethi and Michael Green 
and then continued by Green with 
many collaborators. In the original 
work, Sethi and Green were trying 
to understand certain low energy R4 
interactions in Type IIB superstring 
theory in ten dimensions (here R is 
the Riemann tensor). They made an 
amazing discovery, I would say: the 
answer is given by a certain non-
holomorphic Eisenstein series of 
weight 3/2. Although my knowledge 
of number theory is very super�cial, 
I think that this sort of thing is much 
closer to the interests of modern 
number theorists than the kind of 
classical modular forms that usually 
appear in two-dimensional conformal 
�eld theory.
Ooguri: Those objects which are not 
totally modular have also appeared in 
number theory.
Witten: That is correct. A lot of 
things that number theorists like 
have appeared in physics, and some 
have even appeared in my own work. 
Plenty has been found to show that 
the physics theories that we work on 
as string theorists are interesting in 
number theory. They know something 
about number theory but personally 
I don’t see an opportunity to really 
make contact in a structural way with 
number theory in the foreseeable 
future. I can’t even formulate what it 
would mean to make such contact, 
so I can’t even properly tell you what 
we can’t do but I think the time is not 
right to do it.

Anyway, that’s why I personally 
concentrated on geometric 
Langlands rather than on number 
theory, and geometric Langlands was 
hard enough. It was a lot of work 
to understand it, but I think that 
having understood it, many things 
that mathematicians do involving 
geometric aspects of representation 

theory are much more accessible as 
part of physics. For example, I did not 
understand what Hiraku Nakajima 
explained yesterday at the Kyoto 
Prize Workshop, but I think that an 
understanding might involve some 
of the things that were clear after 
working with geometric Langlands. I 
can’t promise but it is worth a try.

Just one obvious thing is that 
although Nakajima did not have 
time to explain the whole picture, at 
the end of his lecture he was telling 
us about the af�ne Grassmannian. 
Isomorphism classes of t’ Hooft 
operators are associated to cycles 
in the af�ne Grassmannian, so if a 
mathematician tells you about the 
af�ne Grassmannian, you probably 
want to think about at least part of 
what you are hearing in terms of 
’t Hooft operators. I can make no 
promises, but I feel it would de�nitely 
be worth a try to understand 
what Nakajima was saying from a 
physicist’s viewpoint.

I am sure, at any rate, that there 
is much more that can and should 
be done to understand much more 
of geometric representation theory 
from a physical viewpoint. In fact, 
part of the original work of Beilinson 
and Drinfeld on geometric Langlands 
has still not been understood to my 
satisfaction. Here I have in mind the 
use of conformal �eld theory at what 
they call the critical level (level -h, 
where h is the dual Coxeter number) 
to construct the A-model dual of 
certain B-branes (the ones that are 
associated to opers, in the language 
of Beilinson and Drinfeld). Davide 
Gaiotto and I obtained a few years 
ago a reasonable understanding of 
what electric-magnetic duality does 
to the variety of opers, but I still do 
not really feel I understand its relation 
to conformal �eld theory. However, in 
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the last few years physicists working 
on supersymmetric gauge theories 
in four dimensions and their cousins 
in six dimensions have made several 
discoveries involving the role of 
conformal �eld theory at the critical 
level, so the time may well be right to 
resolve this point.
Ooguri: I think we have about 10 
more minutes. Is there any �nal 
question?

Toda: I have some general 
question. What kind of problems 
mathematicians should work on?
Witten: Well, there are lots of 
problems that algebraic geometers 
study that involve dualities studied by 
physicists. In many of those cases, I 
will not be able to give much advice 
as I am not an expert on recent 
developments. In some cases, I am still 
struggling to understand things that 
physicists did quite some time ago 
that are very relevant. Just to give one 
example, the Gopakumar-Vafa and 
Ooguri-Vafa formulas have been very 
in�uential for algebraic geometers, 
but as a physicist, I was never satis�ed 
that I understood them. So I actually 
spent a lot of time in the last year 
with a student (Mykola Dedushenko) 
trying to understand these formulas 
better. In this work, I was doing some 
of the homework that I’d have to 
understand before even trying to 
answer your question. 

We more or less have the paper 
�nished on the Gopakumar-Vafa and 
Ooguri-Vafa formulas, I am glad to 
say.
Ooguri: You will talk about it 
next week at the Kavli IPMU (later 
published as a paper, http://arxiv.org/
abs/1411.7108).
Witten: Going back to Yukinobu’s 

question, although there are many 
areas of current interest on which I 
probably cannot give useful advice, 
there is one bit of advice that I 
actually would offer to algebraic 
geometers. I do recommend super 
Riemann surfaces. I’m sure there’s 
a deep theory there. I can’t promise 
anything about how quickly it will 
emerge. A deep theory will probably 
only be developed in the near term if 
enough people get excited about it. 
Maybe the workshop we are having 
next spring at the Simons Center will 
help make that happen but I can’t 
promise anything.
Ooguri: It’s certainly true that, 
when people were working on 
the �niteness and vanishing of the 
cosmological constant in perturbative 
string theory 25 - 30 years ago, it was 
not totally satisfactory. The complete 
understanding only came after 
your proper description in terms of 
geometry of super Riemann surfaces.
Witten: Thank you, Hirosi, and I’m 
glad you think so. Not all physicists 
agree, because it is possible to express 
everything in terms of picture-
changing operators and so on, hiding 
the super Riemann surfaces. I think 
personally that when one does that, 
one doesn’t understand properly 
what the formulas mean. But not 
everybody agrees. 

I think one reason that the theory 
of super Riemann surfaces stopped 
developing in the 1980s was that 
physicists became satis�ed with their 
partial understanding in which the 
super Riemann surfaces were hidden. 
There is a tremendous beauty to this 
subject that I think is simply missed 
if you try to understand things 
that way. I care about it enough to 
have spent several years by now on 
spelling out details of the description 
in terms of super Riemann surfaces. 

It has seemed unclear that a lot 
of physicists would really get excited 
about the sort of details that I was 
trying to �ll in. So one of my hopes 
has been that mathematicians will 
get excited about developing super 
Riemann surface theory. I can’t 
promise but I think they should.
Ooguri: Do you expect also new 
physics insight coming out from 
the more precise understanding of 
perturbative string theory?
Witten: The answer may depend on 
what you mean by physics insight. 
I think that one understands better 
what superstring perturbation theory 
means if one formulates it in terms 
of integration on the moduli space 
of super Riemann surfaces. That is 
insight of a sort. However, I do not 
see any evidence at the moment that 
incorporating super Riemann surfaces 
in the way that we understand 
perturbation theory will help us 
with non-perturbative questions, 
for example, or with understanding 
better the symmetry structure of 
string theory, or whatever may be the 
correct concept.
Yamazaki: Let me ask my last 
question. You’re working partly in 
the area of mathematical physics. 
You have a lot of discussion with 
mathematicians, and also write math 
papers.
Witten: Well, I write math papers 
in very special cases where I think 
something I could actually do would 
be illuminating. Recent examples have 
been my work with Ron Donagi on 
some foundational questions about 
the moduli space of super Riemann 
surfaces, and the work with Rafe 
Mazzeo that I mentioned before on 
the Nahm pole boundary condition. 
Yamazaki: I see. So, my question 
is – what’s the advice if a physicist 
wants to work with a mathematician 
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effectively?
Witten: It’s really dif�cult to give 
advice. Usually producing rigorous 
proofs requires very detailed methods. 
That makes it hard for a physicist 
and so I myself have only done that 
in very special cases where I thought 
something was really missing that 
was actually simple enough that I 
could help do it, if I had the right 
collaborator. Some physicists would 
want to go into more detail and learn 
the techniques for rigorous proofs in 
a particular area, but most physicists 
I think will only be happy and 
successful doing that in very special 
cases like the ones I’ve picked.
Yamazaki: I see. Is it also true that in 
many of your works, the conversation 
with some mathematicians has been 
an inspiration for you?
Witten: This usually happens when 
something a mathematician has done 
involves an aspect of the physics 
that hasn’t been understood and 
which doesn’t make sense to me. I 
mentioned earlier one case involving 
the volume conjecture. For years I 
could not understand the results in 
this area because complex critical 
points were making exponentially 
large contributions. I kept putting it 
aside, not able to make progress.

Finally, in the summer of 2009, 
I attended a conference at the 
Hausdorff Institute in Bonn on the 
20th anniversary of the Chern-
Simons theory. I heard more lectures 
on the volume conjecture. To me, 
it was just embarrassing to not 
understand why exponentially large 
contributions were coming in. I feel 
vindicated in hindsight for worrying 
so much about this question because 
the answer turned out to be really 
useful. 
Yamazaki: I see. In that case the 
feeling that the pieces are not in the 

right place led you to the question, 
which you eventually solved and also 
it led to new developments.
Witten: Yes. Another case was when 
I felt that Beilinson and Drinfeld had 
the shogi pieces jumbled on the 
chessboard. 

Ooguri: Pieces are placed in a wrong 
way, but, if you look at it in different 
dimensions, perhaps they are totally 
aligned.

I have a �nal question. In the 
interview with Tohru Eguchi, 20 years 
ago in Sugaku Seminar, he asked you 
about the prospects at the interface 
of mathematics and physics, and 
you replied saying that the area had 
been certainly growing very strongly 
and you predicted that the progress 
would continue in the foreseeable 
future. Certainly your prediction 
has been amply veri�ed in the last 
20 years. Given this, my question is, 
again, what is your prospect for the 
next 20 years? Can you also give 
advice on the future of the �eld for 
young students who will be reading 
this article? 
Witten: First of all, in the last 20 
years, not only has this interaction 
of math and physics continued to be 
very rich but it has developed in such 
diversity that very frequently exciting 
things are done which I myself am 
able to understand embarrassingly 
little about, because the �eld is 
expanding in so many directions. 

I am sure that this is going to 
continue and I believe the reason it 
will continue is that quantum �eld 
theory and string theory, I believe, 
somehow have rich mathematical 
secrets. When some of these secrets 
come to the surface, they often come 
as surprises to physicists because 

we do not really understand string 
theory properly as physics－we do 
not understand the core ideas behind 
it. At an even more basic level, the 
mathematicians are still not able to 
fully come to grips with quantum 
�eld theory and therefore things 
coming from it are surprises. So for 
both of those reasons, I think that the 
physics and math ideas generated 
are going to be surprising for a long 
time. 

I think there are de�nitely exciting 
opportunities for young people to 
come and help explain what it all 
means. We don’t understand this 
properly. We got a wider perspective 
in the 1990s when it became clear 
that the different string theories are 
uni�ed by non-perturbative dualities 
and that string theory in some sense 
is inherently quantum mechanical. 
But we’re still studying many 
different aspects of a subject whose 
core underlying principles are not 
clear. As long as that is true, there 
are opportunities for even bigger 
discoveries by today’s young people. 
But if I could tell you exactly what 
direction you had to go in, I would be 
there.
Ooguri: Thank you very much for 
taking time to talk to us. It has been 
fun. Congratulations again for your 
Kyoto Prize.
Witten: Thank you so much for your 
kind words on the Kyoto Prize, and 
also thank you for the discussion, 
because the discussion has helped 
me remember how much we have 
advanced in the last 20 years.
Ooguri: Let’s meet again 20 years 
from now to assess our progress in 
the next 20 years.
Witten: Let’s try. For that we will 
have to all exercise and keep �t.
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