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One of the most fundamental concepts in modern 

geometry is the notion of a manifold. It is very 

unlikely that someone who did not get a special 

training in mathematics has ever heard this word 

before. I am going to explain what a manifold is, 
but to begin with we can think of it as a speci�c 

part of the space around us, such as the circle that 

a little girl drew on the wall while her parents were 

not watching, the surface of a soccer ball, and even 

the entire Universe. Sometimes the shape of the 

manifold is easy to imagine, because we can see it, 
but most of the times it is impossible. For example, 
we can see only a small piece of the Universe. It 
looks like a box, but the true shape might be quite 

different. One mathematical approach to deal with 

things that we can’t imagine is to �nd numbers, 
usually called invariants that capture as many 

geometrical properties as possible. The invariants 

that were studied quite extensively in the last 20 

years are the so-called Gromov-Witten invariants. 
Although their origin goes back to classical 

problems in enumerative algebraic geometry, it is 
the recent developments in string theory that made 

them very interesting. The goal of string theory is to 

unify quantum mechanics and gravity. 
Its main idea is to model particles by little strings. 
In particular, trajectories are not lines but surfaces. 
That is why the problem of determining what types 

and how many surfaces exist in a given manifold 

becomes very important in physics as well. I would 

like to write about one of the striking predictions 

of string theory, which has a unifying power in a 

sense that it suggests a relation between two quite 

different areas in Mathematics. 

The basic examples are called linear vector spaces. 
The examples that we can imagine are the line, the 

plane, and the 3-dimensional space. Alternatively, 
we can think of these spaces in terms of 

coordinates. Namely, we draw a coordinate system 

by choosing an arbitrary point as an origin and 1, 2, 
or 3 orthogonal axes.  Every point has coordinates 

that correspond to projecting the point to each 

coordinate axes. This way the line is the same as all 

real numbers. The plane is the same as all pairs of 

real numbers, while the 3-dimensional space is all 

triples of numbers. The dimension corresponds to 

the number of coordinates. Our imagination cannot 

go beyond dimension 3, so that we have no way 

to say what a 4-dimensional linear vector space is 

except that it is just all quadruples of real numbers. 
The manifold is made from linear vector spaces 

by gluing. The simplest example is the circle, but let 

me explain the next simplest example the sphere, 
because it is more relevant to us. If we remove the 

North Pole N of the sphere then every other point P 
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on the sphere corresponds to a unique point on the 

plane of the equator: take the straight line NP and 

look at the intersection with the plane (see Figure 1). 
In other words, the above rule allows us to wrap the 

equator plane around the sphere in such a way that 

it will cover all points of the sphere except for the 

north pole N. Similarly, we can do the same thing 

with the South Pole S. In other words, the sphere is 

made of banding and gluing two planes. Note that 

the two planes overlap on the sphere everywhere 

except for N and S. We can write what was just 

said in terms of coordinates. Namely the point P is 

obtained by gluing the points with coordinates (x1, 
y1) and (x2, y2), which correspond respectively to the 

intersections of the lines NP and SP with the equator 

plane. The coordinates x2 and y2 can be expressed in 

terms of x1 and y1 (see Figure 1 for the answer). The 

precise formula is irrelevant for now. The main point 

is that the gluing consists of giving a mathematical 

formula to switch from the coordinates of one 

linear vector space into another one. The linear 

vector spaces are called coordinate charts, while the 

formulas to switch between the coordinates of the 

charts are called transition functions. The sphere 

can be constructed from 2 coordinate charts and 1 

transition function. 

It is very dif�cult to work with coordinates, 
because the formulas are usually quite cumbersome 

and the essential properties of the underlying 

manifold are hard to see. My favorite example is 

the problem of combing the sphere. Imagine that 

our sphere has hair, i.e., a piece of hair that comes 

out of each point on the sphere. Can we make all 

pieces of hair tangent to the surface of the sphere? 

The answer is no, and presumably we should be 

able to prove it using the coordinate charts and 

the transition functions, but there is a much more 

elegant approach. 
The idea is to think of the tangent bundle of 

the sphere, i.e., all tangent planes of the sphere. 
Note that to specify a point on the sphere we 

need 2 coordinates and to specify a point on 

the corresponding tangent plane we need yet 

another 2 coordinates. We obtain a 4-dimensional 

manifold, so it is one of these things that we can’t 
imagine. Nevertheless, we can clearly visualize an 

individual tangent plane. If we were able to comb 

the sphere then by moving the points of the sphere 

along the corresponding piece of hair we would 

obtain a surface inside the tangent bundle, which 

does not intersect the sphere itself. Now one can 

Can we comb a sphere?

Figure 1: Coordinate charts and triangulation (with 8 triangles) of the sphere of radius R.
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prove that for every manifold X we can construct 

a deformation X ’ of X inside its tangent bundle, 
such that, X and X ’ have only isolated points of 

intersection. Moreover, the number of points of 

intersection is the Euler characteristic of X. 
This fact would imply that the sphere has Euler 

characteristic 0. 
The Euler characteristic of a manifold is a bit 

technical to de�ne, but in the case of surfaces it 

amounts to triangulating the surface, i.e., choosing 

several points on the surface and connecting them 

with curves, so that if we cut the surface along 

the curves we would obtain (curved) triangles. The 

Euler characteristic is independent of the choice 

of a triangulation. It is de�ned by subtracting the 

number of curves from the number of points and 

triangles. For the triangulation depicted on Figure 1, 
since we have 6 vertices, 12 edges, and 8 triangles, 
the answer is 6-12+8 = 2, which is the reason why 

we can’t comb the sphere! 

As pointed out in the above example even if 

we know explicitly the coordinate charts and the 

transition functions of some manifold, usually it is 

very dif�cult to understand the main properties of 

the underlying manifold. One of the key ideas in 

geometry is to build vector bundles by installing 

a linear vector space, called a �ber, at each point 

on the manifold. For example, the cylinder and the 

Möbius strip are line bundles on the circle build 

by installing a line at each point on the circle (see 

Figure 2). While for the cylinder the line is installed 

in the same way, for the Möbius strip, as we move 

along the circle, the line is rotating clockwise (with 

respect to the plane of the circle) until it makes a 

full revolution as we return to the starting point. 
The vector bundle is also a manifold, but very 

special one since part of the linear structure of the 

charts is preserved under gluing. The basic algebraic 

operations, such as addition and multiplication can 

be introduced as well, which makes it possible to 

study the geometry of the underlying manifold by 

the methods of algebra and to introduce numerical 

invariants. 
Each vector bundle on a given manifold M gives 

rise to an intersection operation, which produces a 

new submanifold out of any given submanifold X 

of M as follows. Let us move the points of M along 

the �bers of the vector bundle in a continuous 

fashion, so that we obtain a submanifold Y of the 

vector bundle, such that, X and Y are transverse to 

each other. The result of the intersection operation 

is simply the intersection X∩Y of X and Y. The 

transverse property, which will be explained below, 
is a suf�cient condition for X∩Y to be a sub-

manifold of M contained in X. Starting with any 

given set of vector bundles, we can successively 

apply the intersection operations to M: the �rst 

intersection operation is applied to M and we obtain 

a submanifold X1 of M, the second intersection 

operation is applied to X1 and we obtain a sub-

manifold X2 of X1, etc. Each time the dimension is 

decreasing by the rank of the corresponding vector 

bundle, i.e., the dimension of the �ber. In particular, 
if the ranks of the vector bundles add up to the 

dimension of M, then the successive application of 

the intersection operations yields several isolated 

points. By counting the number of points we obtain 

numerical invariants, called intersection numbers.
The continuous deformations of a given sub-

manifold are usually quite many. How to de�ne 

intersection numbers independent of the choice 

of the deformations? First, we have to require that 

our manifolds and vector bundles are orientable. 
Otherwise, only the parity, i.e., even or odd, of 

the number of intersection points is well de�ned. 
Second, when executing an intersection operation, 
we are allowed to use only deformations, such 

that the corresponding intersection is transversal. 
The main idea behind introducing the notion of 

Vector bundles and intersection numbers
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Figure 2: The Möbius strip and the Cylinder as vector bundles. The �bers are the lines AB, A’B’, A’’B’’, etc. The red curve is a 
small deformation of the circle along the �bers.

an orientable manifold is the following. If we have 

two coordinate systems in some linear vector 

space, then depending on whether we can or can’t 
move continuously one into the other, we can split 

the set of all coordinate systems into two classes. 
For example, if we have two coordinate systems 

in the plane, then we can always move the �rst 

coordinate system in such a way that the origins 

and the 1st axes coincide, while for the 2nd axes 

there are two possibilities, they either have the 

same or the opposite directions. We say that the 

manifold is orientable if the coordinate systems in 

every two overlapping coordinate charts have the 

same orientation. Furthermore, two submanifolds 

of a given manifold intersect transversely if for 

every point in the intersection we can construct a 

coordinate system of the coordinate chart of the 

manifold at that point by using only coordinate 

axes from the two submanifolds. For example, if 
two circles in a plane are tangent to each other, 
then their intersection is not transverse, because 

the coordinate axes of the two circles at the 

tangent point have the same direction; so we can’t 
construct from them a coordinate system of the 

plane. On the other hand, if the circles intersect 

at two points, then the tangent directions of the 

two circles at any of the two points of intersection 

are different; so we can construct a coordinate 

system, i.e., the intersection is transverse. Finally, we 

can give the precise de�nition of an intersection 

number. If several orientable sub-manifolds 

intersect transversely in an isolated point, we 

can compare the orientations of the coordinate 

system of the manifold and the coordinate system 

obtained by adjoining the coordinate systems of 

the submanifolds. Note that the order in which we 

intersect the submanifolds is important, because this 

is the order in which we adjoin coordinate systems. 
If the orientations match then we assign to the 

intersection point +1, otherwise -1. The intersection 

number is de�ned by summing up the numbers 

associated with all intersection points. 
For example, the Möbius strip is not orientable, so 

it makes sense to ask only about the parity of the 

intersection number. Moving the circle along the 

�bers of the Möbius strip (see Figure 2) gives a new 

circle. The number of points where the two circles 

intersect is always odd. On the other hand, the 

cylinder is orientable, so the intersection number is 

an integer. We can move the circle to a position (see 

Figure 2) where the two circles do not intersect, so 

the intersection number must be 0. In other words, 
the parity of the intersection number can be used 

to distinguish between the Möbius strip and the 

cylinder as vector bundles on the circle.
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As a manifold every surface is uniquely 

determined from its Euler characteristic. The latter 

always has the form 2-2g, where the number g 

is called the genus of the surface and it coincides 

with the number of holes. For example, the sphere 

has Euler characteristic 2 and genus 0, while for 

the donut the Euler characteristic is 0 (you can 

take a triangulation and make the same count as 

we did for the sphere) and genus 1. However, if 
we are interested in the shape of the surface, then 

it is important to have a measure for the distance 

between the points. Usually there is more than 1 

way to measure distance and after �xing a measure 

the surface is called Riemann surface. The basic idea 

of the moduli space is to give a geometric structure 

to the entirety of the objects we are trying to 

classify. The geometry of a single Riemann surface 

is quite rich and non-trivial, so it is really remarkable 

that it makes sense to study the set of all Riemann 

surfaces by using their moduli space. What are 

the coordinates and what is the dimension of the 

moduli space of the Riemann surfaces? If you 

�x two different points on the Riemann surface, 
then there is a shortest path between them, called 

geodesic. For example for the sphere the geodesics 

are precisely the circles whose plane goes through 

the center of the sphere. The moduli spaces of 

surfaces of genus g = 0, or 1 are much easier to 

describe. So let us concentrate on the case when 

g is at least 2. One possible approach is to cut the 

surface along simple closed geodesics in such a way 

that the surface will decompose into pairs of pants 

(see Figure 3). By remembering a reference point 

on each geodesic and measuring its length we can 

uniquely recover the surface and its metric provided 

we remember how to glue the different pieces. The 

moduli space is covered by charts that correspond 

to the various gluing schemes while the coordinates 

correspond to the length and the position of the 

reference point for each geodesic (so 2 parameters 

for each geodesic). It is not hard to see that the 

number of simple closed geodesics along which we 

have to cut the surface is 3g-3, so the dimension of 

the moduli space is 6g-6.  
It is more convenient, however, to work with 

slightly more complicated spaces, namely we allow 

our surfaces to have punctures (also called marked 

points) and nodes. By forgetting the punctures we 

can recover the original moduli spaces, while the 

nodes are necessary in order for the intersection 

theory to work. Note that �xing a marked point on 

a surface requires 2 coordinates; so the dimension 

of the moduli space of genus-g Riemann surfaces 

with n marked points is 6g-6+2n. The moduli space 

has a natural set of vector bundles corresponding to 

the marked points. The �ber at a single point, i.e., a 

Figure 3: Genus 3 Riemann surface with 3 marked points. Cutting along the red loops gives a pairs of pants decomposition. 
Note that the number of loops is 3g-3 = 6. 
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Riemann surface with several marked points, is just 

the tangent plane of the Riemann surface at the 

marked point. Using intersection operations similar 

to the ones discussed earlier we can introduce many 

intersection numbers that re�ect the geometry of 

the moduli space. What is surprising is that the 

same intersection numbers can be recovered from 

the system of differential equations known as the 

KdV hierarchy. 

The KdV equation is the following partial 

differential equation ut = uux + ε2uxxx, where ε is a 

parameter whose value could be an arbitrary non-

zero number and u = u(x, t) is a function in two 

variables. I am not going to attempt to describe the 

history of the KdV equation, but let me just say that 

it models the motion of a wave in shallow water: t 
plays the role of time and if we �x t, then the graph 

of the function u(x, t) with respect to x represents 

the shape of the wave. The most remarkable feature 

of the KdV equation is that it can be included into 

a larger system of equations by allowing additional 

time variables t1 = t, t2, t3, etc. The dependence of 

the function u = u(x, t1, t2, t3,···) on each additional 

variable is given by an additional differential 

equation. We have an entire system of differential 

equations, which is called the KdV hierarchy. Note 

that we can’t add arbitrary an additional time 

variable and a corresponding differential equation, 
because this would usually contradict the previous 

equations. Starting with the KdV equation there 

is a unique way to recursively extend the system 

to include as many time variables as we wish. 
Equations with such property, i.e., admitting a whole 

hierarchy of compatible differential equations are 

called integrable, while the corresponding hierarchy 

is called integrable hierarchy. Usually, it is very 

dif�cult to �nd integrable differential equations. The 

equations of the KdV hierarchy become more and 

more complicated, but every solution depends only 

on the initial condition, i.e., the shape of the wave 

when all the time variables are 0. It turns out that 

if we choose as an initial condition u(x, 0) = x3/6, 
then the Taylor’s series expansion of the solution 

of the KdV hierarchy determines all intersection 

numbers on the moduli spaces of Riemann surfaces. 
The variable tk corresponds to iterating k times 

the intersection operation with respect to the line 

bundles associated with the marked points, while 

the parameter ε keeps track of the genus of the 

Riemann surface. 
 

The relation between intersection numbers on 

the moduli space of Riemann surfaces and the 

KdV hierarchy was predicted by E. Witten and 

proved by M. Kontsevich. Nevertheless, it is still very 

mysterious why does the KdV equation, which we 

can observe in nature simply by watching the waves 

in a channel of shallow water, is so important for 

such a complicated space as the moduli space of 

Riemann surfaces. Furthermore, we can generalize 

the moduli space of Riemann surfaces by adding to 

a given surface the data of all possible ways to �t 

it (the mathematical word is to map it) in a given 

manifold. Depending on what manifold we choose 

we can obtain many other hierarchies of differential 

equations similar to the KdV hierarchy. These 

hierarchies are completely new and were never 

studied before. In fact, in the theory of integrable 

hierarchies, the construction of an integrable model 

is quite dif�cult, so it is very surprising that string 

theory leads to such a wide class of integrable 

hierarchies of differential equations. I think 

that investigating the role of integrability in the 

geometry of moduli spaces of Riemann surfaces is a 

very promising direction for the future development 

of Mathematics.  

The KdV integrable hierarchy  

Conclusion


